一次,二次函数
一次函数与二次函数

(1)注意k≠0这一条件,当k=0时,函数为y=b,它不再
是一次函数,其函数图象是平行于x轴或与x轴重合的一条
直线.
(2)b为任意的常数.特别地,当b=0时,函数y=kx(k≠0) 为正比例函数.
[例1] 已知函数y=(2m-1)x+1-3m,试求m为何值时,
(1)这个函数为正比例函数;
(2)这个函数为一次函数;
开口向下.
二次函数 f(x)= ax2+ bx+ c(a≠0)的图象是一条抛物线, 对称
3.二次函数的单调性及最值 (1)当 a>0
b 递减 时,函数在-∞,-2a上______,
4ac-b =________. 4a
b 递增 ,并且当 在 -2a,+∞ 上 ______ 2
[例3] (12分)已知f(x)为一次函数且满足4f(1-x)-2f(x-1)
=3x+18,求函数f(x)在[-1,1]上的最大值,并比较f(2 012)和
f(2 013)的大小.
[思路点拨] 首先用待定系数法求解析式,再研究其性质.
[精解详析] 由已知可得.
设 f(x)=kx+b(k≠0).
x x 解析:由 y1>y2,得不等式 +2> +3,解得 x>6. 2 3 ∴当 x∈(6,+∞)时,y1>y2.
答案:(6,+∞)
6.已知一次函数y=(a+1)xa
2- 3
+b是奇函数,且在定义
域R内单调递减,求a,b的值. 解:因为函数是一次函数,所以a2-3=1,解得a=±2. 又一次函数是减函数,所以a+1<0,即a=-2.
4=-3k+b, 则 2=-k+b, k=-1, 解得 b=1.
∴一次函数解析式为 y=-x+1. 其图象如图.
高中数学复习 一次函数、二次函数、指数函数、对数函数

一次函数、二次函数、指数函数、对数函数一、一次函数函数(0)y ax b a =+≠叫做一次函数,当a>0时,该函数是增函数,当a<0时,该函数是减函数。
由于函数是单调函数,故其在闭区间上的最大、小值一定在端点取得。
故若函数f(x)=ax+b 在[,]x p q ∈时恒为正(负),则在p 、q 处的函数值满足:f(p)、f(q)恒为正(负);若函数f(x)=ax+b 在[,]x p q ∈上与x 轴有交点,则在p 、q 出的函数值满足f(p)、f(q)一正一负。
二、二次函数1、 一元二次函数的定义:形如2(0)y ax bx c a =++≠的函数叫做一元二次函数。
2、二次函数的三种表示形式:(1) 一般式:2(0)y ax bx c a =++≠ (2) 顶点式: 2()y a x k h =++ (3) 零点式: 12()()y a x x x x h =+++ 3、 一元二次函数2()(0)f x ax bx c a =++≠的性质(1) 定义域为R ,当a>0时,值域为 244(,)a c ba-+∞; 当a<0是,值域为 244(,)a c ba--∞ (2) 图像为抛物线,其对称轴方程为2b a -,顶点为:2424(,)b ac ba a --;(3) 当a>0时,开口向上,当a<0时,开口向下; (4) 当a>0时,在区间 上是增函数,在区间 上是减函数,当a<0时,在区间 上是增函数,在区间 上是减函数(5) 当 时,该函数是偶函数,当 时,该函数是非奇非偶函数。
4、 一元二次函数2()(0)f x ax bx c a =++≠在闭区间[p,q](p<q )上的最值问题(以a>0为例)(1)若2b a q ≤-, 则该函数的最大值为 最小值为 (2)若22p q b a q +≤- , 则该函数的最大值为 最小值为(3)若22p q b a p +≤-,则该函数的最大值为 最小值为(4)若2b a p - , 则该函数的最大值为 最小值为 解决这种问题不能死记,应利用数形结合的方法来记忆,也就是抓住“三点一轴”(三点是指区间的端点和区间的中点,一轴是指对称轴。
一次函数 二次函数

一次函数与二次函数一次函数和二次函数是初等数学中最基本的函数类型,它们在现实生活中有着广泛的应用。
本文将对一次函数和二次函数的定义、性质、图像以及应用进行详细的介绍。
一、一次函数1. 定义:一次函数是指形如y = ax + b(a≠0)的函数,其中a和b为常数,x为自变量,y为因变量。
一次函数又称为线性函数。
2. 性质:(1)一次函数的图像是一条直线,且斜率为a,截距为b。
(2)当a>0时,一次函数的图像从左到右呈上升趋势;当a<0时,一次函数的图像从左到右呈下降趋势。
(3)当a>0且b>0时,一次函数的图像在第一象限;当a>0且b<0时,一次函数的图像在第四象限;当a<0且b>0时,一次函数的图像在第二象限;当a<0且b<0时,一次函数的图像在第三象限。
3. 图像:一次函数的图像是一条直线,其斜率和截距可以通过公式y = ax + b计算得出。
4. 应用:一次函数在实际生活中有很多应用,例如速度与时间的关系、距离与时间的关系、价格与数量的关系等。
二、二次函数1. 定义:二次函数是指形如y = ax² + bx + c(a≠0)的函数,其中a、b、c为常数,x为自变量,y为因变量。
二次函数又称为抛物线函数。
2. 性质:(1)二次函数的图像是一个抛物线,其顶点坐标为(-b/2a, f(-b/2a)),对称轴为x = -b/2a。
(2)当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
(3)当Δ= b² - 4ac > 0时,二次函数有两个不相等的实根;当Δ= b² - 4ac = 0时,二次函数有两个相等的实根;当Δ= b² - 4ac < 0时,二次函数没有实根。
3. 图像:二次函数的图像是一个抛物线,其顶点坐标、对称轴和判别式可以通过公式y = ax² + bx + c计算得出。
一次函数及二次函数

一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
一次函数、二次函数、函数的零点

一次函数、二次函数、函数的零点(一)基本知识回顾及应用举例1. 一次函数.当时,叫做正比例函数,其图象是直线.当时,直线上升,函数为增函数;当时,直线下降,函数为减函数2. 二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式3. 二次函数的图象是抛物线.当时,抛物线开口向上;当时,抛物线开口向下.抛物线的顶点坐标为,对称轴方程为.抛物线与轴的交点的横坐标是方程的根,它在轴上截得的线段的长为=.4. 二次方程实根的分布情况,常常根据二次函数的图象与轴的交点的位置来确定.当二次方程在区间内只有一个实根时,有,或;有两个不等实根时,有;在两个区间各有一个实根即时,,.5. 二次函数与一元二次不等式有紧密的联系.图1 图2 图36. 函数零点的概念:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x ∈D)的零点。
函数零点的意义:函数y=f(x)的零点就是方程f(x)=0的实数根,亦即函数y=f(x)的图象与x 轴交点的横坐标。
即方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点。
例:问:二次函数f(x)=ax2+bx+c(a≠0)在什么条件下有两个零点?一个零点?没有零点?7. 例:观察下面函数f(x)=0的图象(如图4)。
图4①在区间[a,b]上______(有/无)零点;f(a)·f(b)_____0(<或>=。
②在区间[b,c]上______(有/无)零点;f(b)·f(c)_____0(<或>=。
③在区间[c,d]上______(有/无)零点;f(c)·f(d)_____0(<或>=。
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
一次函数和二次函数

一次函数和二次函数一次函数一次函数是一种函数,它的自变量和因变量之间的关系是一个线性关系。
这种函数的特点是,它的图像是一条直线,且斜率不变,斜率也可以理解为函数的变化率。
一次函数的公式为y=ax+b,a是斜率,b是函数的截距,给定a和b的值可以求出x和y的值,也可以反过来求出a和b的值。
一次函数有许多特殊的应用,包括水平线、电力线、经济学中的折线图等。
水平线是一次函数应用最为广泛的情况,它可以帮助我们在计算机中实现垂直线的绘制,以满足特定的功能需求。
在电力线中,一次函数可以用来表示电力线的电压和电流之间的关系,它可以帮助我们更好地控制电力线的运行状态。
在经济学中,一次函数可以用来表示投入产出曲线的变化规律,从而分析经济的发展趋势。
二次函数二次函数是一种函数,它的自变量和因变量之间的关系是一个二次方的关系。
它的图像是一条弧线,且斜率会变化,斜率的变化率可以理解为二次函数的变化率。
二次函数的公式为y=ax2+bx+c,a是斜率变化率,b是斜率,c是函数的截距,给定a、b和c的值可以求出x和y的值,也可以反过来求出a、b和c的值。
二次函数在实际应用中也有许多,包括空气阻力、压力曲线、经济学中的均衡分析等等。
空气阻力是一种二次函数应用最为广泛的情况,它可以帮助我们分析飞行物体在空气阻力作用下的行为,以满足特定的功能需求。
在压力曲线中,二次函数可以用来表示液体在受力作用下的压力变化,它可以帮助我们更好地控制液体的压力。
在经济学中,二次函数可以用来表示均衡分析的变化规律,从而分析经济的发展趋势。
总之,一次函数和二次函数是数学中的重要概念,它们的应用也极其广泛,从水平线到压力曲线,从经济学中的折线图到均衡分析,它们都起着重要的作用。
一次函数与二次函数

一次函数、二次函数1. 一次函数、二次函数的定义⑴一般地,如果)0,,(≠+=k b k b kx y 为常数,那么y 就叫做x 的一次函数。
其中k 是一次项的系数,b 是图象与y 轴交点的纵坐标,叫做直线在y 轴上的截距。
特别地,当0=b 时,一次函数就变成了正比例函数)0,(≠=k k kx y 为常数。
⑵函数)0(2≠++=a c bx ax y 叫二次函数,它的定义域是R 。
c bx ax y 2++=(a ≠0)是二次函数的一般形式,另外还有顶点式:)0()(2≠+-=a k h x a y ,其中),(k h 是抛物线顶点的坐标。
两根式:)0)()((21≠--=a x x x x a y ,其中21x ,x 是抛物线与x 轴交点的横坐标。
2. 一次函数与二次函数的图象和性质⑴一次函数)为常数0,,(≠+=k b k b kx y 的图象与性质⑵ 二次函数的图象是一条抛物线,经过配方,可得到c bx ax y ++=2a b ac a b x a 44)2(22-++=,顶点为)44,2(2ab ac a b --,对称轴为直线bx -=,其图象及主要性质如下表:知识点一:用待定系数法求函数的解析式:待定系数法是一种求未知数的方法。
一般用法是:将一个多项式表示成另一种含有待定系数的新的形式,从而得到一个恒等式,然后根据恒等式的性质得出系数应满足的方程或方程组,最后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式。
k≠),当x=4时,y的值为9;当x=2例1. 已知一次函数y=kx+b(k,b为常数,0时,y的值为-3;求这个函数的关系式。
2已知一个二次函数的图象经过点(0,1),它的顶点坐标为(8,9),求这个二次函数的关系式。
3抛物线的图象经过(0,0)与(12,0)两点,其顶点的纵坐标是3,求它的函数关系式。
知识点二:二次函数的性质及应用例4 求函数322++-=x x y 的顶点坐标,对称轴及函数的单调区间。
1一次和二次函数 - 简单难度 - 讲义

一次与二次函数知识讲解一、一次函数概念:形如(0)y kx b k =+≠的函数叫做一次函数.(一次函数又叫做线性函数) 它的定义域为R ,值域为R .斜率:一次函数(0)y kx b k =+≠的图象是直线,其中k 叫做该直线的斜率.截距:一次函数(0)y kx b k =+≠的图象是直线,其中b 叫做直线在y 轴上的截距.注:截距不是距离,截距可以是正的,可以是负的,也可以是0.性质:(1)函数值的改变量21y y y ∆=-与自变量的该变量21x x x ∆=-的比值等于常数k ,即2121y y y k x x x -∆==∆-,k 的大小表示直线与x 轴的倾斜程度. (2)当0k >时,一次函数是增函数;当0k <时,一次函数是减函数.(3)当0b =时,一次函数变为正比例函数,是奇函数;当0b ≠时,它既不是奇函数,也不是偶函数.(4)直线(0)y kx b k =+≠与x 轴的交点为(,0)b k-,与y 轴的交点为(0,)b . (5)直线111:l y k x b =+,直线222:l y k x b =+,①1l //2l 12k k ⇔=且12b b ≠.②1l 与2l 重合12k k ⇔=且12b b =.二、二次函数1.概念:形如2(0)y ax bx c a =++≠叫做二次函数.2.定义域:它的定义域为R .3.值域:当0a >时,值域为24|4ac b y y a ⎧⎫-≥⎨⎬⎩⎭; 当0a <时,值域为24|4ac b y y a ⎧⎫-≤⎨⎬⎩⎭ 4.解析式4种形式一般式:2(0)y ax bx c a =++≠,对称轴2b x a -=,顶点24(,)24b ac b a a -- 顶点式:2()(0)y a x h k a =-+≠,对称轴x h =,顶点(,)h k交点式:12()()(0)y a x x x x a =--≠,抛物线与x 轴交于1(,0)x ,2(,0)x对称点式:12()()y a x x x x b =--+,抛物线图象上有两对称点 12(,),(,)x b x b注意:①二次函数的一般式可通过配方得到顶点式.②在求二次函数的解析式时,应根据已知条件,合理设式.已知三点坐标,若有对称点(两点的纵坐标相同),则设对称点式;若没有,则设一般式. 已知对称轴或顶点坐标,应设顶点式.5.性质性质1:顶点坐标24(,)24b ac b a a--,对称轴2b x a -=,与y 轴交于(0,)c ; 性质2:当0a >时,开口向上,当2b x a -=时,2min 4()24b ac b y f a a--==; 单调递增区间是,2b a -⎡⎫+∞⎪⎢⎣⎭,单调递减区间为,2b a -⎛⎤-∞ ⎥⎝⎦性质3:当0a <时,开口向下,当2b x a -=时,2max 4()24b ac b y f a a--==;单调递增区间是,2b a -⎛⎤-∞ ⎥⎝⎦,单调递减区间为,2b a -⎡⎫+∞⎪⎢⎣⎭. 性质4:二次函数2(0)y ax bx c a =++≠是偶函数⇔0b =6.函数图象的平移:左加右减,上加下减(1)()y f x =(0)a a >−−−−−−−→向左平移个单位()y f x a =+;(2)()y f x =(0)a a >−−−−−−−→向右平移个单位()y f x a =-;(3)()y f x =(0)b >−−−−−−−→向上平移b 个单位()+y f x b =;(4)()y f x =(0)b >−−−−−−−→向下平移b 个单位()y f x b =-;注意:左右平移只是针对单个x 而言.7.配方法(1)提,提系数将平方项的系数化为1;(2)配,加上一次项系数的一半的平方,再减去一次项系数的一半的平方;(3)整理.注意:“配方法”是研究二次函数的主要方法.熟练地掌握配方法是掌握二次函数性质的关键. 8.韦达定理:设一元二次方程20ax bx c ++=的两根为12,x x ,则1212,b c x x x x a a-+== 9.中点坐标公式: 设11(,)A x y ,22(,)B x y ,AB 中点00(,)M x y ,则0120122,2x x x y y y =+=+10.交点距离公式:若二次函数2(0)y ax bx c a =++≠与x 轴交于12(,0),(,0)A x B x ,则12AB x x =-=(其中24b ac ∆=-) 三、待定系数法1.什么是待定系数法?一般地,在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写为一般形式,其中系数待定,然后再跟据题设条件求出这些待定系数.这种通过求待定系数来确定变量之间关系式的方法叫做待定系数法.2.待定系数法解题的基本步骤是什么?第一步:设出含有待定系数的解析式;第二步:根据恒等的条件,列出含待定系数的方程或方程组;第三步:解方程或方程组,从而使问题得到解决.经典例题一.选择题(共17小题)1.(2016秋•东莞市校级期末)函数f(x)=﹣2x+1(x∈[﹣2,2])的最小、最大值分别为()A.3,5 B.﹣3,5 C.1,5 D.5,﹣3【解答】解:因为f(x)=﹣2x+1(x∈[﹣2,2])是单调递减函数,所以当x=2时,函数的最小值为﹣3.当x=﹣2时,函数的最大值为5.故选:B.2.(2017秋•梁子湖区校级月考)若一次函数y=mx+b在(﹣∞,+∞)上是增函数,则有()A.b>0 B.b<0 C.m>0 D.m<0【解答】解:∵一次函数y=mx+b在(﹣∞,+∞)上是增函数,∴一次项系数m>0,故选:C.3.(2016秋•南开区期末)一次函数y=﹣x+的图象同时经过第一、二、四象限的必要不充分条件是()A.mn>0 B.m>1,且n>1 C.m>0,且n<0 D.m>0,且n>0【解答】解:若一次函数y=﹣x+的图象同时经过第一、二、四象限,则﹣<0,>0,即m>0,且n>0,mn>0⇔m>0,且n>0,或m<0,且n<0,故mn>0是一次函数y=﹣x+的图象同时经过第一、二、四象限的必要不充分条件,故选:A.4.(2017秋•凉州区校级期末)若ac<0,bc<0,则直线ax+by+c=0的图形只能是()A.B.C.D.【解答】解:由题意知,函数的解析式即y=﹣x﹣,∵ac<0,bc<0,∴a•b >0,∴﹣<0,﹣>0,故直线的斜率小于0,在y轴上的截距大于0,故选:C.5.(2017秋•昌平区校级期末)函数y=x2﹣2x的单调递增区间是()A.(1,+∞)B.(﹣1,+∞)C.(﹣∞,1)D.(0,2)【解答】解:∵二次函数y=x2﹣2x=(x﹣1)2﹣1 的对称轴为x=1,它的图象是开口向上的抛物线,故函数的增区间为(1,+∞),故选:A.6.(2017秋•莲湖区校级期末)函数y=x2+2x﹣1在[0,3]上最小值为()A.0 B.﹣4 C.﹣1 D.﹣2【解答】解:y=x2+2x﹣1=(x+1)2﹣2,其图象对称轴为x=﹣1,开口向上,函数在区间[0,3]上单调递增,所以当x=0时函数取得最小值为﹣1.故选:C.7.(2017秋•黔南州期末)函数f(x)=x2﹣2x+2在区间(0,4]的值域为()A.(2,10] B.[1,10] C.(1,10] D.[2,10]【解答】解:函数f(x)=x2﹣2x+2的图象是开口朝上,且以直线x=1为对称轴的抛物线,故函数f(x)=x2﹣2x+2在区间(0,1]为减函数,在[1,4]上为增函数,故当x=1时,函数f(x)取最小值1;当x=4时,函数f(x)取最大值10;故函数f(x)=x2﹣2x+2在区间(0,4]的值域为[1,10],故选:B.8.(2017秋•新罗区校级期中)若函数f(x)=(m﹣1)x2+2mx+3是偶函数,则y=f(x)的单调递减区间是()A.(﹣∞,1]B.[﹣1,+∞)C.(﹣∞,0]D.[0,+∞)【解答】解:函数f(x)=(m﹣1)x2+2mx+3是偶函数,则对称轴为y轴,即有m=0,f(x)=﹣x2+3,函数的对称轴为x=0,开口向下,y=f(x)的单调递减区间是:[0,+∞).故选:D.9.(2017秋•长安区校级期末)若函数f(x)=x2﹣ax﹣3在区间(﹣∞,4]上单调递减,则实数a满足的条件是()A.[8,+∞)B.(﹣∞,8]C.[4,+∞)D.[﹣4,+∞)【解答】解:∵f(x)=x2﹣ax﹣3在区间(﹣∞,4]上递减,对称轴为x=,∴≥4,故a≥8,故选:A.10.(2017•梅河口市校级模拟)如果函数y=x2+(1﹣a)x+2在区间(﹣∞,4]上是减函数,那么实数a的取值范围是()A.a≥9 B.a≤﹣3 C.a≥5 D.a≤﹣7【解答】解:函数y=x2+(1﹣a)x+2的对称轴x=又函数在区间(﹣∞,4]上是减函数,可得≥4,得a≥9.故选:A.11.(2016秋•东城区期末)二次函数f(x)=ax2+bx+1的最小值为f(1)=0,则a﹣b=()A.﹣2 B.﹣1 C.1 D.3【解答】解:二次函数f(x)=ax2+bx+1的最小值为f(1)=0,∴=1,且a>0,∴b=﹣2a,∴f(1)=a+b+1=0,解得a=1,b=﹣2,∴a﹣b=3,故选:D.12.(2017春•高安市校级期末)二次函数y=f(x)满足f(x+3)=f(3﹣x),x∈R 且f(x)=0有两个实根x1,x2,则x1+x2=()A.6 B.﹣6 C..3 D.﹣3【解答】解:二次函数y=f(x)满足f(x+3)=f(3﹣x),x∈R,可知二次函数的对称轴为:x=3,f(x)=0有两个实根x1,x2,则x1+x2=6.故选:A.13.(2017春•岳麓区校级期末)已知函数f(x)=ax2+bx+c,不等式f(x)<0的解集为{x|x<﹣3或x>1},则函数y=f(﹣x)的图象可以为()A.B.C.D.【解答】解:函数f(x)=ax2+bx+c,不等式f(x)<0的解集为{x|x<﹣3或x >1},所以a<0.并且﹣3,1是函数的零点,函数y=f(﹣x)的图象与函数f(x)的图象关于y轴对称,所以函数y=f(﹣x)的图象是B.故选:B.14.(2016秋•宿松县校级期末)不等式ax2+bx+c<0(a≠0)的解集为R,那么()A.a<0,△<0 B.a<0,△≤0 C.a>0,△≥0 D.a>0,△>0【解答】解:∵不等式ax2+bx+c<0(a≠0)的解集为R,∴a<0,且△=b2﹣4ac<0,综上,不等式ax2+bx+c<0(a≠0)的解集为的条件是:a<0且△<0.故选:A.15.(2016秋•靖远县期末)已知函数f(x)=4x2﹣kx﹣8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是()A.[160,+∞)B.(﹣∞,40]C.(﹣∞,40]∪[160,+∞)D.(﹣∞,20]∪[80,+∞)【解答】解:∵函数f(x)=4x2﹣kx﹣8在区间(5,20)上既没有最大值也没有最小值根据二次函数的性质可知,函数f(x)=4x2﹣kx﹣8在区间(5,20)上是单调函数∴或∴k≤40或k≥160故选:C.16.(2016秋•荆门期末)函数y=(x≠1且x≠3)的值域为()A.[,+∞)B.[﹣1,0)∪(0,+∞) C.[﹣1,+∞)D.(﹣∞,﹣1]∪(0,+∞)【解答】解:∵x2﹣4x+3≥﹣1,当x≠1且x≠3时,x2﹣4x+3≠0,故x2﹣4x+3∈[﹣1,0)∪(0,+∞),故函数y=(x≠1且x≠3)的值域为(﹣∞,﹣1]∪(0,+∞),故选:D.17.(2018春•柯桥区期末)已知函数f(x)=(ax﹣1)(x+b),如果不等式f(x)>0的解集是(﹣1,3),则不等式f(﹣2x)<0的解集是()A.(﹣∞,﹣)∪(,+∞)B.(﹣,) C.(﹣∞,﹣)∪(,+∞)D.(﹣,)【解答】解:∵不等式f(x)>0的解集是(﹣1,3),∴(ax﹣1)(x+b)>0,∴(﹣ax+1)(x+b)<0,∴a=﹣1,b=﹣3,∴f(﹣2x)=[﹣(﹣2x)﹣1][(﹣2x)﹣3]<0,解得:x>,或x<﹣,故选:A.二.填空题(共2小题)18.(2017秋•峨山县校级期末)函数f(x)=4x2﹣mx+5在[2,+∞)上为增函数,则m的取值范围是(﹣∞,16].【解答】解:函数f(x)的增区间为[,+∞),又f(x)在[2,+∞)上为增函数,所以[2,+∞)⊆[,+∞),则,解得m≤16,所以m的取值范围是(﹣∞,16].故答案为:(﹣∞,16].19.(2017春•黄陵县校级月考)直线y=ax﹣3a+2(a∈R)必过定点(3,2).【解答】解:∵y=ax﹣3a+2=(x﹣3)a+2,∴当a的系数x﹣3=0,即x=3时,对任意实数a,直线y=ax﹣3a+2都经过一个定点(3,2).故答案为:(3,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见一次、二次函数的求解问题
题型一:斜率与倾斜角;
例1 (1)直线l 过点)1,2(--A 和点)5,6(-B ,求l 的斜率和倾斜角;
(2)已知直线l 过点)2,1(A 和)3,(a B ,求l 的倾斜角和斜率.
题型二:直线斜率的应用:
例2 已知两点A (-3,4),B (3,2),过点P (2,-1)的直线l 与线段AB 有公共点.
(1)求直线l 的斜率的取值范围.(2)求直线l 的倾斜角的取值范围. 题型三:点斜式求直线方程:
例3 直线l 过点P (-1,3),倾斜角的正弦是
54,求直线l 的方程 题型四:两点式求直线方程:
例4 求经过两点A (2,m )和B (n ,3)的直线方程.
题型五:截距式求直线方程
例5、直线l 经过点)2,3(,且在两坐标轴上的截距相等,求直线l 的方程.
题型六:直线的综合应用
例6、若ABC ∆的顶点)4,3(A ,)0,6(B ,)2,5(--C ,求A ∠的平分线AT 所在的直线的方程.
题型七:两直线的位置关系
例7.已知两条直线1l :40ax by -+=和2l :()10a x y b -++=,求满足下列条件的,a b 值: 12l l ⊥,且1l 过点()3,1--
题型八:距离公式和角公式的应用
例8.已知三条直线1l :20x y a -+=()0a >。
直线2l :4210x y -++=和直线
3l :10x y +-=,且1l 与2l ()1求a 的值; ()2求3l 到1l 的角θ; 题型九:直线方程的交点 例9. 已知入射直线1l :3470x y +-= ,反射面为x 轴。
求1l 的反射直线方程. 题型十:用数形结合处理的综合问题
例10.已知51260x y +=的最小值是________.
习题:
1.若x 为实数,则下列不等式的解集正确的是 A.
{}222±≥≥x x x 的解集是 B.{
}2121212+<<-<-x x x 的解集是)( C.{}3092<<-x x x 的解集是
D. 设
00221221>++>=++c bx ax x x c bx ax x x 则且的两个实根为,,,的解集是{}12x x x x <<
2.若根式2532+-x x 没有意义,则 A.132≤≤x B.x <0 C.132<<x D.x >1或32<x
3.式子
32
2--x x 有意义,则 A.{}
22-≤≥x x x 或
B.{x |x ≠±3}
C.
{}22≤≤-x x D.{}{}3232-≠-≤≠≥x x x x x x 且且 4.不等式
652+-x x <x 2-4的解集是 A.{x 22>-<x x 或,} B.{x 2>x } C.{x 3>x } D.{x 232≠<<-x x 且,}
5.在①131203222
-<--<--x x x x x x 与 ②x x x x x x +>++>-+4304322与 ③01021222>->+-+x x x x 与))((三组不等式中,解集相同的组数有
A. 0组
B. 1组
C. 2组
D. 3组
6.若0<a <1,则不等式(x -a )(x -a 1
)<0的解是
A.a <x <a 1
B.a 1<x <a
C.x >a 1,或x <a
D.x <a 1
,或x >a
7. 对于任意实数x ,不等式04)2(2)2(2
<----x a x a 恒成立,则a 的范围( )
A. )2,(-∞
B. ]2,(-∞
C. )2,2(-
D. ]2,2(- 8. 已知集合{}0232<--=x x x A ,{}0<-=a x x B ,且A B ⊂,则a 的范围( )
A. 1≤a
B. 21≤<a
C. 2>a
D. 2≤a 9. 方程04)1(222=-+--m x m x 的两根异号,则m 的取值范围是( )
A. )2,2(-
B. )1,2(-
C. )25,2(-
D. )25,2( 10. 如果方程02)1(22=-+-+m x m x 的两个实根一个小于1-,另一个大于1,那么实
数m 的取值范围是( ) A. )2,2(- B. )0,2(- C. )1,2(- D. )1,0(
11. 某产品的总成本y (万元)与产量x (台)之间的函数关系21.0203000x x y -+= ),2400(N x x ∈<<,若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( ) A. 100台 B. 120台 C. 150台 D. 180台
12.函数的定义域为22--=x x x f )(______________.
13.不等式x 2+x +k >0恒成立,k 的取值范围是 _______ .
14.已知不等式20ax bx c ++>的解集为{|24}x x <<,则不等式20cx bx a ++<的解集为 .
15.解下列不等式06<-+x x
16.解不等式:-1<x 2+2x -1≤2
17.a 为何值时,不等式(a 2-3a +2)x 2+(a -1)x +2>0的解为一切实数?
18.对于任意实数x ,一元二次不等式(2m -1)x 2+(m +1)x +(m -4)>0恒成立,求实数m 的取值范围.
19.解不等式0)(2>++-ab x b a x
20.已知{}06|2<--=x x x A ,{}
01|2<++=ax x x B 若A B A = ,求a 的范围。
21.已知集合A ={x |x 2-5x +4≤0},B ={x |x 2-2ax +a +2≤0,a ∈R },且B ⊆A ,求a 的取值范围。