八年级数学上册《分式》151分式-第1课时教学设计(定稿).doc

合集下载

最新人教版八年级数学上册《15.3 分式方程(第1课时)》优质教学课件

最新人教版八年级数学上册《15.3 分式方程(第1课时)》优质教学课件
基本思路:将分式方程化为整式方程.
一般步骤:
(1)去分母;(2)解整式方程;(3)检验.
注意:由于去分母后解得的整式方程的解不一定是原分式方程的
解,所以需要检验.
巩固练习
指出下列方程中各分母的最简分母,并写出去分母后得
到的整式方程.
1
2


2x
x 3
2
4
2

x 1
x 1
解:①最简公分母2x(x+3),去分母得x+3=4x;

=
+1
2x
x+ 3 x - 5
x - 25
x+1 3 x+3
与上面的方程有什么共同特征?
分母中都含有未知数.

探究新知
分式方程的概念:
分母中含有未知数的方程叫做分式方程.
分式方程的特征:分母中含有未知数.
追问2:你能再写出几个分式方程吗?
注意:我们以前学习的方程都是整式方程,它们
的未知数不在分母中.


A)
D.x=–3
= 解为x=4,则常数a的值为
( D )
A.a=1
B.a=2
C.a=4
D.a=10
课堂检测
基础巩固题
1.若关于x的分式方程
(B
A.5
C.3


= 的解为x=2,则m的值为

B.4
D.2
课堂检测

2.方程

A.x=–1
C.x=


=

+
的解为( D )
解得x=–3,
经检验:x=–3是原方程的根.

人教版数学八年级上册15.1.1《从分数到分式》教学设计2

人教版数学八年级上册15.1.1《从分数到分式》教学设计2

人教版数学八年级上册15.1.1《从分数到分式》教学设计2一. 教材分析《从分数到分式》是人民教育出版社八年级上册数学教材第15章第1节的内容。

本节课主要介绍了分数与分式的关系,分式的概念以及分式的基本性质。

通过本节课的学习,学生能够理解分数与分式的联系,掌握分式的概念和基本性质,为后续的分式运算打下基础。

二. 学情分析学生在七年级时已经学习了分数的概念和运算,对分数有一定的认识和理解。

但是,对于分数与分式的关系,以及分式的本质还需要进一步引导和启发。

此外,学生对于抽象的数学概念的理解能力还在发展中,需要通过具体实例和操作活动来帮助他们建立概念。

三. 教学目标1.知识与技能:学生能够理解分数与分式的关系,掌握分式的概念和基本性质。

2.过程与方法:学生通过观察、操作、思考等活动,培养逻辑思维能力和抽象思维能力。

3.情感态度与价值观:学生能够体验到数学与实际生活的联系,增强对数学的兴趣和自信心。

四. 教学重难点1.重点:分数与分式的关系,分式的概念和基本性质。

2.难点:分式的本质理解,分式与分数的转化。

五. 教学方法1.情境教学法:通过生活实例引入分数与分式的概念,让学生感受到数学与实际生活的联系。

2.启发式教学法:通过提问、讨论等方式,引导学生主动思考和探索,培养学生的逻辑思维能力。

3.操作活动法:通过实际操作和实践活动,让学生感知和体验分式的概念和性质。

六. 教学准备1.教学PPT:制作教学PPT,包括分数与分式的图片、实例、问题等。

2.教学素材:准备一些分数和分式的实际例子,如物品分配、价格比较等。

3.练习题:准备一些练习题,用于巩固学生的学习成果。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际生活中的例子,如物品分配、价格比较等,引导学生思考和讨论这些例子与分数的关系。

通过讨论,引入分数与分式的概念。

2.呈现(15分钟)通过PPT呈现分数与分式的定义和性质,引导学生观察和思考分数与分式的联系。

《分式方程》(第1课时)教案doc初中数学

《分式方程》(第1课时)教案doc初中数学

《分式方程》(第1课时)教案doc 初中数学[教学目标]1.明白分式方程的意义,会解可化为一元一次方程的分式方程.2,了解分式方程产生增根的缘故,会判定所求得的根是否是分式方程的增根.3.会列出方程解决简单的实际咨询题,并能依照实际咨询题的意义检验所得结果是否合理.此外,通过经历〝实际咨询题一建立数学模型(方程)一讲明、应用与拓展〞的过程,体验解决咨询题的差不多策略,进展应用意识和解决咨询题的技能.[教学过程(第一课时)]1.情境创设咨询题是数学的心脏,遵循«标准»关于〝方程是刻画现实世界的一种有效的数学模型〞的理念,同以往一样,我们仍旧从咨询题开始,让学生从实际咨询题数量关系的探究中,发觉一类未知数显现在分母中的新方程——分式方程. 除课本提供的3个实例外,教师能够依照学生的实际情形,补充一些与学生生活相关的实际咨询题,激发学生学习分式方程的爱好.2.探究活动探究活动(一):能够采纳不同的方式,探寻各个实际咨询题中的数量关系.例如:关于情境(一),能够用表格揭示服装加工中的工作总量与工作时刻、个人工作效率之间的数量关系:依照咨询题中的相等关系,得x x 20124=+ 关于情境(二),能够用数位填空的方式表示两位数的构成:原两位数 改变后的两位数因此,可得方程47410104=++⨯x x 关于情境(三),能够用线段示意图表示行程咨询题:由于自行车早动身40min ,但与汽车同时到达,多行驶了40min ,因此可得方程:604031515=-x x 探究活动(二):探究分式方程的解法.仍以咨询题为先导,发动学生研究如何解分式方程?20124xx =+ 学生可能会显现多种思路,例如:其一,分式方程与含有分数系数的一元一次方程〝形似〞,容易想到通过类比提出猜想:解分式方程也应该先去分母(卡通人语).猜想是否正确?实践之,检验之.要强调检验的必要性,通过检验能初步讲明猜想的正确性.然后告诉学生,解分式方程的一样方法是先去分母,把不熟悉的方程转化为熟悉的方程来解决.其二,移项进行减法运算,化简,得0)1(204=+-x x x 由分式的值为0的概念,得4x —20=0,从而得解x=5.正确否?可代人检验. 其三,利用分式的差不多性质,使方程两边的分式的分子为它们的最小公倍数,如xx 612055120=+,由分式相等的概念,得5x+5=6x ,从而得x=5. 应注意的是,假如学生提出后两种解决咨询题的思路,教师那么要在给予充分确信后,引导学生连续探讨,得出解分式方程的一样方法;假如没有学生提出,那么不必刻意追求,幸免干扰本课主题——分式方程的一样解法.3.例题教学例1给出了解分式方程的一样过程及完整的书写格式,假设有必要,教师可增补例题,让学生学会求解并规范表述.。

八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时

八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时
ab2
= 5a2b 3 3a2b 5 8 a2b ab2
= a2b ab2
=
a b
把分子看作一 个整体,先用 括号括起来!
注意:结果要化 为最简分式!
八年级上册第15章分式
1.直接说出运算结果
(1) m x

y x

c x

m y x
c
(2)
m 2abc

n 2bca

d 2cab
八年级上册第15章分式
3.猜一猜, 同分母的分式应该如何加减? 【同分母的分数加减法的法则】 同分母的分数相加减,
分母不变,把分子相加 减. 【同分母的分式加减法的法则】 同分母的分式相加减, 分母不变,把分子相加减. 即: a b a b cc c
八年级上册第15章分式
例1 计算:
xy
八年级上册第15章分式
( 2)
1 2 a 1 1 a2
解:原式

1 2 a 1 a2 1
1
2
a 1 (a 1)(a 1)
a 1
2
(a 1)(a 1) (a 1)(a 1)
a 1 (a 1)(a 1)
1 a1
八年级上册第15章分式
例2 计算 (1) 解:原式
八年级上册第15章分式
(2)a22a
4

a
1
2
a2 -4 能分解 :
解:原式

(a

2a 2)(a

2)

(a

a2 2)(a
2)

2a (a 2) (a 2)(a 2)

2a a 2 (a 2)(a 2)

人教版八年级数学上册15.1.1《从分数到分式》教学设计

人教版八年级数学上册15.1.1《从分数到分式》教学设计

人教版八年级数学上册15.1.1《从分数到分式》教学设计一. 教材分析人教版八年级数学上册15.1.1《从分数到分式》是分式单元的第一节内容,主要介绍了分数与分式的关系,分式的概念以及分式的基本性质。

本节内容是学生学习更高级数学的基础,对于学生理解数学的抽象概念具有重要意义。

二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除运算也已经熟练掌握。

但是,学生对于分数背后的数学原理可能理解不够深入,对于数学的抽象概念还处于逐步理解的过程中。

三. 教学目标1.了解分数与分式的关系,理解分式的概念。

2.掌握分式的基本性质,能够进行简单的分式运算。

3.培养学生的抽象思维能力,提高学生解决问题的能力。

四. 教学重难点1.分式概念的理解。

2.分式基本性质的掌握。

3.分式运算的熟练运用。

五. 教学方法采用问题驱动法,通过引导学生思考分数与分式的关系,激发学生的学习兴趣,培养学生独立思考的能力。

同时,运用案例分析法,通过具体的例子让学生理解分式的概念和性质。

六. 教学准备1.准备相关的分数和分式的案例。

2.准备分式运算的练习题。

3.准备PPT,用于辅助教学。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的知识,激发学生的学习兴趣。

例如:“你们知道分数是什么吗?分数有什么特点?”2.呈现(10分钟)通过PPT展示分数与分式的关系,引导学生思考并总结出分式的概念。

例如:“分数可以表示一个数与另一个数的比,那么分式可以表示什么呢?”3.操练(10分钟)让学生通过PPT上的例子,练习分式的基本性质。

例如:“请同学们观察这个例子,分式的分子和分母同时乘以一个数,分式的值会发生什么变化?”4.巩固(10分钟)让学生进行分式运算的练习,巩固所学知识。

例如:“请同学们完成这个分式的运算,并解释你的思路。

”5.拓展(10分钟)引导学生思考分式在实际生活中的应用,拓展学生的知识视野。

例如:“你们能想到分式在实际生活中有哪些应用吗?”6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习重点。

2022年人教版八年级数学上册第十五章分式教案 分式方程(第1课时)

2022年人教版八年级数学上册第十五章分式教案  分式方程(第1课时)

第十五章分式15.3 分式方程第1课时一、教学目标【知识与技能】1.理解分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用;2.知道分式方程的意义,会解可化为一元一次方程的分式方程.3. 了解分式方程产生增根的原因,掌握解分式方程验根的方法.【过程与方法】经历“实际问题—分式方程模型”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.【情感、态度与价值观】1.在探索活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.2. 通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】1. 正确、完整地解可化为一元一次方程的分式方程.2.探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤.【教学难点】产生增根的原因.五、课前准备教师:课件、直尺等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课一艘轮船在静水中的最大航速为20 km/h,它沿江以最大航速顺流航行100 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少? (出示课件2)解:设江水的流速为v km/h,根据题意,得100 20+v =60 20−v这样的方程与以前学过的方程一样吗?(二)探索新知1.创设情境,探究分式方程的概念教师问1:为要解决导入中的问题,我们得到了方程10020+v =6020−v,仔细观察这个方程,未知数的位置有什么特点?(出示课件4)教师问2:方程与上面的方程有什么共同特征?教师问3:上面所得到的方程是我们以前学过的方程吗?学生回答:不是.教师问4:以前我们学过什么方程?试举例说明.学生回答:以前学过一元一次方程和二元一次方程,如x-1=3,x+y=7等.教师问5:仔细观察这两个方程,未知数的位置有什么特点?学生回答:分母中都含有未知数.教师问6:像这种,分母中含有未知数的方程叫做分式方程.,你能再写出几个分式方程吗?学生思考后,找学生回答。

八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计 (新版)新人教版

八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计 (新版)新人教版

八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计(新版)新人教版一. 教材分析《八年级数学上册》第15.1节主要介绍分式的概念。

通过这一节的学习,学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。

本节内容是整个分式部分的基础,对于学生来说具有重要的意义。

二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除等运算也有一定的了解。

但是,学生对于分数与分式的区别和联系可能还不是很清楚,对于分式的运算也可能会感到困惑。

因此,在教学过程中,需要引导学生理解分数与分式的关系,并通过具体的例子让学生掌握分式的运算方法。

三. 教学目标1.知识与技能:学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。

2.过程与方法:学生通过观察、思考、操作等活动,培养自己的观察能力、思维能力和动手能力。

3.情感态度与价值观:学生能够积极参与课堂活动,对数学产生兴趣,培养自己的抽象思维能力。

四. 教学重难点1.重点:分数与分式的联系,分式的基本性质,分式的运算方法。

2.难点:分式的运算规律,分式方程的解法。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题引导学生思考,通过具体的案例让学生理解分式的概念和运算方法,通过小组合作让学生互相交流和探讨,提高学生的学习效果。

六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解分式的概念和运算方法。

2.教学案例:准备一些具体的案例,让学生通过观察和操作来理解分式的运算方法。

3.练习题:准备一些练习题,让学生在课堂上进行练习,巩固所学知识。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的基本知识,如分数的定义、分数的加减乘除等。

然后引导学生思考分数与分式的关系,引出分式的概念。

2.呈现(15分钟)利用教学课件呈现分式的定义和基本性质,让学生直观地理解分式的概念。

新人教版初中数学八年级上册《第十五章分式:15.1.1从分数到分式》优质课获奖教案_0

新人教版初中数学八年级上册《第十五章分式:15.1.1从分数到分式》优质课获奖教案_0

从分数到分式教学设计一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂讲解回顾与思考:1.下列两个整数相除如何表示成分数的形式:3÷4= , 10 ÷ 3= ,2、在代数式中,整式的除法也可以类似地表示。

试用用类似分数的形式表示下列整式的除法:(1) 90÷x 可以用式来表示。

(2)60÷(x-6)可以用式子来表示新课引入:引例11.长方形的面积为10cm²,长为7cm,宽应为____cm;长方形的面积为S,长为a,宽应为______.引例22.把体积为200cm ³的水倒入底面积为33cm ²的圆柱形容器中,水面高度为____cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为______.想一想有什么相同点?不同点?相同点都是(即A÷B )的形式不同点分数的分子A 与分母B 都是整数分式的分子A 与分母B 都是整式, 并且分母 B 中含有字母、a S 、S V 与a133200引入新知:一般地,如果A, B 表示两个整式,并且B 中含有字母,那么式子就叫做分式.判断:下面的式子哪些是分式?类比 分数 来 学习 分式 1、分数,有意义吗?2、分式成立有条件吗?有什么条件?3、计算a =-1, a =2时,分式值分别是多少? 讨论我们知道:除数不能为0,那么分式中的分母应满足什么条件呢?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式才能有意义,否则无意义. 讲解例1:(1)当x 时,分式 有意义;(2)当x 时,分式 有意义;(3)当b 时,分式 有意义; sb -275-x 7232S 5122+x SV 1222-+-x y xy x x 321-x xb351-(4)当x ,y 满足关系 时,分式 有意义.类比 分数 来 学习 分式补充例题:当 x 取什么值时,下列分式的值为零 :解:由分子|x|-2=0,得 x =±2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集体备课:八年级数学上册第十五章《分式》
15. 1•分式第1课时教学设计(定稿)
时间:2017年12月20日地点:赵化中学初二办公室主讲:......... 记录: ........
成员: ......................................................... .
一.教材分析
1.《分式》15.1节的地位和作用:
分式是继整式之后对代数式的进一步研究.15. 1.《分式》内容的学习为今后进一步学习函数和方程等知识起到奠基的作用.《分式》15.1分式的内容分两课时來完成,而第一课时的内容则是分式的起始课,它是在学生学习了整式运算、分解因式的基础上进行的,学好本节课,是今后继续学习分式的性质、分式的运算及解方式方程的前提;其屮对“分式有无意义的讨论”为以后学习反比例函数作了铺垫.且后续的含分式的解答题的正确率一般都较低;分式的涵盖知识点多,技巧性强,是很能考查数学素养的,所以15.1.《分式》内容的学习地位重要.
2.教学目标:
(1) .经历用分式表示现实情境中数量关系的过程,能用分式表示实际问题屮的数量关系.
(2) .经历自主探索、小组合作交流的过程,归纳分式的概念,明确分式与整式的区别.进一步培养学生代数表达能力和有条理地思考问题的能力.
(3) .通过与分数的类比,探究分式有无意义的条件等活动,进一步培养学生运用类比转化的思想解决问题的能力.
(4) .利用实际情境,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心。

3.教学重难点:
教学重点:△式的意义、用分式表示现实情境中的数量关系.
教学难点:分式有无意义条件的讨论.突破重难点的方法是利用丰富多彩的现实情境,让学生充分经历自主探索、小组合作交流的过程,主动地获取知识.
二.教法分析:
根据本节课的教学目标、教材内容以及学生的认知特点,采用启发式、探究式的教学方法.意在帮助学生通过自主探索、合作交流的活动,主动地获取知识,并通过类比、归纳、概扌舌等途径来深化对知识的理解.“数学源于生活,用于生活”是整节课的一条暗线,意在让数学课堂“活”起来,以培养学生的应用意识,体会数学的价值.
三•教学过程设计及意图
(一)•创设情境,导入新课
⑴.小刚从家到学校有2500米,如果小明骑车每小吋走加米,则小刚从家到学校要走___________ 小吋. (2) .某服装厂购进一批面料,共用了。

元,已知这批面料共生产了b件上衣,那么这批上衣每件的面
料成本为 ______________ 元.
(3) .三友书店库存一批图书,其屮一种图书的原价是每册加元,现降价兀元销售,当这种图书的库
存全部售出时,其销售额为6元.降价销售开始时,文林书店这种图书的库存量是_______________ 元. (二).自主探究
1 •问题:认真观察上面的式子,它们还是整式吗?教师再补充一些例子:丄,=,[,•••.它们
x-y a+b 3x 有什么共同特点?引导观察:
都有一个分数线(表示除法),分子、分母都是整式;分母中都有含有分母.(可安排小组讨论,)师生共同学习:
A A
整式4除以整式B,可以表示成一的形式,如果除式B中含有分母,那么称一为分式;其中A称为分
B B
式的分子,B称为分式的分母
(五)拓展提升
1. 已知函数y=——的自变量x 的取值范I 韦I 是
师生分析知识本质:①概念理解:分式就是两个整式的商;②概念要点:分式的分母中含有字母.
2.追踪练习:
下列各项那些时整式,那些是分式?
m_3 一 3a 宀 5
①. ------- ;®.——;③. ------------ ;®.
加+ 3 C 广 +1 7T +1 2
ci — 1
;⑤.
%+-;⑥.2a-2a
X
(三)•例题讲解:
(1).当*2, 3吋,分别求出分式二的值;
X — 1
⑵•当兀取何值时,分式士三有意义?
x-1
(3).当
X 取何值时,分式二的值为0?
x-1 归纳:
A
⑴•分式1有意义的条件:分母 __________ 零,即B
B A
⑵•分式匚无意义的条件:分母___________ 零,即B
B
0 0分式二有意义;
B A
0 U >分式W 无意义;
A
⑶.分式一的值等于零的条件:分子的值 ________ 零,分母的值 _________ 零,即A
B 0,
A
O 分式矿° (四)•应用
1. 下列各式屮,哪些是整式?哪些是分式?
3 1 ①• 2m — 1 ;②. ---- ;③. ;④.
a-1
71 A
2. 设A 、B 都是整式,若方表示分式, A. A 、3屮都必须含有字母 C. B 中都必须含有字母
3. 当兀取什么值时,下列分式有意义?
3
(2). ----- ;
;⑤厶⑥.口;⑦•丝耳
a 3 a-1
B. 4屮必须含有字母
D. A 、3中都不必须含有字母
(1),
2x-3
x-2 ⑶,
PH :
(无一 3)~
4.当兀
时, 5.当兀取什么值时,
2—x
(1). ----- ;
x —5
3
分式L 厂无意义;
l —2x
下列分式的值为o?
(2). —;
4-x
当兀
时, 分式
x 2-l
(3). -- --------
x —2x~ 3
1-X
A. x>l D ・ x<l
rr^ —1
2>要使分式 一有意义,加的取值范围是
()
m +/
A. m = —1
Be m — 1
C. m — ±1
D.任意实数
x 2
—4
3•当兀 _______ 时,分式——的值为0.
x~2
4. 把甲、乙两种饮料按质量比x 、y 混合在一起,可以调制成一种混合饮料.调制1千克这种混合饮料 需多
少甲种饮料?
5. —水果店购进一箱橘子需要d 元,已知橘子与箱子的总质量为mkg ,箱子的质量为卅畑,为了不 亏本,
这箱橘子的零售价至少应定为多少元/千克?
6. 已知分式空二纟,当兀=_3吋,分式无意义;当x = -l 吋,分式的值为0,请求出/+方2的值。

x+h
J C — 2x + /
亠 兀一 2
7.当为何值时,分式 ------ 的值为负数?
变式:二 -------- 呢?
兀一 2
x —2兀+3
(六)课堂测评
1.下列是分式的是
()
、1
“ m
c a + b
A.——
B. — + n
C. --
D. ------
2兀
2
兀+1
3
2.
使分式有意义
的条件 ()
x 2-/
A. 7
B. x^-1
C.兀或兀工一/
D. x 可以取任何实数
3. 下列代数式:①.巴二』;②.
m + 3 /+/
⑦.一厶.中,在字母取任何值的情况下都有意义的代数式个数为
()
A.2
B. 3
C.4
D. 5
4. ___________ 当兀 时,分式有意义.
1—X
5. ___________ 当兀 时,分式上一无意义.
1-x
6. ___________ 当兀 时,分式值为0.
2x-l
X
2
-4
7. ___________ 当兀 时,分式一 值为0.
x+2
(七)自我小结
谈一谈,你这一节课有哪些收获?你还有什么疑惑吗?(学生回答,教师补充强调)・ 四•布置作业:1.
教材同步习题;2.补充(待定).
B. x —I
•右④•沽⑤用
-2;⑥・(兀-2)°;
五•教学反思
1. ..... ;
2. ........ ;
3. ...... ;
4. ......... ・
六•板书设计
郑宗平2017. 1.5 整理。

相关文档
最新文档