三重积分习题1
三重积分例题

三重积分例题
1. 嘿,来看看这道三重积分例题呀!就像在一个复杂的迷宫里找宝藏,比如求一个奇形怪状的立体体积,那可真得好好琢磨琢磨呢!
2. 哇哦,这道三重积分例题可有意思啦!好比要给一个不规则的大蛋糕算出它的大小,你不想试试怎么解吗?
3. 嘿呀,瞧瞧这道三重积分例题!就像是要弄清楚一个神秘盒子里到底装了多少东西,是不是很有挑战性?
4. 哎呀,这道三重积分例题真不简单呢!仿佛是在破解一个超级难的密码锁,谁能解开它呀?
5. 嘿,这道三重积分例题很特别哟!好像是要给一片乱七八糟的云朵计算它的质量,你能想明白怎么算吗?
6. 哇,这道三重积分例题够厉害的!就如同要给一个歪歪扭扭的建筑算出它的用料,这可不容易啊!
7. 嘿哟,这道三重积分例题挺有趣的呢!好比要搞清楚一个奇怪形状的水池能装多少水,有意思吧?
8. 哎呀呀,这道三重积分例题有点难搞哦!仿佛是要从一堆乱麻中找出关键线索,你敢挑战吗?
9. 嘿,快来看这道三重积分例题!就像要给一个奇幻世界里的魔法物品计算能量,是不是很神奇?
10. 哇塞,这道三重积分例题太有迷惑性了!简直就是要在一个迷雾森林里找到正确的路,谁能解得开呀?
我的观点结论:三重积分例题真的是丰富多彩,每一道都有它独特的魅力和挑战,让人忍不住想要去探索和求解。
三重积分重积分习题精编版

三重积分iiizdv 一一 、一 一1.将|=[1分别表示成直角坐标,柱面坐标和球面坐标下的二次积分,并选择其中一种计算出结果.其中「是由曲面Z »2-X 2_『 及乙之2+『2所围成的闭区域.分析 为计算该三重积分,我们先把积分区域投影到某坐标平面上,. ______________ 』Z = J2_X 2 _y 2,匚 22 2 2〕 2 丄 2z=.,2-x -y 及z=x y ,而由这两个方程所组成的方程组Z = x y极易消去乙我们把它投影到xoy 面上.然后,为在指定的坐标系下计算之,还应该先把 的边界曲面用相应的坐标表示,并找出各种坐标系下各个变量的取值范围,最后作代换即可.[z = J?_x :_y ,解 将门投影到xoy 平面上,由Z =x y消去Z 得(x 2+y 2)2 =2-(x 2 +y 2 ),_ 2 2 2 2 2 2或(X +y +2)(x +y -1)=0,于是有 x +y =1 .即知,为此在D 内任取一点Q(x , y),过Q 作平行于Z 轴的直线自下而上穿过.穿入时碰_ 2 . 2 _ ■ o 2 2到的曲面为Z =x y ,离开时碰到的曲面为Z -・2-x - y (不画图,仅用代数方法也2 2 x +y<1由于是由两张曲面l'在xoy 平面上的投影为圆域2 2 • 2 2-易判断z=x y 2-x -y),这是因为x2+y ^1)(1)直角坐标系下,我们分直角坐标及柱面坐标,下边找Z的变化范围从而化为三重积分.因此再由D : x2+y2<1,有x2y2 <Z= 2-x -y2 ,于是在直角坐标下,'J 可表示为1 -x2,\ 2 - x2- y2,于是有11 -X 22 ;」2dx dy zdz匸二―口X 2 旳2 .(2)柱面坐标下首先把I 1的表面方程用柱面坐标表示, 这时Z=X 2 +y 2表示为Z= :' , Z= 2 - X - y表示为z= ;2 - '2 •再由投影区域 D 为x 2+y 2 <1 .故0-二_1, Q< 0 < 2二•于是门可表示为0兰日兰2兀, *0兰P 兰1, P 2 兰 z 兰 <2 — P 2 •将所给三重积分中的体积元素d 用d = 'dJdvdz 去替换,有2二1 2「2zd 「 m z®drdz 0 .J dz =0=°= 0P(3)球面坐标下cos用球面坐标代换两曲面的方程,得曲面z=X 2 +y 2变为'=Sin 2 ••;曲面 z = 2 一 X? - / 变为「= ... 2 . 由门在Xoy 平面上的投影为 X 2+y 2 _1知0乞二乞2二,下边找 '的变化范围.正z 轴在门内,即门内有点P,使0P 与oz 夹角为零,即的下界为零.又曲面z=X 2 +y 27131与Xoy 平面相切,故''的上界为2,于是0 -- 2再找'的变化范围.原点在门的表面上,故 '取到最小值为零. 为找'的上界,从原点出发作射线穿过11,由于门的表面由两张曲面所组成,因而1),故A 所对应的4 .的上界随相应的•的不同而不同.为此在两曲面的交线z= 2 _x 2 _ y 2上取一点A(0 , 1,兀 丄兀COS©2 ■当42时,r 的上界由曲面r=Sin 所给,故这时r 的变化范围为,当0时,4时。
三重积分重积分习题(供参考)

三重积分1.将I=zdvΩ⎰⎰⎰分别表示成直角坐标,柱面坐标和球面坐标下的三次积分,并选择其中一种计算出结果.其中Ω是由曲面z=222y x --及z=x 2+y 2所围成的闭区域.分析 为计算该三重积分,我们先把积分区域投影到某坐标平面上,由于是由两张曲面222y x z --=及22y x z +=,而由这两个方程所组成的方程组22222,z x y z x y ⎧=--⎨=+⎩极易消去z ,我们把它投影到xoy 面上.然后,为在指定的坐标系下计算之,还应该先把Ω的边界曲面用相应的坐标表示,并找出各种坐标系下各个变量的取值范围,最后作代换即可.解 将Ω投影到xoy 平面上,由22222,z x y z x y ⎧=--⎨=+⎩消去z 得 (x 2+y 2)2=2-(x 2+y 2),或(x 2+y 2+2)(x 2+y 2-1)=0,于是有 x 2+y 2=1.即知,Ω在xoy 平面上的投影为圆域D :x 2+y 2≤1 .为此在D 内任取一点Q(x ,y),过Q 作平行于z 轴的直线自下而上穿过Ω.穿入时碰到的曲面为22y x z +=,离开时碰到的曲面为222y x z --=(不画图,仅用代数方法也易判断22y x z +=≤222y x z --=),这是因为x 2+y 2≤1)(1) 直角坐标系下,我们分直角坐标及柱面坐标,下边找z 的变化范围从而化为三重积分.因此再由D :x 2+y 2≤1,有22y x z +=≤222y x z --=,于是在直角坐标下,Ω可表示为Ω :2222221111,2,x x y x x y z x y -≤≤⎧⎪--≤≤-⎨⎪+≤≤--⎩,于是有I=⎰⎰----221111x x dy dx ⎰--+22222y x y x zdz.(2) 柱面坐标下首先把Ω的表面方程用柱面坐标表示,这时z=x 2+y 2表示为z= 2ρ,z=222y x --表示为z=22ρ-.再由投影区域D 为x 2+y 2≤1.故0ρ≤≤1,0≤θ≤2π.于是Ω可表示为Ω:⎪⎪⎩⎪⎪⎨⎧-≤≤≤≤≤≤.2,10,2022ρρρπθz将所给三重积分中的体积元素υd 用υd =dz d d θρρ去替换,有I=Ω⎰⎰⎰υzd =Ω⎰⎰⎰dzd d z θρρ=⎰πθ20d ⎰1ρd ⎰-2222ρρρdz.(3) 球面坐标下用球面坐标代换两曲面的方程,得曲面z=x2+y2变为ρ=φφ2sin cos ;曲面z=222y x --变为ρ=2.由Ω在xoy 平面上的投影为x 2+y 2≤1知0θ≤≤2π,下边找φ的变化范围.正z 轴在Ω内,即Ω内有点P ,使→op 与→oz 夹角为零,即φ的下界为零.又曲面z=x 2+y2与xoy 平面相切,故φ的上界为2π,于是0≤φ≤2π再找ρ的变化范围.原点在Ω的表面上,故ρ取到最小值为零.为找ρ的上界,从原点出发作射线穿过Ω,由于Ω的表面由两张曲面所组成,因而ρ的上界随相应的φ的不同而不同.为此在两曲面的交线⎪⎩⎪⎨⎧--=+=22222y x z y x z ,上取一点A(0,1,1),故A 所对应的4πφ=.当24πφπ≤≤时,r 的上界由曲面r=φφ2sin cos 所给,故这时r φφφφcsc cot sin cos 2≤≤.即r 的变化范围为0⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤时。
三重积分题

三重积分题一、计算三重积分∫∫∫_V (x2 + y2 + z2) dV,其中V是由x2 + y2 ≤ 1, 0 ≤ z ≤ 1定义的圆柱体。
A. π/2B. πC. 3π/2D. 2π(答案:D)二、三重积分∫∫∫_V xyz dV,在区域V: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1内的值为?A. 0B. 1/2C. 1D. 3/2(答案:A)三、计算三重积分∫∫∫_V (x + y + z) dV,其中V是由0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1定义的立方体。
A. 0B. 1C. 3/2D. 2(答案:C)四、三重积分∫∫∫_V (sin(x)cos(y)z) dV,在区域V: 0 ≤ x ≤π, 0 ≤ y ≤π, 0 ≤ z ≤ 1内的值为?A. 0B. 1C. -1D. 2(答案:A)五、计算三重积分∫∫∫_V e(x+y+z) dV,其中V是由0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤z ≤ 1定义的立方体,并假设e的近似值为2.718。
A. e - 1B. e2 - 1C. e3 - 1D. e4 - 1(答案:C)注:此题需要用到e的幂次性质进行积分。
六、三重积分∫∫∫_V (x2y2z2) dV,在区域V: -1 ≤ x ≤ 1, -1 ≤ y ≤ 1, -1 ≤ z ≤ 1内的值为?A. 0B. 1/8C. 1/4D. 1(答案:A)七、计算三重积分∫∫∫_V (1/(1+x2+y2+z2)) dV,其中V是由x2 + y2 + z2 ≤ 1定义的球体。
A. π2/2B. π2C. 2π2D. 4π2(答案:A)注:此题需要用到球坐标变换进行积分。
八、三重积分∫∫∫_V (cos(x2+y2+z2)) dV,在区域V: 0 ≤ x ≤√π, 0 ≤ y ≤√π, 0 ≤ z ≤√π,且假设cos的近似值在积分中可直接使用,其值为?A. 0B. (π(3/2))/2 * (sin(π) - sin(0))C. π(3/2) * (cos(π) - cos(0))D. -π(3/2) * (sin(π) - sin(0))(答案:B)注:此题需要注意到cos函数的周期性,并正确计算积分上下限。
考研数学三重积分练习

习题9 三重积分一、填空题1、若{}22(,,)|1,01x y z x y z Ω=+≤≤≤,则d z v Ω⎰⎰⎰= 。
2、d z v Ω⎰⎰⎰= ,其中222{(,,)|1,0}x y z x y z z Ω=++≤≥3、曲面z =被1z =截下部分的面积为 。
4、曲面22z x y =+被1z =截下部分的体积为 。
5、锥面z =被柱面22z x =所割下部分的面积为 。
二、解答题1、I=d x v Ω⎰⎰⎰,其中Ω是由1x y z ++=与三个坐标平面所围的闭区域。
2、()x y z dxdydz Ω++⎰⎰⎰ 其中Ω:由平面1x y z ++=及三坐标面所围成的区域。
3、I=22()d x y v Ω+⎰⎰⎰,其中Ω是由2222x y z z ++= 所围成的闭区域。
4、I=⎰⎰⎰Ω+•dvyxz)(22,其中Ω是由球面222yxz--=与圆锥面22yxz+=所围成的闭区域。
5、⎰⎰⎰Ω++dvzyx)(222,Ω={2224,0x y z z++≤≥}。
6、⎰⎰⎰Ω+•dvyxz)(22,Ω是由球面222yxz--=与圆锥面22yxz+=所围成的闭区域。
7、⎰⎰⎰Ω++dvzyx222,Ω是由球面zzyx2222=++所围成的闭区域。
8、求函数22y x z +=在区域D :x 4y x x 222≤+≤上与z=0所围成的体积。
9、求由平面1,0,0,0=++===z y x z y x 所围成的几何体的体积。
10、在由椭圆1422≤+y x 绕其长轴旋转一周而成的椭球体上,沿长轴方向打一穿过中心的圆孔,并使剩下部分的体积恰好等于椭球体体积的一半,求该圆孔的直径。
三重积分习题

931 化三重积分⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分其中积分区域分别是(1)由双曲抛物面xy z 及平面x y 10 z 0所围成的闭区域解 积分区域可表示为 {(x y z )| 0z xy 0y 1x 0x 1} 于是 ⎰⎰⎰-=xyx dzz y x f dy dx I 01010),,((2)由曲面z x 2y 2及平面z 1所围成的闭区域解 积分区域可表示为}11 ,11 ,1|),,{(2222≤≤--≤≤--≤≤+=Ωx x y x z y x z y x于是 ⎰⎰⎰+----=111112222),,(y x x xdz z y x f dy dx I(3)由曲面z x 22y 2及z 2x 2所围成的闭区域解 曲积分区域可表示为}11 ,11 ,22|),,{(22222≤≤--≤≤---≤≤+=Ωx x y x x z y x z y x于是 ⎰⎰⎰-+----=22222221111),,(x y x x x dz z y x f dy dx I提示 曲面z x 22y 2与z 2x 2的交线在xOy 面上的投影曲线为x 2+y 2=1(4)由曲面cz xy (c 0) 12222=+by a x z 0所围成的在第一卦限内的闭区域解 曲积分区域可表示为}0 ,0 ,0|),,{(22a x x a ab yc xyz z y x ≤≤-≤≤≤≤=Ω于是 ⎰⎰⎰-=c xy x a a b adz z y x f dy dx I 000),,(22提示 区域的上边界曲面为曲面c z xy 下边界曲面为平面z 02 设有一物体 占有空间闭区域{(x y z )|0x 1 0y 1 0z 1} 在点(x y z )处的密度为(x y z )x y z 计算该物体的质量解 ⎰⎰⎰⎰⎰⎰++==Ω101010)(dz z y x dy dx dxdydz M ρ⎰⎰++=1010)21(dy y x dx⎰⎰+=++=1010102)1(]2121[dx x dx y y xy 23)1(21102=+=x3如果三重积分⎰⎰⎰Ωdxdydz z y x f ),,(的被积函数f (xy z )是三个函数f 1(x )、f 2(y )、f 3(z )的乘积 即f (x y z ) f 1(x )f 2(y )f 3(z ) 积分区域{(x y z )|a x b c y d l z m } 证明这个三重积分等于三个单积分的乘积即⎰⎰⎰⎰⎰⎰=Ωmldcbadzz f dy y f dx x f dxdydz z f y f x f )()()()()()(321321证明 ⎰⎰⎰Ωdxdydz z f y f x f )()()(321dx dy dz z f y f x f ba dcml]))()()(([321⎰⎰⎰=dx dy dz z f y f x f b a d c m l]))()()(([321⎰⎰⎰=⎰⎰⎰=m ldcb adx dy y f dz z f x f )])()()()([(231dx x f dy y f dz z f bam ld c)]())()()([(123⎰⎰⎰=⎰⎰⎰=d cbam ldx x f dy y f dz z f )())()()((123⎰⎰⎰=d cmlb adzz f dy y f dx x f )()()(3214计算⎰⎰⎰Ωdxdydzz xy 32 其中是由曲面z xy 与平面y x x 1和z 0所围成的闭区域 解 积分区域可表示为 {(x y z )| 0z xy 0y x 0x 1}于是 ⎰⎰⎰Ωdxdydz z xy 32⎰⎰⎰=xyxdz z dy y xdx 030210⎰⎰=xxy dy z y xdx 004210]4[⎰⎰=x dy y dx x 051054136412811012==⎰dx x5 计算⎰⎰⎰Ω+++3)1(z y x dxdydz 其中为平面x 0 y 0 z 0x y z 1所围成的四面体 解 积分区域可表示为 {(x y z )| 0z 1x y 0y 1x 0x 1}于是 ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰--++=xdy y x dx 1021]81)1(21[dx x x ⎰+-+=10]8183)1(21[ )852(ln 21-=提示⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰---+++-=xyx dy z y x dx 101021])1(21[⎰⎰--++=x dy y x dx 10210]81)1(21[ dx y y x x-⎰-++-=101]81)1(21[dx x x ⎰+-+=10]8183)1(21[ 102]16183)1ln(21[x x x +-+= )852(ln 21-=6计算⎰⎰⎰Ωxyzdxdydz其中为球面x 2y 2z 21及三个坐标面所围成的在第一卦限内的闭区域解 积分区域可表示为}10 ,10 ,10|),,{(222≤≤-≤≤--≤≤=Ωx x y y x z z y x 于是 ⎰⎰⎰Ωxyzdxdydz ⎰⎰⎰---=222101010x y x xyzdz dy dx⎰⎰---=2102210)1(21x dy y x xy dx ⎰-=1022)1(81dx x x 481=7计算⎰⎰⎰Ωxzdxdydz其中是由平面z 0 z y y 1以及抛物柱面y x 2所围成的闭区域 解 积分区域可表示为 {(x y z )| 0z y x 2y 1 1x 1}于是 ⎰⎰⎰Ωxzdxdydz ⎰⎰⎰-=yx zdz dy xdx 01112⎰⎰-=1211221x dy y xdx)1(61116=-=⎰-dx x x8计算⎰⎰⎰Ωzdxdydz其中是由锥面22y x Rh z +=与平面zh (R 0h 0)所围成的闭区域解 当0z h 时 过(0 0 z )作平行于xOy 面的平面 截得立体的截面为圆D z 222)(z h R y x =+ 故D z 的半径为z h R 面积为222z h R π 于是⎰⎰⎰Ωzdxdydz⎰⎰⎰zD hdxdy zdz 0⎰==h h R dz z hR 0223224ππ9 利用柱面坐标计算下列三重积分(1)⎰⎰⎰Ωzdv其中是由曲面222y x z --=及z x 2y 2所围成的闭区域解 在柱面坐标下积分区域可表示为 021222ρρ-≤≤z于是 ⎰⎰⎰Ωzdv ⎰⎰⎰-=1022022ρρπρρθzdz d d ⎰--=1042)2(212ρρρρπdπρρρρπ127)2(1053=--=⎰d(2)⎰⎰⎰Ω+dvy x )(22 其中是由曲面x 2y 22z 及平面z 2所围成的闭区域解 在柱面坐标下积分区域可表示为02 02222≤≤z ρ于是 dv y x )(22+Ω⎰⎰⎰dz d d θρρρ⋅=Ω⎰⎰⎰2⎰⎰⎰=22123202ρπρρθdz d d⎰⎰-=205320)212(ρρρθπd d ⎰==ππθ2031638d10 利用球面坐标计算下列三重积分(1)⎰⎰⎰Ω++dvz y x )(222 其中是由球面x 2y 2z 21所围成的闭区域 解 在球面坐标下积分区域可表示为 02 00r 1于是 ⎰⎰⎰Ω++dv z y x )(222⎰⎰⎰Ω⋅=θϕϕd drd r sin 4⎰⎰⎰=104020sin dr r d d ππϕϕθπ54=(2)⎰⎰⎰Ωzdv其中闭区域由不等式x 2y 2(z a )2a 2 x 2y 2z 2 所确定解 在球面坐标下积分区域可表示为ϕπϕπθcos 20 ,40 ,20a r ≤≤≤≤≤≤于是⎰⎰⎰⎰⎰⎰ΩΩ⋅=θϕϕϕd drd r r zdv sin cos 2⎰⋅=404)cos 2(41cos sin 2πϕϕϕϕπd a4405467cos sin 8a d a πϕϕϕππ==⎰11 选用适当的坐标计算下列三重积分(1)⎰⎰⎰Ωxydv其中为柱面x 2y 21及平面z 1 z 0 x 0 y 0所围成的在第一卦限内的闭区域解 在柱面坐标下积分区域可表示为10 ,10 ,20≤≤≤≤≤≤z ρπθ于是 ⎰⎰⎰Ωxydv ⎰⎰⎰Ω⋅⋅=dz d d θρρθρθρsin cos⎰⎰⎰==101032081cos sin dz d d ρρθθθπ别解 用直角坐标计算⎰⎰⎰Ωxydv ⎰⎰⎰-=1010102dz ydy xdx x ⎰⎰-=21010x ydy xdx ⎰-=103)22(dx x x 81]84[1042=-=x x (2)⎰⎰⎰Ω++dvz y x 222 其中是由球面x 2y 2z 2z 所围成的闭区域解 在球面坐标下积分区域可表示为ϕπϕπθcos 0 ,20 ,20≤≤≤≤≤≤r于是 ⎰⎰⎰Ω++dv z y x 222⎰⎰⎰⋅=ϕππϕϕθcos 022020sin dr r r d d10cos 41sin 2204πϕϕϕππ=⋅=⎰d(3)⎰⎰⎰Ω+dvy x )(22 其中是由曲面4z 225(x 2y 2)及平面z 5所围成的闭区域解 在柱面坐标下积分区域可表示为 525 ,20 ,20≤≤≤≤≤≤z ρρπθ于是 ⎰⎰⎰Ω+dv y x )(22⎰⎰⎰=52520320ρπρρθdz d dπρρρπ8)255(2203=-=⎰d(4)⎰⎰⎰Ω+dvy x )(22 其中闭区域由不等式Az y x a ≤++≤<2220 z所确定解 在球面坐标下积分区域可表示为Ar a ≤≤≤≤≤≤ ,20 ,20πϕπθ于是 ⎰⎰⎰Ω+dv y x )(22θϕϕθϕϕϕd drd r r r sin )sin sin cos sin (2222222⎰⎰⎰Ω+=)(154sin 55420320a A dr r d d Aa -==⎰⎰⎰πϕϕθππ12 利用三重积分计算下列由曲面所围成的立体的体积(1)z 6x 2y 2及22y x z +=解 在柱面坐标下积分区域可表示为0 2 02 z 62于是 ⎰⎰⎰⎰⎰⎰ΩΩ==dz d d dv V θρρ⎰⎰⎰-=262020ρρπρρθdz d d⎰=--=2032332)6(2πρρρρπd(2)x 2y 2z 22az (a 0)及x 2y 2z 2(含有z 轴的部分)解 在球面坐标下积分区域可表示为ϕπϕπθcos 20 ,40 ,20a r ≤≤≤≤≤≤于是 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd drd r dv V sin 2⎰⎰⎰=ϕππϕϕθcos 2024020sin a dr r d d34033sin cos 382a d a πϕϕϕππ==⎰(3)22y x z +=及zx 2y 2解 在柱面坐标下积分区域可表示为 02 01 2z于是 6)(2103210202πρρρπρρθρρπ=-===⎰⎰⎰⎰⎰⎰⎰Ωd dz d d dv V(4)225y x z --=及x 2y 24z解 在柱面坐标下积分区域可表示为 22541 ,20 ,20ρρρπθ-≤≤≤≤≤≤z于是 ⎰⎰⎰-=22541220ρρπρρθdz d d V)455(32)45(22022-=--=⎰πρρρρπd13 球心在原点、半径为R 的球体 在其上任意一点的密度的大小与这点到球心的距离成正比 求这球体的质量 解 密度函数为222),,(z y x k z y x ++=ρ 在球面坐标下积分区域可表示为02r R于是 ⎰⎰⎰Ω++=dv z y x k M 2224220sin R k dr r kr d d R πϕϕθππ=⋅=⎰⎰⎰。
高等数学三重积分例题

高等数学三重积分例题一、计算三重积分∭_varOmega z dV,其中varOmega是由锥面z = √(x^2)+y^{2}与平面z = 1所围成的闭区域。
1. 利用柱坐标计算在柱坐标下x = rcosθ,y = rsinθ,z = z,dV = rdzdrdθ。
锥面z=√(x^2)+y^{2}在柱坐标下就是z = r。
由锥面z = r与平面z = 1所围成的闭区域varOmega,其在柱坐标下的范围为:0≤slantθ≤slant2π,0≤slant r≤slant1,r≤slant z≤slant1。
2. 计算积分则∭_varOmegaz dV=∫_0^2πdθ∫_0^1rdr∫_r^1zdz。
先计算关于z的积分:∫_r^1zdz=(1)/(2)(1 r^2)。
再计算关于r的积分:∫_0^1r×(1)/(2)(1 r^2)dr=(1)/(2)∫_0^1(rr^3)dr=(1)/(2)((1)/(2)-(1)/(4))=(1)/(8)。
最后计算关于θ的积分:∫_0^2πdθ = 2π。
所以∭_varOmegaz dV=(1)/(8)×2π=(π)/(4)。
二、计算三重积分∭_varOmega(x + y+z)dV,其中varOmega是由平面x = 0,y = 0,z = 0及x + y+z = 1所围成的四面体。
1. 利用直角坐标计算对于由平面x = 0,y = 0,z = 0及x + y + z=1所围成的四面体varOmega,其范围为0≤slant x≤slant1,0≤slant y≤slant1 x,0≤slant z≤slant1 x y。
则∭_varOmega(x + y + z)dV=∫_0^1dx∫_0^1 xdy∫_0^1 x y(x + y + z)dz。
2. 计算积分先计算关于z的积分:∫_0^1 x y(x + y+z)dz=(x + y)z+(1)/(2)z^2big|_0^1 x y=(x + y)(1 x y)+(1)/(2)(1 x y)^2展开得x + y-(x^2+2xy + y^2)+(1)/(2)(1 2x 2y+x^2+2xy + y^2)进一步化简为x + y x^2-2xy y^2+(1)/(2)-x y+(1)/(2)x^2+xy+(1)/(2)y^2即(1)/(2)-x^2-xy (1)/(2)y^2。
三重积分习题1

9-31. 化三重积分⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分, 其中积分区域Ω分别是:(1)由双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域; 解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤1-x , 0≤x ≤1}, 于是 ⎰⎰⎰-=xyx dz z y x f dy dx I 01010),,(.(2)由曲面z =x 2+y 2及平面z =1所围成的闭区域; 解 积分区域可表示为}11 ,11 ,1|),,{(2222≤≤--≤≤--≤≤+=Ωx x y x z y x z y x , 于是 ⎰⎰⎰+----=111112222),,(y x x xdz z y x f dy dx I .(3)由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域; 解 曲积分区域可表示为}11 ,11 ,22|),,{(22222≤≤--≤≤---≤≤+=Ωx x y x x z y x z y x , 于是 ⎰⎰⎰-+----=22222221111),,(x y x x x dz z y x f dy dx I .提示: 曲面z =x 2+2y 2与z =2-x 2的交线在xOy 面上的投影曲线为x 2+y 2=1.(4)由曲面cz =xy (c >0), 12222=+by a x , z =0所围成的在第一卦限内的闭区域.解 曲积分区域可表示为}0 ,0 ,0|),,{(22a x x a a b y c xyz z y x ≤≤-≤≤≤≤=Ω,于是 ⎰⎰⎰-=c xy x a a b adz z y x f dy dx I 000),,(22.提示: 区域Ω的上边界曲面为曲面c z =xy , 下边界曲面为平面z =0.2. 设有一物体, 占有空间闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}, 在点(x , y , z )处的密度为ρ(x , y , z )=x +y +z , 计算该物体的质量.解 ⎰⎰⎰⎰⎰⎰++==Ω101010)(dz z y x dy dx dxdydz M ρ⎰⎰++=1010)21(dy y x dx⎰⎰+=++=1010102)1(]2121[dx x dx y y xy 23)1(21102=+=x .3. 如果三重积分⎰⎰⎰Ωdxdydz z y x f ),,(的被积函数f (x , y , z )是三个函数f 1(x )、f 2(y )、f 3(z )的乘积, 即f (x , y , z )= f 1(x )⋅f 2(y )⋅f 3(z ), 积分区域Ω={(x , y , z )|a ≤x ≤b , c ≤y ≤d , l ≤z ≤m }, 证明这个三重积分等于三个单积分的乘积, 即⎰⎰⎰⎰⎰⎰=Ωmld cb adz z f dy y f dx x f dxdydz z f y f x f )()()()()()(321321.证明⎰⎰⎰Ωdxdydz z f y f x f )()()(321dx dy dz z f y f x f b a d c ml]))()()(([321⎰⎰⎰=dx dy dz z f y f x f b a d c m l]))()()(([321⎰⎰⎰=⎰⎰⎰=m ldcb adx dy y f dz z f x f )])()()()([(231dx x f dy y f dz z f bam ld c)]())()()([(123⎰⎰⎰=⎰⎰⎰=d cbam ldx x f dy y f dz z f )())()()((123⎰⎰⎰=d cmlb adz z f dy y f dx x f )()()(321.4. 计算⎰⎰⎰Ωdxdydz z xy 32, 其中Ω是由曲面z =xy , 与平面y =x , x =1和z =0所围成的闭区域.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤x , 0≤x ≤1}, 于是⎰⎰⎰Ωdxdydz z xy 32⎰⎰⎰=xyxdz z dy y xdx 030210⎰⎰=xxy dy z y xdx 004210]4[ ⎰⎰=x dy y dx x 051054136412811012==⎰dx x .5. 计算⎰⎰⎰Ω+++3)1(z y x dxdydz, 其中Ω为平面x =0, y =0, z =0, x +y +z =1所围成的四面体.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤1-x -y , 0≤y ≤1-x , 0≤x ≤1},于是 ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰--++=xdy y x dx 1021]81)1(21[dx x x ⎰+-+=10]8183)1(21[ )852(l n 21-=.提示: ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰---+++-=xyx dy z y x dx 101021])1(21[⎰⎰--++=x dy y x dx 10210]81)1(21[ dx y y x x-⎰-++-=101]81)1(21[dx x x ⎰+-+=10]8183)1(21[ 102]16183)1ln(21[x x x +-+= )852(ln 21-=.6. 计算⎰⎰⎰Ωxyzdxdydz , 其中Ω为球面x 2+y 2+z 2=1及三个坐标面所围成的在第一卦限内的闭区域.解 积分区域可表示为}10 ,10 ,10|),,{(222≤≤-≤≤--≤≤=Ωx x y y x z z y x 于是⎰⎰⎰Ωxyzdxdydz ⎰⎰⎰---=222101010x y x x y z d zdy dx ⎰⎰---=2102210)1(21x dy y x xy dx ⎰-=1022)1(81dx x x 481=.7. 计算⎰⎰⎰Ωxzdxdydz , 其中Ω是由平面z =0, z =y , y =1以及抛物柱面y =x 2所围成的闭区域.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤y , x 2≤y ≤1, -1≤x ≤1},于是⎰⎰⎰Ωxzdxdydz ⎰⎰⎰-=yx z d z dy xdx 01112⎰⎰-=1211221x dy y xdx 0)1(61116=-=⎰-dx x x . 8. 计算⎰⎰⎰Ωzdxdydz , 其中Ω是由锥面22y x R h z +=与平面z =h (R >0, h >0)所围成的闭区域.解 当0≤z ≤h 时, 过(0, 0, z )作平行于xOy 面的平面, 截得立体Ω的截面为圆D z : 222)(z h R y x =+, 故D z 的半径为z h R , 面积为222z h R π, 于是⎰⎰⎰Ωz d x d y d z =⎰⎰⎰zD hdxdy zdz 0⎰==hh R dz z h R 0223224ππ. 9. 利用柱面坐标计算下列三重积分:(1)⎰⎰⎰Ωzdv , 其中Ω是由曲面222y x z --=及z =x 2+y 2所围成的闭区域;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ρ≤1, 222ρρ-≤≤z , 于是⎰⎰⎰Ωzdv ⎰⎰⎰-=1022022ρρπρρθz d z d d ⎰--=1042)2(212ρρρρπdπρρρρπ127)2(1053=--=⎰d .(2)⎰⎰⎰Ω+dv y x )(22, 其中Ω是由曲面x 2+y 2=2z 及平面z =2所围成的闭区域.解 在柱面坐标下积分区域Ω可表示为0≤θ≤2π, 0≤ρ≤2, 222≤≤z ρ, 于是 dv y x )(22+Ω⎰⎰⎰dz d d θρρρ⋅=Ω⎰⎰⎰2⎰⎰⎰=221203202ρπρρθdz d d⎰⎰-=205320)212(ρρρθπd d ⎰==ππθ2031638d .10. 利用球面坐标计算下列三重积分:(1)⎰⎰⎰Ω++dv z y x )(222, 其中Ω是由球面x 2+y 2+z 2=1所围成的闭区域.解 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤1, 于是⎰⎰⎰Ω++dv z y x )(222⎰⎰⎰Ω⋅=θϕϕd d r d r s i n 4 ⎰⎰⎰=104020s i n dr r d d ππϕϕθπ54=.(2)⎰⎰⎰Ωzdv , 其中闭区域Ω由不等式x 2+y 2+(z -a )2≤a 2, x 2+y 2≤z 2 所确定.解 在球面坐标下积分区域Ω可表示为 ϕπϕπθc o s 20 ,40 ,20a r ≤≤≤≤≤≤,于是 ⎰⎰⎰⎰⎰⎰ΩΩ⋅=θϕϕϕd drd r r zdv sin cos 2⎰⋅=404)c o s 2(41c o s s i n 2πϕϕϕϕπd a 4405467c o s s i n 8a d a πϕϕϕππ==⎰. 11. 选用适当的坐标计算下列三重积分:(1)⎰⎰⎰Ωxydv , 其中Ω为柱面x 2+y 2=1及平面z =1, z =0, x =0, y =0所围成的在第一卦限内的闭区域;解 在柱面坐标下积分区域Ω可表示为 10 ,10 ,20≤≤≤≤≤≤z ρπθ,于是⎰⎰⎰Ωx y d v ⎰⎰⎰Ω⋅⋅=dz d d θρρθρθρsin cos ⎰⎰⎰==101032081c o s s i n dz d d ρρθθθπ. 别解: 用直角坐标计算⎰⎰⎰Ωx y d v ⎰⎰⎰-=1010102dz ydy xdx x ⎰⎰-=21010x y d y x d x⎰-=103)22(dx x x 81]84[1042=-=x x . (2)⎰⎰⎰Ω++dv z y x 222, 其中Ω是由球面x 2+y 2+z 2=z 所围成的闭区域;解 在球面坐标下积分区域Ω可表示为 ϕπϕπθc o s 0 ,20 ,20≤≤≤≤≤≤r ,于是⎰⎰⎰Ω++dv z y x 222⎰⎰⎰⋅=ϕππϕϕθc o s22020s i n dr r r d d10cos 41sin 2204πϕϕϕππ=⋅=⎰d .(3)⎰⎰⎰Ω+dv y x )(22, 其中Ω是由曲面4z 2=25(x 2+y 2)及平面z =5所围成的闭区域;解 在柱面坐标下积分区域Ω可表示为 525 ,20 ,20≤≤≤≤≤≤z ρρπθ,于是⎰⎰⎰Ω+dv y x )(22⎰⎰⎰=52520320ρπρρθdz d dπρρρπ8)255(2203=-=⎰d .(4)⎰⎰⎰Ω+dv y x )(22, 其中闭区域Ω由不等式A z y x a ≤++≤<2220, z ≥0所确定.解 在球面坐标下积分区域Ω可表示为 A r a ≤≤≤≤≤≤ ,20 ,20πϕπθ,于是⎰⎰⎰Ω+dv y x )(22θϕϕθϕϕϕd d r d r r r s i n )s i n s i n c o s s i n(2222222⎰⎰⎰Ω+=)(154sin 55420320a A dr r d d Aa -==⎰⎰⎰πϕϕθππ.12. 利用三重积分计算下列由曲面所围成的立体的体积: (1)z =6-x 2-y 2及22y x z +=;解 在柱面坐标下积分区域Ω可表示为0≤θ≤2 π, 0≤ρ≤2, ρ≤z ≤6-ρ2, 于是 ⎰⎰⎰⎰⎰⎰ΩΩ==dz d d dv V θρρ⎰⎰⎰-=262020ρρπρρθdz d d⎰=--=2032332)6(2πρρρρπd .(2)x 2+y 2+z 2=2az (a >0)及x 2+y 2=z 2(含有z 轴的部分); 解 在球面坐标下积分区域Ω可表示为ϕπϕπθc o s 20 ,40 ,20a r ≤≤≤≤≤≤,于是 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd d r d r dv V sin 2⎰⎰⎰=ϕππϕϕθc o s2024020s i na dr r d d34033s i n c o s382a d a πϕϕϕππ==⎰. (3)22y x z +=及z =x 2+y 2;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ρ≤1, ρ2≤z ≤ρ,于是 6)(2103210202πρρρπρρθρρπ=-===⎰⎰⎰⎰⎰⎰⎰Ωd dz d d dv V .(4)225y x z --=及x 2+y 2=4z .解 在柱面坐标下积分区域Ω可表示为22541 ,20 ,20ρρρπθ-≤≤≤≤≤≤z ,于是 ⎰⎰⎰-=225412020ρρπρρθdz d d V)455(32)45(22022-=--=⎰πρρρρπd .13. 球心在原点、半径为R 的球体, 在其上任意一点的密度的大小与这点到球心的距离成正比, 求这球体的质量.解 密度函数为222),,(z y x k z y x ++=ρ. 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤R ,于是 ⎰⎰⎰Ω++=dv z y x k M 222400220s i n R k dr r kr d d Rπϕϕθππ=⋅=⎰⎰⎰.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
931 化三重积分⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分其中积分区域分别是(1)由双曲抛物面xy z 及平面x y 10 z 0所围成的闭区域解 积分区域可表示为{(x y z )| 0z xy 0y 1x0x 1}于是 ⎰⎰⎰-=xyxdz z y x f dy dx I 01010),,((2)由曲面z x 2y 2及平面z 1所围成的闭区域解 积分区域可表示为}11 ,11 ,1|),,{(2222≤≤--≤≤--≤≤+=Ωx x y x z y x z y x于是 ⎰⎰⎰+----=111112222),,(y x x xdzz y x f dy dx I(3)由曲面z x 22y 2及z 2x 2所围成的闭区域解 曲积分区域可表示为}11 ,11 ,22|),,{(22222≤≤--≤≤---≤≤+=Ωx x y x x z y x z y x于是 ⎰⎰⎰-+----=22222221111),,(x y x x x dzz y x f dy dx I提示 曲面z x 22y 2与z 2x 2的交线在xOy 面上的投影曲线为x 2+y 2=1(4)由曲面cz xy (c 0) 12222=+by a x z 0所围成的在第一卦限内的闭区域解 曲积分区域可表示为}0 ,0 ,0|),,{(22a x x a ab y cxy z z y x ≤≤-≤≤≤≤=Ω于是 ⎰⎰⎰-=c xy x a a b adzz y x f dy dx I 000),,(22提示区域的上边界曲面为曲面c z xy 下边界曲面为平面z 02 设有一物体占有空间闭区域{(x yz )|0x 1 0y 1 0z 1} 在点(x y z )处的密度为(x y z )x y z 计算该物体的质量 解 ⎰⎰⎰⎰⎰⎰++==Ω101010)(dz z y x dy dx dxdydz M ρ⎰⎰++=110)21(dy y x dx⎰⎰+=++=1010102)1(]2121[dx x dx y y xy 23)1(21102=+=x3 如果三重积分⎰⎰⎰Ωdxdydz z y x f ),,(的被积函数f (x y z )是三个函数f 1(x )、f 2(y )、f 3(z )的乘积 即f (x y z )f 1(x )f 2(y )f 3(z ) 积分区域{(x y z )|a x bc yd l z m } 证明这个三重积分等于三个单积分的乘积即⎰⎰⎰⎰⎰⎰=Ωml dc ba dzz f dy y f dx x f dxdydz z f y f x f )()()()()()(321321证明 ⎰⎰⎰Ωdxdydz z f y f x f )()()(321dx dy dz z f y f x f b a d c ml ]))()()(([321⎰⎰⎰=dx dy dz z f y f x f ba dc ml]))()()(([321⎰⎰⎰=⎰⎰⎰=mldcbadx dy y f dz z f x f )])()()()([(231dx x f dy y f dz z f bam ld c)]())()()([(123⎰⎰⎰=⎰⎰⎰=d cbam ldx x f dy y f dz z f )())()()((123⎰⎰⎰=d c ml b a dz z f dy y f dx x f )()()(3214 计算⎰⎰⎰Ωdxdydzz xy 32 其中是由曲面z xy与平面y x x 1和z 0所围成的闭区域解 积分区域可表示为{(x y z )| 0z xy 0y x 0x 1}于是 ⎰⎰⎰Ωdxdydz z xy 32⎰⎰⎰=xyxdz z dy y xdx 030210⎰⎰=xxydy z y xdx 004210]4[⎰⎰=x dy y dx x 051054136412811012==⎰dx x5 计算⎰⎰⎰Ω+++3)1(z y x dxdydz 其中为平面x 0 y 0 z 0x y z 1所围成的四面体解 积分区域可表示为{(x y z )| 0z 1x y 0y 1x0x 1}于是 ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1⎰⎰--++=xdy y x dx 10210]81)1(21[dx x x ⎰+-+=10]8183)1(21[ )852(ln 21-=提示⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰---+++-=xyx dy z y x dx 1010210])1(21[⎰⎰--++=x dy y x dx 10210]81)1(21[ dx y y x x-⎰-++-=101]81)1(21[dx x x ⎰+-+=10]8183)1(21[ 102]16183)1ln(21[x x x +-+= )852(ln 21-=6 计算⎰⎰⎰Ωxyzdxdydz其中为球面x 2y 2z 21及三个坐标面所围成的在第一卦限内的闭区域 解 积分区域可表示为}10 ,10 ,10|),,{(222≤≤-≤≤--≤≤=Ωx x y y x z z y x于是 ⎰⎰⎰Ωxyzdxdydz ⎰⎰⎰---=222101010x y x xyzdz dy dx⎰⎰---=2102210)1(21x dy y x xy dx ⎰-=1022)1(81dx x x 481=7 计算⎰⎰⎰Ωxzdxdydz其中是由平面z 0 z y y 1以及抛物柱面y x 2所围成的闭区域解 积分区域可表示为{(x y z )| 0z y x 2y 1 1x 1}于是 ⎰⎰⎰Ωxzdxdydz ⎰⎰⎰-=yx zdz dy xdx 01112⎰⎰-=1211221xdy y xdx 0)1(61116=-=⎰-dx x x8 计算⎰⎰⎰Ωzdxdydz其中是由锥面22y x Rh z +=与平面z h (R 0 h 0)所围成的闭区域解 当0z h 时过(0 0 z )作平行于xOy 面的平面截得立体的截面为圆D z 222)(z hR y x =+ 故D z 的半径为zhR 面积为222z h R π 于是⎰⎰⎰Ωzdxdydz⎰⎰⎰zDhdxdy zdz 0⎰==hh R dz z h R 0223224ππ9 利用柱面坐标计算下列三重积分(1)⎰⎰⎰Ωzdv其中是由曲面222y x z --=及z x 2y 2所围成的闭区域解 在柱面坐标下积分区域可表示为 021 222ρρ-≤≤z于是 ⎰⎰⎰Ωzdv ⎰⎰⎰-=1022022ρρπρρθzdz d d ⎰--=1042)2(212ρρρρπdπρρρρπ127)2(153=--=⎰d(2)⎰⎰⎰Ω+dvy x )(22 其中是由曲面x 2y 22z 及平面z 2所围成的闭区域解 在柱面坐标下积分区域可表示为 022222≤≤z ρ于是 dv y x )(22+Ω⎰⎰⎰dz d d θρρρ⋅=Ω⎰⎰⎰2⎰⎰⎰=221203202ρπρρθdz d d⎰⎰-=205320)212(ρρρθπd d ⎰==ππθ2031638d10 利用球面坐标计算下列三重积分 (1)⎰⎰⎰Ω++dvz y x )(222 其中是由球面x 2y 2z 21所围成的闭区域解 在球面坐标下积分区域可表示为 020r 1于是 ⎰⎰⎰Ω++dv z y x )(222⎰⎰⎰Ω⋅=θϕϕd drd r sin 4⎰⎰⎰=104020sin dr r d d ππϕϕθπ54=(2)⎰⎰⎰Ωzdv其中闭区域由不等式x 2y 2(z a )2a 2x 2y 2z 2 所确定解 在球面坐标下积分区域可表示为ϕπϕπθcos 20 ,40 ,20a r ≤≤≤≤≤≤于是⎰⎰⎰⎰⎰⎰ΩΩ⋅=θϕϕϕd drd r r zdv sin cos 2⎰⋅=404)cos 2(41cos sin 2πϕϕϕϕπd a4405467cos sin 8a d a πϕϕϕππ==⎰11 选用适当的坐标计算下列三重积分(1)⎰⎰⎰Ωxydv其中为柱面x 2y 21及平面z 1 z 0x 0 y 0所围成的在第一卦限内的闭区域解 在柱面坐标下积分区域可表示为 10 ,10 ,20≤≤≤≤≤≤z ρπθ于是 ⎰⎰⎰Ωxydv ⎰⎰⎰Ω⋅⋅=dz d d θρρθρθρsin cos⎰⎰⎰==101032081cos sin dz d d ρρθθθπ别解 用直角坐标计算⎰⎰⎰Ωxydv ⎰⎰⎰-=1010102dz ydy xdx x ⎰⎰-=21010x ydy xdx ⎰-=103)22(dx x x 81]84[1042=-=x x (2)⎰⎰⎰Ω++dvz y x 222 其中是由球面x 2y 2z 2z 所围成的闭区域解 在球面坐标下积分区域可表示为ϕπϕπθcos 0 ,20 ,20≤≤≤≤≤≤r于是 ⎰⎰⎰Ω++dv z y x 222⎰⎰⎰⋅=ϕππϕϕθcos 022020sin dr r r d d10cos 41sin 2204πϕϕϕππ=⋅=⎰d(3)⎰⎰⎰Ω+dvy x )(22 其中是由曲面4z 225(x 2y 2)及平面z 5所围成的闭区域解 在柱面坐标下积分区域可表示为 525 ,20 ,20≤≤≤≤≤≤z ρρπθ于是 ⎰⎰⎰Ω+dv y x )(22⎰⎰⎰=52520320ρπρρθdz d d πρρρπ8)255(223=-=⎰d(4)⎰⎰⎰Ω+dvy x )(22 其中闭区域由不等式Az y x a ≤++≤<2220z 0所确定解 在球面坐标下积分区域可表示为 Ar a ≤≤≤≤≤≤ ,20 ,20πϕπθ于是 ⎰⎰⎰Ω+dv y x )(22θϕϕθϕϕϕd drd r r r sin )sin sin cos sin (2222222⎰⎰⎰Ω+=)(154sin 55420320a A dr r d d Aa -==⎰⎰⎰πϕϕθππ12 利用三重积分计算下列由曲面所围成的立体的体积(1)z 6x 2y 2及22y x z += 解 在柱面坐标下积分区域可表示为 022z 62于是 ⎰⎰⎰⎰⎰⎰ΩΩ==dz d d dv V θρρ⎰⎰⎰-=262020ρρπρρθdz d d⎰=--=232332)6(2πρρρρπd(2)x 2y 2z 22az (a 0)及x 2y 2z 2(含有z 轴的部分) 解 在球面坐标下积分区域可表示为ϕπϕπθcos 20 ,40 ,20a r ≤≤≤≤≤≤于是 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd drd r dv V sin 2⎰⎰⎰=ϕππϕϕθcos 2024020sin a dr r d d34033sin cos 382a d a πϕϕϕππ==⎰(3)22y x z +=及z x 2y 2 解 在柱面坐标下积分区域可表示为 0212z 于是 6)(2103210202πρρρπρρθρρπ=-===⎰⎰⎰⎰⎰⎰⎰Ωd dz d d dv V(4)225y x z --=及x 2y 24z 解 在柱面坐标下积分区域可表示为22541 ,20 ,20ρρρπθ-≤≤≤≤≤≤z于是 ⎰⎰⎰-=225412020ρρπρρθdz d d V)455(32)45(22022-=--=⎰πρρρρπd13 球心在原点、半径为R 的球体在其上任意一点的密度的大小与这点到球心的距离成正比 求这球体的质量 解 密度函数为222),,(z y x k z y x ++=ρ在球面坐标下积分区域可表示为 020r R于是 ⎰⎰⎰Ω++=dv z y x k M 222400220sin R k dr r kr d d Rπϕϕθππ=⋅=⎰⎰⎰。