离子键教学设计

合集下载

离子键教学设计方案

离子键教学设计方案

一、教学目标1. 知识目标:理解离子键的形成过程,掌握离子键的特点和性质,能够区分离子键和共价键。

2. 能力目标:培养学生运用离子键知识解决实际问题的能力,提高学生的分析问题和解决问题的能力。

3. 情感目标:激发学生对化学学习的兴趣,培养学生的科学探究精神和团队协作能力。

二、教学内容1. 离子键的形成过程2. 离子键的特点3. 离子键的性质4. 离子键和共价键的区别三、教学过程1. 导入新课通过提问或展示与离子键相关的图片、视频,激发学生的学习兴趣,引出离子键的概念。

2. 离子键的形成过程(1)讲解离子键的形成原理,以NaCl为例,说明金属元素和非金属元素通过电子转移形成离子。

(2)展示离子键形成的动画,帮助学生直观理解离子键的形成过程。

3. 离子键的特点(1)讲解离子键的电子云分布特点,说明离子键是由正负离子之间的静电作用力形成的。

(2)分析离子键的键能、键长、键角等性质,并与共价键进行比较。

4. 离子键的性质(1)讲解离子键的熔点、沸点、溶解度等性质,通过实验验证离子键的性质。

(2)分析离子键在不同条件下的变化,如加热、溶解等。

5. 离子键和共价键的区别(1)讲解离子键和共价键的定义,帮助学生理解两种键的区别。

(2)通过实例分析,让学生掌握区分离子键和共价键的方法。

6. 课堂小结回顾本节课所学内容,强调离子键的形成、特点、性质和与共价键的区别。

7. 作业布置(1)完成课后练习题,巩固所学知识。

(2)查找相关资料,了解离子键在实际生活中的应用。

四、教学评价1. 课堂表现:观察学生在课堂上的学习态度、参与度、回答问题的情况。

2. 作业完成情况:检查学生完成作业的质量和速度。

3. 课堂测试:通过测试检验学生对离子键知识的掌握程度。

五、教学反思1. 教学过程中,注重启发式教学,激发学生的学习兴趣。

2. 采用多种教学方法,如讲解、实验、案例分析等,提高学生的学习效果。

3. 关注学生的学习差异,针对不同学生的学习需求,给予个性化的指导。

教学设计7:1.3.1 离子键

教学设计7:1.3.1 离子键

第1课时离子键三维目标知识与技能1.掌握离子键的概念。

2.掌握离子键的形成过程和形成条件,并能熟练地用电子式表示离子化合物的形成过程。

过程与方法1.通过对离子键形成过程的教学,培养学生抽象思维和综合概括能力;2.通过电子式的书写,培养学生的归纳比较能力;通过分子构型的教学,培养学生的空间想象能力。

情感、态度与价值观1.培养学生用对立统一规律认识问题。

2.通过对离子键形成过程的分析,培养学生怀疑、求实、创新的精神。

3.培养学生由个别到一般的研究问题的方法。

从宏观到微观,从现象到本质的认识事物的科学方法。

要点提示教学重点1.离子键和离子化合物的概念。

2.用电子式表示离子化合物的形成过程。

教学难点用电子式表示离子化合物的形成过程。

教具准备多媒体课件、投影仪,盛有氯气的集气瓶、金属钠、小刀、滤纸、镊子、铁架台、石棉网、酒精灯、火柴。

教学过程导入新课师:从前面所学知识我们知道,元素的化学性质主要决定于该元素的原子的结构。

而化学反应的实质就是原子的重新组合,那么,是不是任意两个或多个原子相遇就都能形成新物质的分子或物质呢?生:不是!师:试举例说明。

生1:如氢原子和氟原子在常温下相遇能形成氟化氢分子,而氢原子和氦原子在同一条件下就不发生化学反应。

生2:如金属都是由原子组成的,金戒指和银耳环放一起无变化,把金器和铁器放在一起也不会有新的物质生成。

生3:稀有气体也是由原子直接构成的,它们和其他物质的原子相遇时,很难起反应,因此常用作保护气。

生4:要是任意原子相遇都能重新组合成新物质的话,这世界简直就无法想象!……师:大家回答得很好!以上例子说明,原子和原子相遇时,有的能进行组合,有的不能。

这说明在能组合的原子和原子之间,一定有某种作用存在,才能使原子和原子相互结合成新的分子和新的物质。

而原子和原子组合时,相邻的原子之间所存在的强烈的相互作用,我们称其为化学键,这也是我们本节课所要讲的内容。

板书:第三节化学键师:根据原子和原子相互作用的实质不同,我们可以把化学键分为离子键、共价键、金属键等不同的类型。

高中化学离子键键教案

高中化学离子键键教案

高中化学离子键键教案
教学内容:离子键
教学目标:
1. 理解离子键的定义和特点;
2. 掌握离子键的形成规律;
3. 学习离子键的性质和应用;
4. 能够运用离子键的知识解决相关问题。

教学重点:
1. 离子键的形成规律;
2. 离子键的性质。

教学难点:
1. 离子键的解释;
2. 离子键的应用。

教学准备:
1. 班级投影仪;
2. PowerPoint课件;
3. 实验器材:NaCl晶体结构模型;
4. 相关教学资料。

教学过程:
一、导入(5分钟)
通过投影仪播放相关视频或图片,引出离子键的概念,激发学生的学习兴趣。

二、概念讲解(15分钟)
1. 讲解离子键的定义和特点;
2. 介绍离子键的形成规律,以NaCl晶体结构模型为例进行讲解。

三、案例分析(15分钟)
1. 提问:为什么NaCl是离子化合物?
2. 让学生结合实际情况,分析其他离子化合物的结构特点,探讨离子键的应用。

四、实验操作(15分钟)
1. 分组进行实验:观察不同离子化合物在水中的溶解性;
2. 记录实验结果,分析溶解的规律,探讨离子键在溶解过程中的作用。

五、总结(5分钟)
回顾本节课的重点内容,强调离子键的重要性和应用价值。

教学作业:
1. 完成课后作业:回答离子键相关问题;
2. 自主学习相关知识,准备下节课的讨论和分享。

教学反思:
1. 教师应引导学生独立思考,提高学生的实践能力和应用能力;
2. 需要根据学生的实际情况调整教学内容和教学方法,确保教学效果。

离子键教案

离子键教案

离子键教案一、介绍离子键是化学中一种重要的化学键,它是由正离子和负离子之间的相互吸引力所形成的。

本教案将详细介绍离子键的定义、形成过程、性质以及应用。

二、离子键的定义离子键是由正离子和负离子之间的电荷相互吸引作用形成的化学键。

正离子是失去了一个或多个电子的原子,而负离子则是获得了一个或多个电子的原子。

正负电荷之间的相互吸引力使得离子之间形成了稳定的结构。

三、离子键的形成过程离子键的形成主要经历三个步骤:离子的形成、离子间相互吸引力的产生、离子的排列。

3.1 离子的形成离子的形成是指原子通过失去或获得电子而变成带电的粒子。

在化学反应中,金属原子倾向于失去电子,形成正离子,而非金属原子倾向于获得电子,形成负离子。

3.2 离子间相互吸引力的产生失去电子的金属原子形成了正离子,其带正电荷的核吸引着周围的负电子云;获得电子的非金属原子形成了负离子,其带负电荷的电子云则对阳离子表现出强电吸引力。

3.3 离子的排列离子在固体晶格中有序排列,通过离子间的相互吸引力形成了紧密有序的结构。

离子键的这种高度排列导致了离子化合物的稳定性和高熔点。

四、离子键的性质离子键具有以下主要性质:4.1 强的相互吸引力离子间的正负电荷之间形成强大的相互吸引力,使得离子很难分离。

这种强的相互吸引力导致离子化合物通常具有高熔点和高沸点。

4.2 易溶于极性溶剂离子化合物能够溶于极性溶剂,因为溶剂中的极性分子能够与离子间的电荷相互作用,从而将离子从晶格中解离出来。

4.3 导电性由于离子之间的相互吸引力很强,但在溶解或熔化时,离子往往能够移动,并导致溶液或熔融物的导电性。

4.4 脆性离子化合物通常是脆性的,这是因为外力的应用会破坏晶格结构,导致离子间的排列紊乱,从而引发断裂。

五、离子键的应用离子键在生活和工业中有着广泛的应用。

5.1 盐类的应用离子键形成了许多盐类化合物,例如氯化钠(食盐)、碳酸钙(大理石)等,这些化合物被广泛用于食品加工、建筑材料、化妆品等领域。

高中化学高一化学《离子键》教案、教学设计

高中化学高一化学《离子键》教案、教学设计
3.分组进行家庭实验,要求学生在家中观察并记录某些常见离子化合物(如碳酸钙、硫酸铜等)在水中的溶解情况,并分析其溶解性规律。实验报告需包括实验现象、实验结论以及与课堂所学知识之间的联系。
4.撰写一篇关于离子键与共价键异同点的科普文章,要求语言简练、生动,便于让未学习化学的读者理解这两种化学键的特点和应用。
接着,教师可以通过以下方式导入新课:
1.提问:“同学们,我们已经学习了共价键,那么你们知道还有什么类型的化学键吗?”
2.展示互动实验,让学生观察并思考:“这个实验说明了什么?带正电荷和带负电荷的粒子之间会发生什么?”
3.引入新课:“今天我们将学习一种新的化学键——离子键,它和共价键有什么不同,又是如何形成的呢?”
1.通过生动形象的教学手段,如实物展示、动画演示等,帮助学生深入理解离子键的形成过程。
2.强化命名及化学式书写的训练,采用分类、,让学生了解离子键在实际应用中的重要性,提高学生的学科兴趣。
4.关注学生个体差异,针对不同学生的学习需求,给予个性化的指导,提高教学质量。
5.掌握离子化合物在水溶液中的溶解性规律,能够判断离子化合物在水中的溶解性。
(二)过程与方法
1.能够运用观察法、实验法等方法探究离子键的形成过程。
2.能够运用分类法、比较法等方法分析离子化合物的性质。
3.能够运用逻辑思维、问题解决等方法解决实际问题。
4.能够通过小组合作、交流讨论等形式,提高合作能力和表达能力。
5.鼓励学生互相讨论、交流,共同提高,培养合作精神。
(三)情感态度与价值观
1.增强学生对化学学科的兴趣,激发学习化学的积极性。
2.培养学生的观察能力、实验能力及科学思维,形成严谨的科学态度。
3.培养学生善于合作、勇于探索的精神,提高解决问题的能力。

《离子键》 学历案

《离子键》 学历案

《离子键》学历案一、学习目标1、理解离子键的概念,能识别典型的离子化合物。

2、能用电子式表示离子化合物的形成过程。

3、了解离子键的实质和特征。

二、学习重难点1、重点(1)离子键的概念和形成条件。

(2)用电子式表示离子化合物的形成过程。

2、难点(1)离子键的实质。

(2)对离子化合物结构和性质关系的理解。

三、知识回顾1、原子结构原子由原子核和核外电子组成,原子核带正电荷,电子带负电荷。

原子中质子数等于电子数,整个原子呈电中性。

2、元素的化学性质与原子最外层电子数的关系元素的化学性质主要由原子的最外层电子数决定。

一般来说,最外层电子数小于 4 的原子容易失去电子,最外层电子数大于 4 的原子容易得到电子,最外层电子数为 8(氦为 2)的原子结构稳定。

四、新课导入在我们的日常生活中,有许多物质是由离子构成的,比如食盐(氯化钠)。

那么,这些离子是如何结合在一起形成化合物的呢?这就涉及到我们今天要学习的离子键。

五、知识讲解1、离子键的概念带相反电荷离子之间的相互作用称为离子键。

2、离子键的形成条件(1)活泼金属(如钠、钾等)与活泼非金属(如氯、氟等)之间容易形成离子键。

(2)金属元素与某些非金属元素(如氧、硫等)之间也可能形成离子键。

3、离子化合物由离子键构成的化合物叫做离子化合物。

常见的离子化合物有:大多数盐(如氯化钠、硫酸铜等)、强碱(如氢氧化钠、氢氧化钾等)、活泼金属氧化物(如氧化钠、氧化镁等)。

4、离子键的实质离子键的实质是静电作用,包括静电引力和静电斥力。

当静电引力和静电斥力达到平衡时,就形成了稳定的离子化合物。

5、离子键的特征(1)没有方向性:离子键的形成与离子的电荷分布有关,离子在空间各个方向上的静电作用相同,所以离子键没有方向性。

(2)没有饱和性:只要空间条件允许,一个离子可以同时吸引多个带相反电荷的离子,所以离子键没有饱和性。

6、电子式(1)概念:在元素符号周围用“·”或“×”来表示原子的最外层电子的式子叫做电子式。

离子键教案苏教版

离子键教案苏教版

离子键教案苏教版教案标题:离子键教案(苏教版)教案目标:1. 了解离子键的概念和特点;2. 能够识别离子键的形成和断裂过程;3. 掌握离子键的相关实验方法;4. 培养学生的观察和实验设计能力。

教学重点:1. 离子键的形成和断裂过程;2. 离子键的特点和应用。

教学难点:1. 离子键的实验观察和实验设计。

教学准备:1. 教师准备:离子键的相关知识、实验材料和实验设备;2. 学生准备:课本、笔记本、实验报告本。

教学过程:一、导入(5分钟)1. 引入离子键的概念,与学生讨论离子键的特点和应用;2. 提问:你们知道离子键的形成过程吗?请简要描述。

二、知识讲解(15分钟)1. 通过讲解和示意图,详细介绍离子键的形成过程;2. 强调离子键的特点,如电荷的转移、电荷的稳定等;3. 与学生一起探讨离子键的应用领域,如离子晶体、盐类化合物等。

三、实验观察(25分钟)1. 将学生分成小组,每组分配一份实验材料和实验设备;2. 指导学生进行实验观察,观察离子键的形成和断裂过程;3. 引导学生记录实验数据和观察结果,并进行讨论和分析。

四、实验设计(20分钟)1. 要求学生根据所学知识,设计一个简单的实验来观察离子键的形成;2. 学生在小组内进行实验设计,并向全班展示自己的设计方案;3. 教师给予学生实验设计的指导和建议。

五、总结(10分钟)1. 教师对本节课的内容进行总结,强调离子键的重要性和应用;2. 提醒学生复习课堂内容,并预习下节课的内容。

教学延伸:1. 布置相关阅读任务,要求学生进一步了解离子键的实际应用;2. 鼓励学生参与相关科学竞赛或实验项目,提高实践能力。

教学评估:1. 实验报告:要求学生根据实验结果撰写实验报告,包括实验目的、步骤、观察结果和结论;2. 课堂参与:观察学生在课堂上的积极参与程度和回答问题的准确性。

教学反思:1. 教师根据学生的学习情况和反馈,及时调整教学策略,提供个性化指导;2. 教师与学生进行教学反思,总结教学经验,改进教学方法。

高中化学必修二《离子键》教学设计

高中化学必修二《离子键》教学设计

高中化学必修二《离子键》教学设计高中化学必修二《离子键》教学设计篇一:人教版高中化学必修2离子键说课稿一、对教材的分析1、教材的地位和作用初中化学中已经介绍了离子的概念,学生也已经知道Na+和Cl-由于静电作用结合成化合物NaCl,又知道物质是由原子、分子和离子三种微粒构成的,但并没有涉及离子键的相关概念。

本节的离子键内容,是在学习了原子结构、元素周期律和元素周期表后在原子结构的基础上对分子结构知识的学习,目的是使学生进一步对物质结构理论有一个较为系统的认识,从而揭示化学反应的实质,也为今后更深层次的学习化学奠定基础。

2、教材内容的分析教材是通过复习初中学过的活泼的金属钠跟活泼的非金属单质氯气起反应生成离子化合物氯化钠的过程,对这段知识进行复习,同时予以拓宽加深,然后在此基础上提出离子键的概念,并引出电子式及用其表示离子化合物的形成过程。

3、本课时的教学内容主要包括两点:①离子键;②电子式的书写及用其表示离子化合物的形成过程。

二、学生情况分析本节教材涉及的化学基本概念较多,内容抽象。

根据高一学生的心理特点,他们虽具有一定的理性思维能力,但抽象思维能力较弱,还是易于接受感性认识。

三、教学目标的确立根据学生的实际情况和教学内容并结合《新课标》的内容标准:认识化学键的含义,知道离子键的形成。

我确定了以下三维目标:知识与技能1.掌握离子键的概念。

2.掌握离子键的形成过程和形成条件,并能熟练地用电子式表示离子化合物的形成过程。

过程与方法1.通过本节课的学习学生会用对立统一规律认识问题;2.学生能掌握由个别到一般的研究问题的方法;从宏观到微观,从现象到本质的认识事物的科学方法。

情感、态度与价值观1、激发学生探究化学反应的本质的好奇心;2、通过离子键的形成过程的分析,学生可以获得怀疑、求实、创新的精神。

四、教学重难点分析根据知识本身的难易程度再结合学生的理解水平和我对学习内容的理解,我确定了一下教学重难点。

教学难点①离子键和离子化合物的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【练习 3】硫原子与氧原子能否以离子键结合?由此推断形成离子键的原子应是什么元素的
原子。
【提示】从得失电子的倾向考虑。
ห้องสมุดไป่ตู้
(S 与 O 原子易得电子形成阴离子,这两个阴离子之间,不能以一种强烈的静电作用结合,
即不能形成离子键)
【板书】2.离子键的实质:静电作用
3.成键粒子:阴、阳离子(什么元素的原子容易形成阴、阳离子呢?)
《离子键》教学设计 教学过程
【引入】前面我们已经学习过原子结构的知识,那么原子又是怎样构成分子或物质的呢? 人们发现的元素只有 100 多种,而发现和合成的物质却有 3000 多万种,原子是以某种特殊 的作用相互结合成形形色色的物质,而不是简单的紧密堆积。 【投影】“原子间相互作用” 【讲述】原子通过相互作用而形成物质,这是什么作用?本节我们来探讨这种相互作用的 情况。 【讲述】为什么 H2O 要加热到 1000℃以上(或通电)才能分解成氢气和氧气?是否说明水 分子中氢、氧原子之间存在某种相互作用使他们仅仅结合在一起而难以分开? 【学生思考后作答】 【讲述】破坏这种作用就需要消耗能量。又如,氢气及时加热到 2000℃,其分解率也不到 1%,可知氢分子中的两个氢原子也有一种强烈的相互作用,是它们紧紧地结合在一起。 【投影】“原子间强烈的相互作用” 【讲述】这种强烈的相互作用主要发生在相邻的原子之间,科学上就把它称为“化学键”。 【板书】一、化学键
这两种带电粒子通过静电作用结合成 NaCl。
【提问】请观察上述变化的图示,分析这两种带电粒子有哪些静电吸引?有哪些静电排斥?
【学生充分讨论后作答】
【教师补充、小结】这两种带电粒子之间存在着 4 种静电作用:①阴、阳离子的相互吸引
作用;②核与核外电子的吸引作用;③核与核的排斥作用;④电子与电子的排斥作用。
有 2 个关键的特征:1.成键的粒子是什么;2.通过什么强烈的相互作用形成化学键。
【学生讨论后作答】
【板书】二、离子键
1.定义:使阴、阳离子结合成化合物的静电作用,叫做离子键。
【讲述】除了氯化钠、氯化镁、硫化钾、氢氧化钠等物质都是由离子键形成的。
【讲述】如果用上述图示法表示离子键不方便,用电子式表示其形成过程则简单。下面用
电子式表示 NaCl 的形成过程。
【板书】
Na + Cl
Na+[ Cl ]-
【讲述】钠原子与氯原子通过得失电子形成 Na+和 Cl-后,再通过静电作用形成 NaCl。 【练习 1】用电子式表示 MgO 的形成过程。 【学生板演、讲评】
2/3
【练习 2】硫化钾的化学式写成 KS 对吗?试用电子式表示其形成过程。 【讲评】(预测学生可能出现的错误①K2+;②K+ [ S ]= K+;③K+[ S ]=)
Na +11 2 8 1
+17 2 8 7 Cl
失去 e得到 e-
Na+ +11 2 8 1
+17 2 8 7 Cl-
静电作用 Na+ Cl-
不稳定结构
稳定结构
【讲述】当 Na、Cl 原子通过得、失电子形成稳定结构的 Na+和 Cl-后,阴阳离子通过静电作
用就会相互靠近,当它们接近到某一距离时,静电吸引与静电排斥就会达到平衡,Na+和 Cl-
1/3
【讲述】我们就来讨论:1. Na+和 Cl-是怎么形成的? 2. Na+和 Cl-是怎么强烈相互作用的? 这两个问题弄清楚了,什么是离子键也就清楚了。 【提问】Na 和 Cl 的结构是否稳定?怎样才能变成稳定结构?(提示:从电子得失倾向考虑) 【展示】活动教具:2. Na+和 Cl-的原子结构示意图。
1.定义(强调“强烈”二字) 【讲述】这里要指出的是:水气化也要加热,常压下,达到 100℃才课沸腾。可见水分子之 间也有相互作用,但这种相互作用比起水分子中氢氧原子的相互作用要小得多(不够强烈), 不能称为化学键。 (为以后分子间力学习埋下伏笔) 化学键形成后,原子都达到稳定结构,原子间又存在着强烈的相互作用,上述 H2O、H2 的原 子间都存在强烈得相互作用。是否所有的原子间的相互作用是相同的呢? 【提问】构成物质的微粒有哪些?(分子、原子、离子) 【讲述】对于由离子构成的物质而言,化学键存在于离子和离子之间,这种离子间的相互 作用同样是强烈的,这种化学键称之为离子键。对于其他离子构成的物质而言,还有共价 键,金属键等,我们以后将陆续学习到。
【讲述】当这些吸引与排斥作用达到平衡时,这两种离子就会保持一定的距离(核艰间距),
这就叫对立与统一,这种静电作用属于强烈的相互作用的一种形式,我们说这时候的 Na+和
Cl-就形成了化学键。
【提问】你能以 NaCl 为例,给离子键下一个定义吗?
【提示】给概念下定义,一定要抓住某些关键的特征,离子键是化学键的一种。这个概念
【小结】本节课重点在于了解化学键的概念,离解离子键的概念、本质、成键微粒、成键
条件,学会用电子式表示离子化合物的形成过程。
【板书】 活泼金属原子 得电子
活泼非金属原子 失电子
阳离子 阴离子
静电作用 离子键
离子化合物
3/3
4.成键条件:活泼的金属原子(如 Na、K、Ca 等)与活泼的非金属原子(如 F、Br
等)
【讲述】①强碱中,某些金属离子与 OH-之间也能形成离子键(如 NaOH 等)②某些金属离
子与含氧酸根离子之间也存在离子键(如 Na2CO3、KNO3 等)
【巩固练习 4】用电子式表示 CaO 与 Na2O 的形成过程。
【板书】 2.化学键的分类
离子键 共价键
【实验录象】物质的导电性实验(干燥的氯化钠晶体、熔融的氯化钠) 【提问】我们看到:石墨插入熔融氯化钠时灯泡亮了,而插入干燥氯化钠晶体时灯泡不亮。 这给我们提供了两点事实:1. 熔融的氯化钠能导电;2. 氯化钠在熔融时才导电。从这两 点事实,大家可以的出身么结论? 【学生讨论,经启发后小结】第一个事实,氯化钠能导电,说明熔融的氯化钠中有带电的 粒子,根据氯化钠的组成,带电的粒子只能是 Na+和 Cl-,第二个事实,氯化钠晶体受到强 热熔融后才离解而导电,说明常温时 Na+和 Cl-之间有强烈的相互作用。
相关文档
最新文档