二次函数的对称性
初二数学二次函数的轴对称性

初二数学二次函数的轴对称性二次函数是数学中常见的一种函数形式,具有很多独特的性质。
其中,轴对称性是二次函数最为显著的特征之一。
本文将介绍二次函数的轴对称性及相关概念,并以数学实例来加深理解。
一、轴对称性的定义及性质1. 轴对称性的定义:二次函数的图像关于某一条直线对称。
2. 轴对称性的性质:若二次函数f(x)的图像关于直线x=a对称,则有以下性质:- 对任意x,有f(a+x) = f(a-x);- 若(x1, y1)是f(x)的图像上的任意一点,则(a+x1, y1)也是f(x)的图像上的一点;- 轴对称线的方程为x=a。
二、轴对称函数的图像轴对称函数的图像是一种特殊的图形,具有左右对称的特点。
以二次函数 f(x) = ax^2 + bx + c (a≠0)为例,其轴对称线的方程为x = -b/2a。
当a>0时,二次函数的图像开口向上,形如“U”字形,轴对称线为对称图形的最低点;当a<0时,二次函数的图像开口向下,形如倒置的“U”字形,轴对称线为对称图形的最高点。
三、轴对称性的证明证明某一函数具有轴对称性可以采用以下两种方法。
1. 利用代数方法,求解f(x)与f(-x)的关系:若f(x) = f(-x),则二次函数具有轴对称性。
例如,对于二次函数f(x) = x^2 - 4,有f(x) = f(-x),因此该函数具有轴对称性。
2. 利用几何方法,观察二次函数的图像关于x轴对称:绘制二次函数的图像,并将图像沿x轴折叠。
如果左右对称,则二次函数具有轴对称性。
例如,对于二次函数f(x) = (x-1)^2 - 2,绘制其图像后,可以发现图像相对于x轴呈左右对称的关系,因此该函数具有轴对称性。
四、轴对称性在数学问题中的应用1. 轴对称性在函数图像的绘制中的应用:在绘制二次函数的图像时,可以利用轴对称性简化计算。
通过确定函数的最高点或最低点及其坐标,再结合对称性,可以得到更多其他点的坐标,从而绘制出准确的图像。
二次函数的零点及轴对称性

二次函数的零点及轴对称性二次函数是一个常见的代数函数,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a≠0。
在本文中,我们将探讨二次函数的零点及轴对称性。
一、二次函数的零点二次函数的零点,也称为函数的根或解,指的是函数值等于零的x 值。
要找到二次函数的零点,我们可以使用求根公式或图像法。
1. 求根公式通过求根公式可以得到二次函数的零点。
对于一般形式的二次函数f(x) = ax^2 + bx + c,其零点可以通过以下公式得到:x = (-b ± √(b^2 - 4ac)) / 2a其中,±表示取两个值,即可以得到二次函数的两个零点。
这个公式称为二次方程的根的公式,它的推导可以利用配方法或因式分解方法得到。
2. 图像法除了求根公式,我们还可以通过观察二次函数的图像来找到其零点。
二次函数的图像为一条抛物线,可以是开口向上或开口向下的形状。
当抛物线与x轴相交时,对应的x值即为函数的零点。
二、二次函数的轴对称性二次函数的轴对称性是指二次函数图像关于某一直线对称。
要确定二次函数的轴对称线,我们可以使用公式或观察法。
1. 公式法二次函数的轴对称线可以通过以下公式确定:x = -b / (2a)这个公式给出了二次函数的抛物线的对称轴的x坐标值。
例如,对于函数f(x) = ax^2 + bx + c,其对称轴的x坐标值为-x轴系数的一半。
2. 观察法除了公式法,我们还可以通过观察二次函数的图像来确定其轴对称线。
对于一般形式的二次函数f(x) = ax^2 + bx + c,如果a>0,则抛物线开口向上,轴对称线为抛物线的最低点所在的垂直线;如果a<0,则抛物线开口向下,轴对称线为抛物线的最高点所在的垂直线。
三、总结二次函数的零点是函数值等于零的x值,可以通过求根公式或观察图像来确定。
而二次函数的轴对称性指的是抛物线关于某一直线对称,可以通过公式或观察图像来确定轴对称线的位置。
数学二次函数的性质

数学二次函数的性质一、引言数学二次函数是数学中一个重要的概念,它是指由二次方程所确定的函数关系。
二次函数具有许多特殊的性质,对于我们理解函数的形态和特征有着重要的作用。
通过深入学习和探究二次函数的性质,我们能够更好地应用它们于实际问题的解决。
二、二次函数的表达式二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为实数且a≠0。
其中,系数a决定了函数的开口方向,系数b影响了函数的对称轴,而常数项c则决定了函数的纵轴截距。
三、二次函数的对称性1. 对称轴:二次函数的对称轴是一个与纵轴平行的直线,它通过抛物线的顶点。
对称轴的方程可以通过求抛物线的对称点得出,它与x 轴的交点就是抛物线的顶点的横坐标。
2. 对称中心:对称轴与抛物线的交点也是抛物线的对称中心,它具有特殊的几何意义,也是抛物线的一个重要特征。
四、二次函数的增减性与极值点1. 增减区间:二次函数的增减性是指函数在定义域内的变化趋势。
通过求导数或观察二次函数的开口方向,我们可以确定函数的增减区间。
2. 极值点:二次函数的极值点是指函数图像上的最高点或最低点。
由于二次函数的抛物线形态,极值一定存在,并且也可以通过对称轴和顶点来确定。
五、二次函数的零点与根数1. 零点:二次函数的零点是指函数图像与x轴相交的点。
通过求解二次方程ax² + bx + c = 0,我们可以找到二次函数的零点,进而了解函数的根数。
2. 判别式:判别式是决定二次函数零点个数的一个重要工具,它可以通过计算b² - 4ac来得到。
如果判别式大于0,则函数有两个不同的实数根;如果判别式等于0,则函数有两个相等的实数根;如果判别式小于0,则函数没有实数根。
六、二次函数的图像与应用1. 几何形态:通过改变二次函数的系数,我们可以观察到函数图像的不同变化。
a的正负决定了函数的开口方向,a的绝对值决定了抛物线的瘦胖程度。
2. 实际应用:二次函数在物理学、经济学等领域有着广泛的应用。
二次函数对称性分析

二次函数对称性分析二次函数是指形如f(x) = ax^2 + bx + c这样的函数,其中a、b、c为常数且a ≠ 0。
二次函数的图像是一条抛物线。
对于二次函数的对称性分析,有以下几个方面的内容可以展开:一、关于y轴对称:二次函数的图像关于y轴对称,当且仅当a = 0。
这是因为当a = 0时,二次函数变为一次函数,其图像为一条直线,直线与y轴显然是关于y轴对称的。
二、关于x轴对称:二次函数的图像关于x轴对称,当且仅当抛物线的顶点坐标的y值等于c,即f(x) = c。
这是因为顶点是抛物线的最高点或最低点,其对称轴为x轴。
若已知二次函数的标准式(顶点形式)为f(x) = a(x-h)^2 + k,其中(h,k)为顶点坐标,可以直接得到抛物线关于x轴对称的条件为y = k。
三、关于原点对称:二次函数的图像关于原点对称,当且仅当抛物线的顶点坐标为原点,即(h,k) = (0,0)。
这是因为原点是坐标轴的交点,关于原点对称就是说抛物线与坐标轴的交点在同一直线上。
若已知二次函数的标准式(顶点形式)为f(x) = a(x-h)^2 + k,其中(h,k)为顶点坐标,可以直接得到抛物线关于原点对称的条件为k = 0。
四、判定对称性的应用:通过对二次函数的对称性进行分析,可以得到二次函数的一些重要性质。
1. 对称轴的性质:二次函数的对称轴与抛物线的开口方向垂直。
对称轴的方程可以通过两个方法确定:(1)当已知二次函数为标准式f(x) = ax^2 + bx + c时,对称轴的方程为x = -b/(2a);(2)当已知二次函数为顶点形式f(x) = a(x-h)^2 + k时,对称轴的方程为x = h。
2. 零点的性质:二次函数的图像与x轴的交点称为零点或根。
若二次函数关于x轴对称,则其零点个数为0、2或无穷多个。
当抛物线与x轴相切时,有一个实根;当抛物线与x轴交于两个不同的点时,有两个实根;当抛物线在x轴上方时,无实根。
二次函数的对称性

二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标y 相等,那么对称轴122x x x +=其可以变形为:x 1 = x 2 =例、已知二次函数y=ax 2+bx+c 的图象过点A (1,2),B (3,2),C (5,7)三点,则该二次函数的对称轴为__________变形:已知二次函数y=ax 2+bx+c 的图象的对称轴为直线x=3,点A (1,2)与点B 关于对称轴对称,则点B 的坐标为____________变形:已知二次函数y=ax 2+bx+c 的图象的对称轴为直线x=3,点A (3,2)与点B 关于对称轴对称,则点B 的坐标为____________练习、已知二次函数y=ax 2+bx+c 的图象过点A (-1,2),B (3,2),C (5,7)三点,则该二次函数的对称轴为__________练习、已知二次函数y=ax 2+bx+c 的图象过点A (-1,2),B (3,2),C (5,7)三点,则点C 关于二次函数的对称轴的对称点D 的坐标为__________练习、已知二次函数y=ax 2+bx+c 的图象过点A (-3,3),B (-5,3),C (1,6)三点,则点C 关于二次函数的对称轴的对称点D 的坐标为__________练习、已知二次函数y=ax 2+bx+c 的图象的对称轴为直线x=3,点A (1,2)与点B 关于对称轴则二次函数y=ax 2+bx+c 的的对称轴为____________,在x=2时,y=___________.在y=-5时,x=____________增减性在对称中的应用已知二次函数y=ax2+bx+c(a>0)的图象过点A(-1,2),B(3,2).若点M(-2,y1),N(-1,y2),K(0,y3)也在二次函数y=ax2+bx+c的图象上,则y1、y2、y3的大小关系为__________已知二次函数y=ax2+bx+c(a>0)的图象过点A(-1,2),B(3,2).若点M(2,y1),N(4,y2),K(3,y3)也在二次函数y=ax2+bx+c的图象上,则y1、y2、y3的大小关系为__________已知二次函数y=ax2+bx+c(a<0)的图象过点A(-1,2),B(3,2).若点M(-2,y1),N(-1,y2),K(0,y3)也在二次函数y=ax2+bx+c的图象上,则y1、y2、y3的大小关系为__________已知二次函数y=ax2+bx+c(a<0)的图象过点A(-1,2),B(3,2).若点M(2,y1),N(4,y2),K(3,y3)也在二次函数y=ax2+bx+c的图象上,则y1、y2、y3的大小关系为__________例2、已知二次函数y=ax2+bx+c的图象过点A(1,2),B(3,2),C(5,7).若点M(-2,练习1、已知点(-2,y1),(-1,y2),(3,y3)都在函数y=x2的图象上,则y1,y2,y3的大小关2、已知抛物线y=ax2+bx+c(a<0)过A(-3,0)、O(1,0)、B(-5,y1)、C(5,y2)四点,则巩固作业:则二次函数y=ax2+bx+c的的对称轴为____________,顶点坐标为___________在x= 4时,y=___________.在y= -8时,x=____________2、已知二次函数y=ax2+bx+c的图象过点A(1,2),B(3,2),C(5,-2).若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图象上,则y1,y2,y3的大小关系是______________________3、已知点(-2,y1),(-1,y2),(5,y3)都在函数y=(x-1)2的图象上,则y1,y2,y3的大小关系是________________________4、已知抛物线y=ax2+bx+c(a>0)过A(-3,0)、O(1,0)、B(-5,y1)、C(5,y2)四点,则(2)二次函数图象的对称变换:①两抛物线关于x 轴对称,此时顶点关于 x 轴对称,a 的符号相反;②两抛物线关于y 轴对称,此时顶点关于y 轴对称,a 的符号不变;(3)二次函数图象的旋转:开口反向(或旋转180°),此时顶点坐标不变,只是a的符号相反.抛物线y=-(x+1)2 +2关于x轴对称的直线的解析式为:________________________抛物线y=-(x+1)2 +2关于y轴对称的直线的解析式为:________________________抛物线y=-(x+1)2 +2关于原点对称的直线的解析式为:________________________抛物线y=-(x+1)2 +2饶顶点旋转180°后的直线的解析式为:________________________练习、抛物线y=-(x+1)2 -2关于x轴对称的直线的解析式为:________________________抛物线y=(x-1)2 +2关于y轴对称的直线的解析式为:________________________抛物线y=-2(x-1)2 +2关于原点对称的直线的解析式为:________________________抛物线y=-(x+1)2 -2饶顶点旋转180°后的直线的解析式为:________________________1、在下列二次函数中,其图象的对称轴为直线x= - 2的是()A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)22、二次函数y=x2-2x+3的图象的顶点坐标为_ ( )___________3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x= -1,下列结论:①abc<0;①2a+b=0;①a-b+c>0;①4a-2b+c<0.其中正确的是()A.①①B.只有①C.①①D.①①4、如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,-3),该图象与x轴相交于点A、其中点A的横坐标为1. 求该二次函数的表达式;5、次函数y=ax2+bx+c的图象经过点(-1,0),(3,0)和(0,2),求其函数关系式,并写出其顶点坐标。
二次函数中的对称问题

二次函数中的对称问题一、引言二次函数是高中数学中的重要内容,它具有许多特殊的性质和应用。
其中,对称性是二次函数的一个重要特征,也是解题时常用到的一个概念。
本文将详细介绍二次函数中的对称问题,包括轴对称、顶点对称和直线对称等内容。
二、轴对称1. 定义轴对称是指图形关于某条直线对称,即将图形沿着这条直线翻转180度后与原图形完全重合。
在二次函数中,轴对称通常指函数图像关于x 轴或y轴对称。
2. 关于x轴的轴对称若二次函数为f(x) = ax^2 + bx + c,则其图像关于x轴的轴对称可以通过以下步骤求出:(1)令y = f(x),即将x作为自变量代入函数;(2)将y变为-y,即将y坐标取反;(3)得到新的函数f(-x) = a(-x)^2 + b(-x) + c = ax^2 - bx + c;(4)新函数f(-x)就是原函数f(x)关于x轴的轴对称。
3. 关于y轴的轴对称若二次函数为f(x) = ax^2 + bx + c,则其图像关于y轴的轴对称可以通过以下步骤求出:(1)令x = -x,即将x坐标取反;(2)得到新的函数f(-x) = a(-x)^2 - b(-x) + c = ax^2 + bx + c;(3)新函数f(-x)就是原函数f(x)关于y轴的轴对称。
三、顶点对称1. 定义顶点对称是指图形关于某个点对称,即将图形沿着这个点翻转180度后与原图形完全重合。
在二次函数中,顶点对称通常指函数图像关于顶点对称。
2. 求解方法若二次函数为f(x) = ax^2 + bx + c,则其顶点坐标为:(1)横坐标为-xb/2a,即顶点在直线x=-b/2a上;(2)纵坐标为f(-b/2a),即将横坐标代入原函数得到的值。
3. 顶点对称公式根据轴对称的知识,可以得到二次函数关于顶点对称的公式:(1)若二次函数关于y轴对称,则其顶点为(0, f(0));(2)若二次函数关于x轴对称,则其顶点为(0, f(0));(3)若二次函数既不关于x轴对称也不关于y轴对称,则其顶点为(-b/2a, f(-b/2a))。
二次函数的对称性与单调性

二次函数的对称性与单调性二次函数是一种重要的数学函数,在数学建模、物理学等领域都有广泛的应用。
掌握二次函数的基本性质,对于理解和解决实际问题具有重要意义。
本文将重点讨论二次函数的对称性与单调性。
一、二次函数的对称性二次函数的一般形式为:f(x) = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
根据对称性的不同,可以分为以下几种情况。
1. 关于y轴对称当a为偶数时,二次函数关于y轴对称。
即若f(x)为二次函数,则有f(-x) = f(x)。
例子:考虑二次函数f(x) = x² - 2x + 1,将x改为-x,则有f(-x) = (-x)² - 2(-x) + 1 = x² + 2x + 1 = f(x),因此该二次函数关于y轴对称。
2. 关于x轴对称当c = 0时,二次函数关于x轴对称。
即若f(x)为二次函数,则有f(x) = f(-x)。
例子:考虑二次函数f(x) = x² - 4,将x改为-x,则有f(-x) = (-x)² - 4 = x² - 4 = f(x),因此该二次函数关于x轴对称。
3. 关于原点对称当b = 0时,并且a、c异号,二次函数关于原点对称。
即若f(x)为二次函数,则有f(-x) = -f(x)。
例子:考虑二次函数f(x) = -x²,将x改为-x,则有f(-x) = -(-x)² = -x²= -f(x),因此该二次函数关于原点对称。
二、二次函数的单调性二次函数的单调性表示函数在定义域上的增减性。
根据二次函数的a值的正负,可以判断其单调性。
1. 当a > 0时,二次函数在定义域上单调递增。
对于二次函数f(x) = ax² + bx + c,如果a > 0,则对于任意x₁、x₂,若x₁ < x₂,有f(x₁) < f(x₂),即函数在定义域上单调递增。
二次函数对称规律口诀

二次函数对称规律口诀二次函数是一种常见的数学函数,具有许多重要的特征和性质。
其中之一便是对称规律。
二次函数的对称规律是指图像关于其中一直线的对称性质。
对称规律可以通过口诀的方式记忆,方便学生在解题过程中应用。
下面是一份包含二次函数对称规律的口诀,详细阐述了其数学原理及应用方法。
口诀一:关于y轴的对称规律左等右翻对称规律是指当二次函数的图像关于y轴对称时,其函数式可以通过对变量x取相反数后的函数得到。
设二次函数的函数式为y = ax^2 + bx + c,那么它的对称函数为y = ax^2 - bx + c。
解释:在二次函数的图像中,如果将整个图像沿着y轴折叠,使得左半部分与右半部分完全重合,那么原函数和对称函数的图像将完全一样。
对称函数的函数式中的b系数与原函数相比取相反数,因为对称后左边的x值变为右边的相反数。
应用举例:已知二次函数y=2x^2+3x+1,求其关于y轴的对称函数。
根据对称规律口诀,函数的对称函数为y=2x^2-3x+1口诀二:关于x轴的对称规律上等下翻对称规律是指当二次函数的图像关于x轴对称时,其函数式可以通过对变量y取相反数后的函数得到。
设二次函数的函数式为y = ax^2 + bx + c,那么它的对称函数为y = -ax^2 - bx + c。
解释:在二次函数的图像中,如果将整个图像沿着x轴折叠,使得上半部分与下半部分完全重合,那么原函数和对称函数的图像将完全一样。
对称函数的函数式中的a和b系数与原函数相比取相反数,因为对称后上边的y值变为下边的相反数。
应用举例:已知二次函数y=3x^2+2x-4,求其关于x轴的对称函数。
根据对称规律口诀,函数的对称函数为y=-3x^2-2x-4口诀三:关于原点的对称规律中心对称等于交换符号对称规律是指当二次函数的图像关于原点对称时,其函数式可以通过对变量x和y取相反数后的函数得到。
设二次函数的函数式为y = ax^2 + bx + c,那么它的对称函数为y = -ax^2 - bx - c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)、教学内容
1.二次函数得解析式六种形式
①一般式y=ax2 +bx+c(a≠0)
②顶点式(a≠0已知顶点)
③交点式(a≠0已知二次函数与X轴得交点)
④y=ax2(a≠0)(顶点在原点)
⑤y=ax2+c(a≠0) (顶点在y轴上)
⑥y=ax2 +bx (a≠0) (图象过原点)
2.二次函数图像与性质
对称轴:
顶点坐标:
与y轴交点坐标(0,c)
增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大
ﻩ当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小
☆二次函数得对称性
二次函数就是轴对称图形,有这样一个结论:当横坐标为x1, x2 其对应得纵坐标相等那么对称轴:
与抛物线y=ax2 +bx+c(a≠0)关于y轴对称得函数解析式:y=ax2-bx+c(a≠0)
与抛物线y=ax2 +bx+c(a≠0)关于x轴对称得函数解析式:y=-ax2–bx-c(a≠0)
当a>0时,离对称轴越近函数值越小,离对称轴越远函数值越大;
当a<0时,离对称轴越远函数值越小,离对称轴越近函数值越大;
【典型例题】
题型 1 求二次函数得对称轴
1、二次函数y=-mx+3得对称轴为直线x=3,则m=________。
2、二次函数得图像上有两点(3,-8)与(-5,-8),则此拋物线得对称轴就是( ) (A) (B) (C) (D)
3、y=2x-4得顶点坐标为___ _____,对称轴为__________。
4、如图就是二次函数y=ax2+bx+c图象得一部分,图象过点A(-3,0),对称轴为x=-1.求
它与x轴得另一个交点得坐标( , )
5、抛物线得部分图象如图所示,若,则x得取值范围就是( )
A、 B、
C、或
D、或
6、如图,抛物线得对称轴就是直线,且经过点(3,0),则得值为 ( )
A、0
B、-1
C、 1
D、2
题型2 比较二次函数得函数值大小
1、、若二次函数,当x取,(≠)时,函数值相等,则当x取+时,函数值为
( )
(A)a+c (B)a-c (C)-c (D)c
2、若二次函数得图像开口向上,与x轴得交点为(4,0),(-2,0)知,此抛物
线得对称轴为直线x=1,此时时,对应得y
1 与y
2
得大小关系就是( )
A.y
1 <y
2
B、 y
1
=y
2
C、 y
1
>y
2
D、不确定
点拨:本题可用两种解法y
x
O
–1 1
3
O
–1 3
3
1
解法1:利用二次函数得对称性以及抛物线上函数值y随x得变化规律确定:a>0时,抛物线上越远离对称轴得点对应得函数值越大;a<0时,抛物线上越靠近对称轴得点对应得函数值越大
解法2:求值法:将已知两点代入函数解析式,求出a,b得值再把横坐标值代入求出y
1 与y
2
得值,进而比较它们得大小
变式1:已知二次函数上两点,试比较得大小
变式2:已知二次函数上两点,试比较得大小
变式3:已知二次函数得图像与得图像关于y轴对称,就是前者图像上得两点,试比较得大小
题型3 与二次函数得图象关于x、y轴对称:
二次函数就是轴对称图形,有这样一个结论:当横坐标为x1,x2其对应得纵坐标相等那么对称轴:与抛物线y=ax2 +bx+c(a≠0)关于y轴对称得函数解析式:y=ax2-bx+c(a≠0)
与抛物线y=ax2+bx+c(a≠0)关于x轴对称得函数解析式:y=-ax2 –bx-c(a≠0)
1、把抛物线y=-2x2+4x+3沿x轴翻折后,则所得得抛物线关系式为____ ____
2、与y= -3x+关于Y轴对称得抛物线________________
3、求将二次函数得图象绕着顶点旋转180°后得到得函数图象得解析式。
4、在平面直角坐标系中,先将抛物线关于x轴作轴对称变换,再将所得得抛
物线关于y轴作轴对称变换,那么经两次变换后所得得新抛物线得解析式为
( )
A.B.
C. D.
5、如图,已知抛物线l
1:y=-x2+2x与x轴分别交于A、O两点,顶点为M、将抛物线l
1
关于y轴对
称到抛物线l
2、则抛物线l
2
过点O,与x轴得另一个交点为B,顶点为N,连接AM、MN、NB,则四
边形AMNB得面积
A、3
B、6
C、8
D、10
题型4二次函数图象得翻折
1、如图,已知抛物线与x轴分别交于A、B两点,顶点为M.将抛物线l1
沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴得另一个交点为C,顶点为N,则四边形AMCN得面积为
A.32 B.16 C.50 D.40
(二)、教学辅助练习
一、选择
1、若二次函数,当x取,(≠)时,函数值相等,则当x取+时,函数值为( )
(A)a+c (B)a-c(C)-c (D)c
2、已知抛物线与x轴交于两点,则线段AB得长度为( )
A.1 B.2ﻩC.3ﻩD.4
3、抛物线得部分图象如图所示,若,则x得取
值范围就是()
A、B、
C、或D、或
4、小明从右边得二次函数图象中,观察得
出了下面得五条信息:
①,②,③函数得最小值为3 ,④当时,
,⑤当时,.您认为其中正确得个数为( )
–1 1
3
O
x
A
y
O
B
M
N
C
l1 l2
A.2ﻩ ﻩB.3ﻩﻩ C.4ﻩ ﻩD.5
5、小颖在二次函数y =2x 2+4x +5得图象上,依横坐标找到三点(-1,y 1),(,y 2),
(-3,y 3),则您认为y 1,y2,y3得大小关系应为( )
A 、y1>y2>y 3
B 、y 2>y 3>y 1
C 、y 3>y 1>y 2
D 、
y 3>y 2>y 1
6、下列四个函数:①y=2x;②;③y=3-2x;④y =2x 2+x(x ≥0),其中,在自变量x 得
允许取值范围内,y 随x 增大而增大得函数得个数为( ) ﻫ A 、 1 B 、 2 C 、 3 D 、 4
7、已知二次函数得顶点坐标(-1,-3、2)及部分图象(如图),由图象可知关于得一元二次方程得两个根分别就是( )
A.-1、3 B、-2、3 C 、-0、3 D 、-3、3 8、如图,抛物线得对称轴就是直线,且经过点(3,0),则得值为
A 、 0 B、 -1 C、 1 D 、 2 二、填空
1、已知抛物线y=ax 2+b x+c 经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8
得另一点得坐标就是_________·
2、已知二次函数,其中满足与,则该二次函数图象得对称轴就是直线 . 4、一元二次方程得两根为1x ,2x ,且,点在抛物
线上,则点A 关于抛物线得对称轴对称得点得坐标为 . 5、抛物线得对称轴就是x=2,且过点(3,0),则a +b+c=
6、y =a+5与X 轴两交点分别为(x 1 ,0),(x 2 ,0) 则当x =x 1 +x2时,y 值为____
7、请您写出一个b 得值,使得函数在第一象限内y 得值随着x 得值增大而增大,则b 可以就是 ﻩﻩ .
8、当时,下列函数中,函数值随自变量增大而增大得就是 ﻩﻩ (只填写序号)①;②;③;④ 9、一个关于x得函数同时满足如下三个条件 ①x 为任何实数,函数值y ≤2都能成立; ②当x <1时,函数值y随x 得增大而增大; ③当x>1时,函数值y随x 得增大而减小;
符合条件得函数得解析式可以就是 。
10、已知(-2,y1),(-1,y 2),(3,y 3)就是二次函数y=x 2-4x +m 上得点,则y1,y 2,y 3从小到大用
“<”排列就是 、 (三)、作业布置。
5、在平面直角坐标系xOy中,二次函数C
1:y=ax2+bx+c得图象与C
2
:y=2x2-4x+3得图象关
于y轴对称,且C
1
与直线y=mx+2交与点A(n,1)、试确定m得值、。