教育统计学的内容主要包括
教育统计学

第一章绪论一、什么是教育统计学1.什么是统计学统计学是研究统计原理和方法的科学。
它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原理和方法。
统计学的分为数理统计学和应用统计学两类。
2.什么是教育统计学教育统计学是运用数理统计的原理和方法研究教育问题的一门应用科学。
教育统计学的主要任务是研究如何搜集、整理、分析由教育调查和教育实验等途径所获得的数字资料,并以此为依据,进行科学推断,从而揭示蕴含在教育现象中的客观规律。
3.统计学和教育统计学的内容(1)描述统计对已获得的数据进行整理、概括,显现其分布特征的统计方法,称为描述统计。
包括归组、编表、绘图等数据整理工作和计算各种特征量反映其分布特征。
(2)推断统计根据样本所提供的信息,运用概率的理论进行分析、论证,在一定可靠程度上对总体分布特征进行估计、推测,这种统计方法称为推断统计。
包括总体参数估计和假设检验两部分。
(3)实验设计实验者为了揭示实验中自变量与因变量的关系,在实验之前所制订的实验计划,称为实验设计。
包括抽样设计、样本容量计算、确定实验对照形式、实现实验组和对照组的等组化、安排实验因素、控制无关因素以及用什么统计方法处理及分析实验结果等等。
(4)三者的关系描述统计是推断统计的基础,推断统计通过样本信息估计、推测总体,从已知情况估计、推测未知情况。
良好的实验设计才能使我们获得真实的有价值的数据,对这样的数据进行统计处理才能得出正确的结论。
二、统计学中的几个基本概念与符号1.随机变量(1)随机现象与随机事件:随机现象具有以下三个特征:一次试验有多种可能结果,其所有可能结果是已知的;试验之前不能预料哪一种结果会出现;在相同的条件下可以重复试验。
随机现象的每一种结果叫做一个随机事件。
(2)随机变量:这些随机事件在一次试验中,可能出现,也可能不出现,而在大量重复试验中,它们的发生却具有一定的规律性。
我们把能表示随机现象各种结果的变量称为随机变量。
教育统计学知识点总结 范晓玲

教育统计学知识点总结范晓玲一、统计与统计学的含义统计是总括起来计算之意,是对某一现象或事物的有关资料进行搜集、整理、计算、分析的工作过程。
统计有三层含义,一是统计资料,即反映各种现象的数据资料;二是统计工作,即具体搜集、整理、分析统计资料的工作过程;三是统计学,即研究统计原理与方法的科学。
统计学的分类:一是应用统计学,它是与研究对象的特征密切结合的各科专门统计:二是数理统计学,它是为各门应用统计学提供数理方法论基础的一门学科,其内容主要是运用概率的知识来解释统计数据数量关系的模式。
二、心理与教育统计学心理与教育统计学是专门研究如何搜集、整理、分析在心理和教育方面有实验或调查所获得的数字资料,如何根据这些资料所传递的信息,进行数学推论,找出客观规律的一门学科。
简言之,教育统计学是运用统计学的一般原理和方法研究教育科学领域数量关系的一门科学。
三、教育统计学的基本内容统计学的内容由描述统计、推断统计实验设计三部分构成。
描述统计定义:是研究如何整理心理与教育科学实验或调查得来的大量数据,描述一组数据的全貌,表达一件事物的性质的一种统计方法。
具体内容有:1.数据如何分组2.如何使用各种统计图表去描述一组数据的分组及分布情况。
3.如何通过一组数据计算一些特征数。
描述统计是实验或调查所获得的数据加以整理(如制表、绘图),并计算其各种代表量数(如集中量数、差异量数、相关量数等),其基本思想是平均。
通过描述统计的工作,我们可以把大量零散的、杂乱无章的资料加以简化、概括,从而更加清晰明确地显示出这些数据的分布特征。
(二)推断统计定义:是研究如何通过局部数据所提供的信息,运用概率的理论进行分析论证,在一定可靠程度上推论总体或全局情形的统计方法。
这是统计学中的主要内容。
主要内容有:1.总体参数估计2.假设检验推断统计又称抽样统计,它是根据对部分个体进行观测所得到的信息,通过概括性的分析、论证,在一定可靠程度上去推测相应的团体。
教育统计学试题库

教育统计学一、选择题1、当一组数据用中位数来反映集中趋势时,这组数据最好用哪种统计量来表示离散程度?( B )A.全距 (差异量)B.四分位距(差异量)C.方差(差异量)D.标准差(差异量)2、总体不呈正态分布,从该总体中随机抽取容量为1000的一切可能样本的平均数的分布接近于:( D )A. 二项分布B.F分布C. t分布D.正态分布3、检验某个频数分布是否服从正态分布时需采用:( C )A.Z检验B. t检验C.χ2 检验D. F检验4、对两组平均数进行差异的显着性检验时,在下面哪种情况下不需要进行方差齐性检验?( B )A.两个独立样本的容量相等且小于30;B.两个独立样本的容量相等且大于30;C.两个独立样本的容量不等,n1小于30,n2大于30;D.两个独立样本的容量不等,n1大于30,n2小于30。
5、下列说法中哪一个是正确的?( C )A.若r1=0.40,r2=0.20,那么r1就是r2的2倍;B.如果r=0.80,那么就表明两个变量之间的关联程度达到80%;C.相关系数不可能是2;D.相关系数不可能是-1。
6、当两列变量均为二分变量时,应计算哪一种相关?( B )A.积差相关(两个连续型变量)B.φ相关C.点二列相关(一个是连续型变量,另一个是真正的二分名义变量)D.二列相关(两个连续型变量,其中之一被人为地划分成二分变量。
)7、对多组平均数的差异进行显着性检验时需计算:( A )A.F值B. t值C.χ2 值D.Z值8、比较不同单位资料的差异程度,可以采用何种差异量?( A )A.差异系数B.方差C.全距D.标准差二、名词解释1.分层抽样:按与研究内容有关的因素或指标先将总体划分成几个部分,然后从各部分(即各层)中进行单纯随机抽样或机械抽样,这种抽样方法称为分层抽样。
2.描述统计:对已获得的数据进行整理、概括,显现其分布特征的统计方法称为描述统计。
3.集中量:集中量是代表一组数据典型水平或集中趋势的量。
教育统计学核心内容解析

教育统计学核心内容解析教育统计学是运用统计方法和技术来研究和分析教育领域相关数据的学科。
它通过采集、整理和解释大量的教育数据,为教育政策制定和教育改革提供科学依据。
本文将从教育统计学的定义、核心内容以及在教育领域的应用等方面进行解析。
一、教育统计学的定义教育统计学是一门运用统计学方法和技术,以教育领域相关数据为基础,对教育现象进行收集、整理、描述和解析的学科。
它致力于统计教育领域的各种数据,包括学生的学习成绩、教师的教学水平、学校的管理效率等,旨在通过对这些数据的分析来了解和改善教育现状,促进教育的发展。
二、教育统计学的核心内容1. 数据收集与整理教育统计学的核心内容之一是数据的收集与整理。
通过调查问卷、考试成绩、学生档案等方式,采集相关的教育数据,并进行整理和归类,为后续的分析和解释做好准备。
2. 描述统计分析描述统计分析是教育统计学的重要内容之一。
它通过使用各种统计指标和图表,对教育数据进行描述和总结,如平均数、标准差、频数分布等,以及直方图、饼图、折线图等。
这些统计量和图表能够直观地反映教育数据的分布、集中程度、变化趋势等信息。
3. 探索性数据分析探索性数据分析是教育统计学的核心手段之一,它通过观察和分析数据的特征、趋势和规律,探索数据背后的信息和现象。
这种方法有助于揭示教育数据中的隐藏关系和统计规律,并为后续的推断性分析和决策提供支持。
4. 推断性数据分析推断性数据分析是教育统计学的重要内容之一。
它基于收集到的样本数据,通过使用概率和统计推断方法,对整个教育总体进行推断。
例如,通过抽样调查来推断全校学生的学习习惯、教师的教学水平等。
三、教育统计学在教育领域的应用1. 教育政策制定教育统计学的应用在于帮助政府和教育部门了解教育领域的现状和问题,为教育政策的制定提供科学依据。
通过对学生、教师、学校和教育资源等方面的统计数据进行分析和解释,政府能够有针对性地制定优质教育政策,改善教育质量。
2. 教育评估与质量改进教育统计学的应用还包括教育评估与质量改进。
教育统计学重点

1.心理与教育统计学的内容,①描述统计:差异量数,统计图表,集中量数,相关分析。
②推论统计:统计估计(参数估计(点估计,区间估计),非参数估计),假设检验(参数检验,非参数检验)③实验设计:样本选择与分配,实验误差分析,方差分析,协方差分析分析,回归分析,因子分析。
描述统计主要研究如何整理心理与教育科学实验或调查得来的大量数据,描述一组数据的全貌,表达一件事物的性质。
推论统计主要研究如何通过局部数据所提供的信息,推论总体的情形。
实验设计主要目的在于研究如何科学地,经济地以及有效地进行实验。
2.心理与教育统计基础概念,(1)数据类型:①从数据观测方法和来源划分,研究数据可区分为计数数据(计算个数的数据,具有独立的分类单位)和测量数据(借助一定的测量工具或者一定的测量标准获得的数据)两大类②根据数据反应的测量水平,可以把数据分为称名数据(只说明一事物与其他事物在属性上的不同或者类别上的差异),顺序数据(即无相等单位,也无绝对零的数据,是按事物某种属性的多少和大小,按次序将各个事物排列后获得的数据资料),等距数据(有相等单位,无绝对零的数据,如温度),比例数据(既表明量的大小,也有相等的单位,同时还有绝对零点,如身高)四类。
③按照数据是否具有连续性,把数据划分为离散型数据(又称不连续数据,在任何两个据点之间所取的数值个数都是有限的)连续性数据(任意两个数据点之间都可以细分出无限个大小不同的数值)。
(2)变量(心理与教育实验,观察,调查中想要获得的数据)观测值(一旦确定了某个值,就称这个值为某一变量的观测值)随机变量(取值之前不能预料取到什么值的变量)(3)总体(指具有某种特征的一类事物的全体)样本(从总体中抽取一部分个体)个体(构成总体的每个基本单元)(4)次数(某一事件在某一类别中出现的数目)比率(两个数的比)频率(某一事件发生的次数被总的事件数目除)概率(某一事件在无限的观测中所能预料的相对出现的次数)(5)参数(描述总体情况的统计指标)与统计量(样本的特征值)参数用希腊字母表示,统计量用英文字母表示1.数据的初步整理,(1)数据排序,按照某种标准,对收集到的杂乱无章的数据按照一定的标准进行排列(2)统计分组,根据被研究对象的特征,将所得的数据划分到各个组别中,统计分组应该注意的问题:分组要以被研究对象的本质特征为基础;分类标志要明确,要能包括所有的数据。
教育统计学复习总结题纲.doc

教育统计学复习题纲1. 教育统计学的内容包括()A. 数理统计和推断统计 C.应用统计和参数估计2. 教育统计的内容除推断统计外, A. 差异检验 C.标准分数3. 学习教育统计与测量对教育工作者十分重要,它是() A. 教育研究的重要方法与工具B.测量的重要方法与工具C.写文章的重要方法D.教学的重要手段4. 对大量数据资料进行整理、简缩、概括,从而使其分布的特征显现出来的工作,属于() A 、描述统计 B 、推断统计5. 研究如何由对局部的观察结果去把握总体的真实情况,这样的工作,属于()A 、描述统计B 、推断统计C 、实验设计D 、测量学问题 6. 教育统计就是要由样本来推断总体,这说明教育统计具有()特点A 、统一性B 、总体性C 、归纳性D 、或然性7. 统计学方法的核心任务是() A 、描述统计 B 、推断统计 C 、实验设计D 、实验处理 8. 属于计数数据的是()A 、 本次考试排名,甲为9,乙为16B 、 投票中赞成人数为14,反对人数为27C 、 学生身高甲是136厘米,乙是141厘米D 、0表示男,1表示女9. tl 常生活或生产屮使用的温度计所测出的气温量值是()A 、顺序数据 C 、比率数据 D 、类别数据10下列数据中,运算结果只是反映位次顺序关系的是( )A.称名变量数据 B.顺序变量数据C.等距变量数据D.比率变量数据 11下列不属于数据的特点的是()• • •A. 离散性B.顺序性C.变异性D.规律性 12. 在某个语文测验分数分布表屮,“70〜75”这一组的累积次数是30,这表示:()A. 70分以下有30人B. 70分以上有30人C. 75分以下有30人D. 75分以上有30人 13. 在某个拼写测验分数分布表中,“80〜90"这一组的累积百分数为76,这表示()。
B.描述统计和推断统计 D.描述统计和参数估计 还包括()B.数据统计 D.描述统计B 、等距数据A. 80分以上的考生人数占76%B. 80分以上的考生人数占24%C. 9()分以上的考生人数占76%D. 90分以上的考生人数占24%14.当我们需要用图形按学生的家庭出身(包括工人、农民、干部及其他)及性别来描述学生情况吋最好采用()0A.散点图B.线形图C.条形图D.圆形图15. 某校某班学生的家庭出身统计情况是:农民32%,工人28%,干部30%,其他10%。
高等教育自学考试《统计与测量》名词解释

1、教育统计:是对教育领域各种现象量的取值从总体上的把握与认识,它是为教育工作的良好进行、科学管理、革新发展服务的。
教育统计学是社会科学中的一门应用统计,是数理统计跟教育学、心理学交叉结合的产物。
教育统计学的主要内容包括描述统计与推断统计。
2、教育测量:是给所考察研究的教育现象,按一定规则在某种性质的量尺上指定值。
3、常模:测量所得结果,只有跟用来解释结果意义的参照系(或物)作对比,才能真正转化成某种性质量尺上的值。
教育与心理测量这种分数解释参照系,就是常模。
4、标准化测验:测量工具、施测与评分程序、解释分数的参照系(或标准)都已科学地实现标准化,这种代表性行为样本的客观而标准化的测量,称之为标准化测验。
5、量表:标准化测验中的测量工具(考试卷或心理测验项目的集合)与解释分数的常模(或标准),都有物化的形态(如常模表),所以又把它们合在一起称为量表。
6、名义量尺:名义量尺上所指定的数字,只有类别标志的意义,而无性质优劣、分量多寡的涵义,只是名义上的数,而不能对之作任何数字计算。
名义量尺上的数,量化水平最低。
7、顺序量尺:顺序量尺上的数字是一个线形连续体系上的值,单位不等,具有可比性而无可加性。
顺序量尺上的数字量化水平则较高。
8、等距量尺:等距量尺上的数字是单位相等但零点可任意指定的线性连续体系上的值,因而有可比、可加性而无可除性。
等距量尺上的数字量化水平又更高。
9、比率量尺:是一种有绝对零点、等单位的线性连续体系,其上的数字量化水平最高,具有可比、可加、可除性。
10、测量:是按一定规则给对象在某种性质的量尺上指定值。
11、描述统计:描述统计主要研究的问题是,如何把统计调查所获得的数据科学地加以整理、概括和表述。
12、推断统计:推论统计主要研究的问题是,如何利用实际获得的样本数据资料,依据数理统计提供的理论和方法,来对总体的数量特征与关系作出推论判断,即进行统计估计和统计假设检验等。
13、数据:用数量或数字形式表示的资料事实,称为数据。
教育统计学

教育统计学:教育统计学是搜集、整理、分析教育领域统计数据的方法科学,它是从定量的角度来揭示教育现象的特征和规律。
它属于应用学科。
教育统计学的内容:1、描述统计。
主要研究搜集、整理数据的方法,以及一些统计量的计算。
2、推断统计。
主要研究如何从局部数据情况来估计整体情况。
3、实验设计。
主要研究如何选择实验对象,安排实验步骤,操纵实验变量,控制无关变量,搜集实验结果,分析实验结论。
变量:是指在数量上或性质上有变化的量。
因变量:被影响的因素。
自变量:影响因素。
常量:数值是恒定的。
总体:就是所要研究对象的全体。
个体:是组成总体的基本单位。
样本:是由总体中一部分个体所组成的,它对总体具有一定的代表性。
样本容量:样本中个体的数目。
统计量:根据数本数据而计算出的量称为统计量。
参数:反映总体特征的量称为参数。
误差:是指实测值与真值的绝对差距。
系统误差:是由某种固定原因造成的误差。
随机误差:由某种难以控制的原因造成的误差。
(这种误差是偶然性的。
)什么是数据?数据是反映客观事物数量特征的数字。
数据的特点:1、变异性(又叫波动性)是指由观察或测量获得的数据总是有变化的,不同的。
原因有:①由事物的动态性所造成的。
②由事物之间的差异性所造成的。
③由测量技术不完善所造成的。
2、规律性。
是指由观察或测量获得的数据,尽量是变化的不同的,但经过整理之后还是要反映出一定规律的。
数据的种类:1、从数据的来源分:(1)计数数据。
就是点计事物个数所获得的数据。
这类数据一般都是整数。
(2)测量数据。
利用测量工具所获得的数据。
这类数据有整数,有小数。
2、从数据是否连续分:(1)间断性数据。
在任意两个数值之间只能包含有限个数的数据。
(2)连续性数据。
在任意两个数值之间可以包含无限多个数的数据。
3、从数据的运算性质分:(1)比率数据。
这类数据有相等单位,也有绝对零点,它能够加减乘除。
(2)等距数据。
这类数据有相等单位,但零点是相对的。
它只能加减,不能乘除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教育统计学的内容主要包括1、教育统计学的内容主要包括:描述统计与推断统计2、测量结果能在其上取定数值的量尺,从量化水平高低的角度可分为:名义量尺、顺序量尺、等距量尺与比率量尺。
在名义量尺上所指定的数字,只具有类别标志的意义,而无性质优劣,分量多寡的意义。
顺序量尺上的数字量化水平则较高,有优劣、大小、先后之别,如学业成绩评定优劣。
等距量尺上的数字量化水平又更高,这种数字是单位相等但零点可任意指定的线性连续体系上的值,如温度、可比可加。
比率量尺是一种有绝对零点的,等单位的线性连续体系。
如身高、体重等。
能加、减、乘、除3、测量工作按一定的规则进行,体现为三种东西即:测量工具、施测和评分的程序与要求、结果解释参照系或参照物4、心理测量跟物理测量的两点突出差异:一间接性;二要抽样进行5、数据的种类①从数据来源分成计数数据、测量评估数据和人工编码数据②根据数据所反映的变量的性质分分为称名变量数据、顺序变量数据、等距变量和比率变量数据6、顺序变量数据之间虽有次序与等级关系,但不具有相等单位,也不具有绝对的数量大小和零点。
因此只能进行顺序递推运算,不能做加减乘除运算。
等距变量不能用乘、除法运算来反映两个数据之间的倍比关系,能做加减运算。
比率变量数据可以进行加、减、乘、除运算7、数据三个特点①数据的离散性②数据的变异性③数据的规律性8、统计一批数据的次数分布两种方法:一、按不同的测量值逐点统计次数;二、为了简缩数据以区间跨度来统计次数。
如分数段统计9、编制简单次数分布步骤①求全距②定组数③定组距④写组限⑤求组中值⑥归类划记⑦登记次数10、相对次数分布表主要能反映各组数据的百分比结构11、累积次数分布表还分成“以下”累积次数分布表与“以上”累积次数分布表两种。
“以下”累积其目的在于反映位于某个分数“以下”的累积次数共有多少12、次数分布图两种表达方式:次数直方图和次数多边图22、等级相关适用的几种情况①两列观测数据都是顺序变量数据,或一列是顺序变量数据,另一列是连续变量的数据。
如对学生的绘画、体育测试成绩排名就属顺序变量数据②两个连续变量的观测数据,其中有一列或两列数据的获得主要依靠非测量方法进行粗略评估得到。
如语文基础知识水平可测验加以测量但学生的课文朗读水平却只能根据若干准则由老师给予大体的评估。
点双列相关适用于双变量数据中,有一列数据是连续变量数据,如体重、身高以及许多测验与考试的分数;另一列数据是二分类的称名变量数据,如性别23、原始分数的意义必须要跟一定的参照物(系统)作比较,才能真正明确起来。
原始分数意义的参照物大体有两类,一是其他被试的测值,即其他被试在所测特性上的普遍水平或水平分布状态;二是社会在所测特性上的客观要求,即被试在所测特性上发展应该达到程度的标准24、常模总是指某一具体测验(不能简单地看成是其名称所指特性)上的常模。
常模总是特定的、具体的,是就一定人群在具体测验上的表现来说的。
常模又可分为发展常模与组内常模两大类。
发展常模又有年龄常模与年级常模之别,组内常模又有百分等级常模与标准分数常模之别25、历史上第一个提出常模这一科学概念的是法国心理学家比纳。
他最早建立了智力测验的年龄常模。
发展常模就是某类个体正常发展进程各特定阶段的一般水平26、智商(IQ)=智力年龄/生理年龄×10027、组内常模又可分为百分等级常模与标准分数常模两个类别。
一个分数的百分等级,就是该分数在所属分数组中,取值比它小的分数个数占该分数组总个数的百分数。
百分等级值只有可比性而无可加性,不能累加求和与进一步求平均;这是百分等级常模的一个局限所在28、一个测验分数的标准分数,就是以它所属分数组的标准差为单位的,对它所属分数组的平均数的距离29、难度指数(p)取值越大并不意味着项目越难,而是越易;指数p的数字值与其代表的含义,方向恰好相反30、三种偏态分布:如果一个测验对某一被试团体来说,难度相对显得大,那么,被试团体中大多数人就会得低分,被试总分分布就会形成正偏态分布;如果一个测验对某一被试团体来说,难度相对显得小,被试团体中就会有很多人得高分,总分分布就会形成负偏态;假定被试团体在某一特定方面,其水平分布事实上是呈正态分布的,若测验项目的难度确能做到对这个被试团体来说是恰当的,那么对这个团体施测这一测验,所得被试测验总分分布自然也会呈正态分布31、“高、低分组求得分率差”的办法就是将全体被试按总分多寡加以排队,然后取得分最多的27%的被试作为“高分组”,得分最少的27%的被试作为“低分组”,最后求这两个组上项目得分率(通过率)的差来作为区分度指数的取值31、人们就使用两个平行形式测验来测查同一批被试,这样也可获得同一批被试的两批独立测值,从而通过求相关系数,估出测验的信度32、效度验证工作大体分为三类即内容效度、效标关联效度和结构效度。
效标关联效度又包含“并存”效度和“预测”效度这两个小类别33、测验即使相当有效,效度系数rXY的取值也很少能超过0.70,一般取值能达到0.40就相当不错了34、根据课堂教学运用测验的一般顺序来分可把学业成就测验分成安置性测验、形成性测验、诊断性测验和终结性测验。
根据解释测验分数的方法不同可把学业成就测验分成常模参照测验和标准参照测验两类。
根据成就测验的实施方式与测验载体,我们把成就测验分成口头测验、纸笔测验和操作测验35、纸笔测验优点①提高测验的效率,即同时可以进行大团体的测验②便于完整记录学生在题目作答上的反应③便于施测和评分过程的规范化和标准化从而提高学业成就测验的信度与效度④便于对测验中答题信息的分析研究36、课堂成就测验特点①简易性②灵活性③随意性④测量性能较差37、对教育目标分类的认识:布卢姆认为作为完整的教育目标应当包括三个主要的领域:认知领域、情感领域和动作技能领域。
布卢姆把认知领域中的行为目标分为六个不同的层次,它们依次是知识(识记)、领会、应用、分析、综合和评价①知识:回忆或辨认某些特定的事实②领会:初步理解材料的意义③应用:能够运用已学过的材料④分析:把事物整体分解为部分,以便了解整体与部分以及部分与部分之间的关系⑤综合:把各个部分有机地组织成一个整体的能力⑥评价:根据一定的标准对事物的价值作出合乎逻辑的判断,如对小说、诗歌、电影、哲学流派、环保方案、测验设计等作出价值判断的行为与能力38、我国教育工作者提出目标层次分为识记、理解(领会)、简单应用和综合应用这四个层次39、学业测验中考试题目类型分为客观题、主观题40、客观题:有一些考试题目,如果评分规则一旦明确下来,只要依照这些规则,无论谁去评分,都会得出相同的分数,典型的客观题类型常见的有填空题、简答题、是非题、匹配题、单项选择题或多项选择题等。
简答题和填空题适合于测量相对简单的学习成就。
是非题这种题型的缺陷也是明显的,一是容易猜测,(猜对的可能性有50%),二是适合于用是非题来测量的学习成就其范围有限。
多项选择题更适合于测量具有较复杂结构的学习成就41、主观题型如论述题、证明题、计算题、作图题、作文题等42、心理测验主要用途①人才选拔②人员安置与人事管理③临床心理学研究④学校心理服务⑤建立和检验假设43、智力测验在国内常见①比纳智力测验②斯坦福—比纳智力测验③韦克斯勒智力测验④瑞文标准推理测验和⑤中小学生团体智力筛选测验44、吉尔福特认为,发散思维所表现出来的一个人的外在的行为,即代表这个人的创造力45、发散性思维在行为上表现三种基本特征:流畅性、变通性、独特性46、人格测验的方法与类型主要有自陈量表法、投射测验法、情境测验法、评定量表法47、客观世界中发生的各种现象分为两类:确定性现象不确定性现象48、按照概率的定义,概率的取值范围在区间[0,1]上,如某个事件概率为1,表示该事件肯定发生,这样的事件称为必然事件,在实际研究中更多事件的概率介于0与1之间,人们把发生概率很小的事件,如概率小于0.05,或0.01,称为小概率事件49、一个离散性随机变量的概率分布是指这个随机变量所有取值点的概率的分布情况。
一个连续性随机变量的概率分布是指这个随机变量所有取值区间上概率取值的分布情况50、从形态看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为过x=u的纵线。
曲线在X=u点取得最大值。
从x=u点开始,曲线向正负两个方向递减延伸,不断向X轴逼近,但永不与X轴相交。
一个随机变量服从正态分布的最大特点是其取值在平均数附近的概率很大,而取值离平均数越远,其概率越小。
在这许许多多的正态分布中有平均数为0、标准差为1的正态分布可以作为正态分布的一个典型代表,其他各种正态分布都可以通过一定的数学方法与它相互转化51、在标准正态分布中,夹中间面积90%的两个Z值分别为±1.96;夹中间面积99%的两个Z值分别为±2.5852、统计学中,推断统计的直接操作对象是总体的一个样本,但其推断的却是总体的各种特征。
影响样本对总体代表性的因素主要有三①总体本身的离散性②所抽取样本容量的大小③对总体代表性强弱的因素是抽样方法53、随机抽样方法①简单随机抽样②分层抽样③分阶段抽样④等距抽样54、随机抽样方法原则①机会均等②相互独立。
简单随机抽样最常见的形式就是抽签。
较严谨的简单随机抽样是借助随机数码表而作的随机抽样55、分层抽样的实质就是将总体各部分按其容量在总体规模中的比分派到样本结构中去,然后进行抽样。
所以分层抽样是分两步进行①按比例求出各部分入样元素数②各部分按要求的人样数用简单随机抽样的方法产生入样元素,最终合成总样本。
分阶段抽样实际上进行两次抽样,第一次是以“部分”为元素进行抽样,然后再在人样的这些“部分”中抽取入样元素。
等距抽样的第一步也是首先对总体所有元素编号,所编号码应该是连续有序的。
第二步计算每相邻两入样元素的间隔距离。
第三步是在第一间隔中随机确定第一个入样元素的号码,比如说取定为00003。
第四步则开始抽取入样元素56、要认识抽样分布必须学会识别三种分布:总体分布、子样分布和抽样分布57、α值常取0.05和0.01两个水平,偶而也有取0.001的。
在假设检验中,α的取值越小,称此假设检验的显著性水平越高58、统计假设检验中使用的假设有两种,一种称为虚无假设,一种称为备择假设。
统计假设检验中冒犯I 型错误的概率大小就等于显著性水平α值的大小,β同时也是犯Ⅱ型错误的概率值符号。
Ⅱ型错误称为β错误,影响Ⅱ型错误概率大小的因素有三个。
第一因素是客观的真值与假设的伪值两者之间的差异。
第二因素是α值的大小。
α值越大,犯Ⅱ型错误的概率就越小,α值越小,β就越大。
第三因素是样本容量。
样本容量越大,犯Ⅱ型错误的概率就越小;样本容量越小,犯Ⅱ型错误的概率就越大59、如果检验的目的是为了判断某个总体参数是否等于某个定值,或者是为了推断某两个总体参数是否相等,则应该使用双侧检验。