1.4线段的轴对称性(1)

合集下载

1.4 线段、角的轴对称性 练习(1)

1.4 线段、角的轴对称性 练习(1)

学案1.4 线段、角的轴对称性知识与基础1、在下列图形中,不是轴对称图形的是( )A 、一条线段B 、两条相交直线C 、有公共端点的两条相等的线段D 、有公共端点的两条不相等的线段2、有下列图形:(1)两个点;(2)一条线段;(3)一个角;(4)一个长方形;(5)两条相交直线;(6)两条平行线。

其中轴对称图形共有( )A 、3个B 、4个C 、5个D 、6个3、如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于D ,PE ⊥OB 于E ,若∠1=20º,则∠3=______º;若PD =1cm ,则PE =_________cm. A AD C DPO E B B E C4、如图,在△ABC 中,AB 的垂直平分线DE 交BC 于点E ,交AB 于点D ,△ACE 的周长为11cm ,AB =4cm ,则△ABC 的周长为__________cm.5、如图,在△ABC 中,∠C =90°,BD 平分∠ABC CD :AD =2:3,则点D 到AB 的距离为A D CPA B6、如图,直线交于点O ,点P 关于l 1、l 2的对称点分别为P 、P 。

(1)若l 1、l 2相交所成的锐角∠AOB =60°,则∠P 1OP 2=_________;(2)若OP =3,P 1P 2=5,则△P 1OP 2的周长为_________。

7、如图,在△ABC 中,AD 是边BC 的垂直平分线,DE ⊥AB 于E ,DF ⊥AC 于F 。

(1)AD 是∠BAC 的角平分线吗?为什么?(2)写出图中所有的相等线段,并说明理由。

应用与拓展8、如图,在四边形ABCD 中,对角线AC 、BD 互相垂直平分,交点为O ,写出图中所有相等的线段和相等的角,A O C并说明理由。

B9、“西气东输”是造福子孙后代的创世工程,现有两条高速公路l 1、l 2和两个城镇A 、B (如1 2 3图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置。

1.4线段、角的轴对称性(1)教案

1.4线段、角的轴对称性(1)教案

教案1.4线段、角的轴对称性(1)【学习目标】:1.经历探索线段的轴对称性的过程,进一步体验轴对称的特征,发展空间观念;2 .探索并掌握线段的垂直平分线的性质.【重点难点】:线段中垂线的性质和判定【预习指导】:自学课本18页到19页,回答下列问题并写下疑惑摘要问题1:线段是轴对称图形吗?为什么问题2线段的对称轴是什么?问题3已知线段MN=3cm ,直线l是MN的垂直平分线。

分别以M,N 为圆心,2cm的长为半径画弧,两弧相交于点G、H,并观察点G,H与直线l有什么关系?课堂活动活动一对折线段问题1:按要求对折线段后,你发现折痕与线段有什么关系?问题2:按要求第二次对折线段后,你发现折痕上任一点到线段两端点的距离有什么关系?结论:1__________________2__________________例题:P18 例1这是一道文字描述的几何说理题,对大多数同学来说容易理解,但不易叙述,因此要做一定的分析,如:你能读懂题目吗?题中已知哪些条件?要说明怎样一个结论?题中的已知条件和要说明的结论能画出图形来表示吗?根据图形你能说明道理吗?活动二用圆规找点问题1:你能用圆规找出一点Q,使AQ=BQ吗?说出你的方法并画出图形(保留作图痕迹),还能找出符合上述条件的点M吗?问题2:观察点Q、M,与直线l有什么关系?符合上述条件的点你能找出多少个?它们在哪里?结论:_____________________活动三用直尺和圆规作线段的垂直平分线1.按课本上19页的方法在书上作出线段的垂直平分线;2.同位可画出不同位置的线段,相互作出线段的垂直平分线结论:__________________【典题选讲】:已知:如图,AB=AC=12 cm,AB的垂直平分线分别交AC、AB于D、E,△ABD的周长等于29 cm,.求DC的长【学习体会】:【课堂练习】:1、如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若BC=25cm ,求△AEG的周长?2.在下图中分别作出点P 关于OA 、OB 的对称点C 、D ,连结C 、D 交OA 于M ,交OB 于N,若CD=5厘米,求ΔPMN 的周长.3、滨海政府为了方便居民的生活,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等.C BA( 编写者:李晓红)· BO A。

线段、角的轴对称性

线段、角的轴对称性

线段、角的轴对称性—知识讲解责编:陆海霞【学习目标】1.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线,能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.2. 理解角平分线的画法,掌握角平分线的性质,理解三角形的三条角平分线的性质,熟练运用角的平分线的性质解决问题.【要点梳理】要点一、线段的轴对称性1.线段是轴对称图形,线段的垂直平分线是它的对称轴.2. 线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;3. 线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点二、角的轴对称性1.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点诠释:(1)用符号语言表示角平分线上的点到角两边的距离相等.若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.(2)用符号语言表示角的内部到角两边距离相等的点在角的平分线上.若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB2.角平分线的画法角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.【典型例题】类型一、线段的轴对称性1、如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【变式】(2015•黄岛区校级模拟)某旅游景区内有一块三角形绿地ABC,如图所示,现要在道路AB的边缘上建一个休息点M,使它到A,C两个点的距离相等.在图中确定休息点M的位置.2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P和Q),使得总路程MP+PQ+QN最短.【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短.类型二、角的轴对称性3、如图, △ABC中, ∠C = 90 , AC = BC, AD平分∠CAB, 交BC于D, DE⊥AB于E, 且AB=6cm, 则△DEB的周长为( )A. 4cmB. 6cmC.10cmD. 以上都不对AB AC ,则△ABD与△ACD的面积之比为()【变式】已知:如图,AD是△ABC的角平分线,且:3:2A.3:2 B.3:2 C.2:3 D.2:34、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.5、如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.【变式】如图,AD是∠BAC的平分线,DE⊥AB,交AB的延长线于点E,DF⊥AC于点F,且DB=DC.求证:BE=CF.。

角的轴对称性(一)重点

角的轴对称性(一)重点
B B
A
A
L
L
谢谢各位同学 的合作!
M P
B
N
C
2、如图,A、B、C三点不在同一直线上, 求作一点P,使PA=PB=PC.
A
P
C
B
3、在△ABC中,AB⊥AC,AC=8cm,BC 边的垂直平分线DE交BC于点E,交AC于 点D,若AB=6cm,求△ABD的周长
A D
B
E
C
4、如图,点A、B分别表示2个居名小区
1)若直线L 表示公交通道,欲在其旁建一个公 交车站,且使从该站到 2个小区的路程相等, 应如何确定车站的位置? 2)若直线L 表示燃气管道,欲在其旁建一个泵 站,且使从该站到2个小区输气的管道总长最 短,应如何确定泵站的位置
B
我是最棒的!
1)你能用圆规作图在图1-9中找出Q 点吗?使AQ=BQ 2)你能再找一个点M吗?使得 AM=BM 3)过点Q、点M作直线L,想想看直 线L和线段AB的垂直平分线有什么 样的关系呢? 通过刚才的操作你有什么发现吗?
L Q M
A
图1-9
B
线段的垂直平分线的判定
到线段两端距离相等的点,在这条线段的垂 P 直平分线上 若:PA=PB 则:点P在线段AB的垂直平分线上
A B
作 法
1、分别以 A、B为圆心,大于 1/2AB的长为半径画弧,两 弧相交于点C、D 2、过C、D两点作直线 直线CD就是线段AB的垂直平 分线 AB
图 形
A
B
1、已知△ABC中,边AB、BC的垂直平分线 相交于点P A 求证:PA=PB=PC
解:∵PM,PN分别是AB, BC的垂直平分线 ∴PA=PB PB=PC ∴PA=PB=PC
1

线段角的轴对称性

线段角的轴对称性
今天,我们来学习的轴对称性。
(二)新授
1、请同学们将事先准备的薄纸拿出来,在上面任意画一个角(∠AOB),折纸使两边OA、OB重合,你发现折痕与∠AOB有什么关系?
学生通过动手和讨论得到结论:角是轴对称图形,对称轴是角平分线所在的直线。
2、在∠AOB的内部任意取折痕上的一点P,分别作点P到OA和OB的垂线段PC=PD,再沿原折痕折纸,会有什么结论?
完成练习P25、1
5、例题:任意画∠O,在∠O的两边上分别截取OA、OB,使OA=OB,过点A画OA的垂线,过点B画OB的垂线,设2条垂线相交于点P,点O在∠APB的平分线上吗?为什么?
学生思考,回答,老师用课件给出证明过程:
点O在∠APB的平分线上。
因为OA⊥PA,OB⊥PB,且OA=OB,即点O到∠APB的两边的距离相等,
学生作图探究,可得到很多结论,如PC=PD,PC、PD关于折痕对称等等,点评学生的各种结论并强调重点:角平分线上的点到角的两边距离相等。
3、上节课我们已经学习了:若点P在线段AB的垂直平分线上,那么PA=PB,如果QA=QB,那么点Q在线段AB的垂直平分线上。今天我们又学了若点P在∠AOB的平分线上,那么点P到OA、OB的距离相等;反过来,你能提出什么猜想吗
所以点O在∠APB的平分线上。
理由是:到角的两边距离相等的点在这个角平分线上。
思考:点P也在AOB的平分线上吗?为什么?
完成练习P25、2
(三)小结:今天,我们学习了角的轴对称性,角是轴对称图形,对称轴是角平分线所在的直线。角平分线上的点到角的两边距离相等。到角的两边距离相等的点,在这个角的平分线上。角平分线是到角两边距离相等的点的集合。
课堂练习得分
1.如图,在△ABC中,∠C = 90°,AD平分∠BAC,且CD = 5,则点D到AB的距离为.

轴对称的性质及线段、角的对称性(1)

轴对称的性质及线段、角的对称性(1)

轴对称总复习之一——轴对称图形、线段和角【知识梳理】知识点1、轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于对称,也称这两个图形成,这条直线叫做,两个图形中的对应点叫做.知识点2、轴对称图形定义:,那么称这个图形是轴对称图形,这条直线就是对称轴。

轴对称与轴对称图形的区别和联系区别:联系:1:2;【例题精讲】例1:如图,阴影部分是由5个大小相同的小正方形组成的图形,请分别在图中方格内涂两个小正方形,使涂后所得阴影部分图形是轴对称图形.例2:如图,如下图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.巩固练习1.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,请在下面所给的格纸中一一画出所有符合条件的三角形.(所给的六个格纸未必全用)2.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.知识点3、线段的垂直平分线(重点)1.定义:垂直并且平分一条线段的直线,叫做这条直线的,也叫中垂线。

2.线段的垂直平分线必须满足两个条件:①;②.3.轴对称的性质(1)关于某条直线成轴对称的两个图形全等.(2)对称轴是对应点所连线段的垂直平分线.知识点4、成轴对称的图形的画法画一个图形关于某条直线对称的图形,其步骤为:①首先要确定哪条直线是对称轴;②然后在已知图形中找特殊点,过此点作对称轴的垂线段并延长一倍,即得到对称点;③顺次连接对称点。

知识点5、线段的轴对称性(重点、难点)线段是轴对称图形,它的对称轴有条,分别是.线段垂直平分线的性质:.线段垂直平分线的判定:.知识点6、线段的垂直平分线的作法(重点)用尺规作线段AB的垂直平分线的方法:1.分别以A、B为圆心,为半径画弧,两弧相交于点C、D.2.过C、D两点作直线.直线CD就是线段AB的垂直平分线.画图,理由如下:知识点7、角的轴对称性(重点、难点)角是轴对称图形,它的对称轴有条,对称轴是.角平分线的性质:.角平分线的判定:.注:“距离”指垂直到直线的线段长度。

1轴对称与轴对称图形教学目标1、...

1轴对称与轴对称图形教学目标1、...

序号:1 时间:9.1 第 1 课时共 1 课时1.1轴对称与轴对称图形教学目标:1、轴对称与轴对称图形,了解两种图形的基本概念和判别方法;2、学会根据对称性特点,画出对称轴和对应点;3、通过亲自实验、探索,研究、发现、应用轴对称,实现真正的“做数学”;4、欣赏现实生活中的轴对称,体会轴对称在现实生活中的广泛应用和它的丰富文化价值.教学重点:根据对称性特点,画出对称轴和对应点教学难点:亲自实验、探索,研究、发现、应用轴对称,实现真正的“做数学”教学过程:一、自学质疑动手操作:(1)演示操作(2)用一张正方形的纸片,折叠后,把下列图形剪出来,并与同学交流你的剪法。

通过自学,你还有什么发现和问题呢?二、交流展示思考回答其他同学提出的发现和问题三、互动探究1、观察、思考:4幅图,观察下列四幅图形,你能发现它们有什么共同特征,说出来与同学交流。

2、议一议:(1)两组图片(动画演示)(2)揭示轴对称概念:像这样,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.四、精讲点播1、探索思考:(1)观察图片:(2)揭示轴对称图形概念:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

动手画出这几幅图片的对称轴。

2、讨论、交流:轴对称与轴对称图形的区别与联系。

3、说说生活中的轴对称和轴对称图形,与同学讨论、交流,同小组互相补充。

五、随堂检测:1.下列图形中一定是轴对称图形的是()A、梯形B、直角三角形C、角D、平行四边形2.下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.3.下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称4. 一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式.”很长时间没有人答出.小兰仅仅拿了一面镜子,就很快解决了这道题目.你知道她是怎样做的吗?5.已知:如图,CDEF是一个矩形的台球面,有黑白两球分别位于点A、B 两点,试问怎样撞击AE D黑球A,使A先碰到台边EF反弹后再击中白球B?教后感:学生通过图片的欣赏,对于这节课很感兴趣,并通过自己的操作、观察,能很好的解决这节课的内容。

小学数学轴对称知识点总结

小学数学轴对称知识点总结

小学数学轴对称知识点总结(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(-x,y);点(x,y)关于y轴对称的点的坐标为(x,-y);点(x,y)关于原点对称的点的坐标为(-x,-y)。

关于谁谁不变,关于原点都相反(五)等腰三角形等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
感悟与反思
线段与是轴对称图形; 线段的对称轴是 线段的垂直平分线;
线段的垂直平分线的性质—— 线段垂直平分线上的点 到这条线段两个端点的距离相等。 到线段两个端点的距离相等的 点只能在线段垂直平分线上。 线段垂直平分线是到线段两个 端点的距离相等的所以的点的集合
14
编辑此外添加标题文本
编辑此外添加标题文本
思考1: 线段是轴对称图形吗?为什么?
动手操作 1、按照下面的步骤做一做: (1)在一张长方形纸片上画一条线段AB, 对折AB使点A,B重合, C 折痕与AB的交点为O; C (2)在折痕上任取一点C, 沿CA将纸折叠; (3)把纸展开 B B O A A , 得到折痕CA和CB。 1)CO与AB有怎样的位置关系? 2)AO与BO相等吗?CA与CB呢? 在折痕上另取一点,再试一试。
3
它的一条对称轴就是 1、线段是轴对称图形。 线段的垂直平分线 也叫中垂线 2、线段垂直平分线上的任意 一点C到线段AB的两端点A、 B的距直平分线外 找一点Q,使QA=QB吗?为什么?
5
思考3:
已知线段AB,你是怎样画出 它的垂直平分线的?
6
动手操作
尺规作线段的中垂线
△ABC中,BC=10,边BC 的垂直平分线分别 BE= =6 6,求△BCE 的周长. 交AB、BC于点E、D,BE 解:∵DE是线段BC的垂直平分线 , ∴EC=EB =6 ∴△BCE 的周长 =EB+EC+BC =6+6+10=22。
B A
E
6
D
C
9
拓展练习3.
如图,在△ABC中,AB=AC=5,AB 的垂直平分线DE交AB、AC于E、D. (1)如果△BCD的周长为8,求BC的长; (2)如果BC=4,求△BCD的周长.
A小区
煤气主管 道
12
拓展练习6.
如图,EFGH是矩形的台球桌面, 有两球分别位于A、B两点的位置,试 问怎样撞击A球,才能使A球先碰撞 台边EF反弹后再击中B球?
解:1.作点A关于EF H 的对称点A′ 2.连结A′B交EF于点 C则沿AC撞击黑球A, 必沿CB反弹击中白球B E 。
G
A B F A′
10
拓展练习4.
你能作出锐角三角形、 直角三角形、钝角三角 的三边的中垂线?你发现 了什么?
11
某开发区新建了两片住宅区:A区、 拓展练习5. 请 你 出 谋 划 策
B区(如图).现在要从煤气主管道的一 个地方建立一个接口,同时向这两个小 区供气.请问,这个接口应建在哪,才能使 得所用管道最短? B 小区
观察领悟作法,探索思考 证明方法:
A C
B
D
7
拓展练习 1. 拓展练习
如图,在△ABC中,∠C等于900,AB 的中垂线DE交BC于D,交AB于E,连接 AD,若AD平分∠BAC,找出图中相等的 A 线段,并说说你的理由。
E
你能找到图中相等的角吗?
B D C
你能找到图中特殊的三角形吗?
8
拓展练习 拓展练习 2.
相关文档
最新文档