生化反应工程原理

合集下载

生化反应工程原理习题答案

生化反应工程原理习题答案

生化反应工程原理习题答案生化反应工程原理习题答案生化反应工程是一门研究生物化学反应在工业生产中应用的学科,它涉及到生物反应的原理、工艺、设备等方面。

在学习生化反应工程的过程中,习题是不可或缺的一部分。

下面将为大家提供一些生化反应工程原理习题的答案,希望对大家的学习有所帮助。

1. 什么是生化反应工程?答:生化反应工程是将生物化学反应应用于工业生产中的一门学科。

它研究的是如何利用生物体内的酶、微生物等生物催化剂,通过控制反应条件和优化工艺流程,实现高效、可持续的生物化学反应。

2. 生化反应工程的应用领域有哪些?答:生化反应工程广泛应用于食品、制药、化工等领域。

例如,生化反应工程可以用于生产食品添加剂、药物、酶制剂等。

此外,生化反应工程还可以应用于环境保护领域,例如利用微生物降解有机废水、废弃物等。

3. 生化反应工程中常用的反应器有哪些?答:生化反应工程中常用的反应器有批式反应器、连续流动反应器和固定床反应器等。

批式反应器适用于小规模实验室研究,连续流动反应器适用于大规模工业生产,固定床反应器适用于催化剂固定在固定床上的反应。

4. 生化反应工程中的反应条件有哪些因素?答:生化反应工程中的反应条件包括温度、pH值、反应物浓度、反应时间等。

这些因素会影响反应速率、产物选择性和产量等。

5. 什么是生化反应工程中的产物选择性?答:生化反应工程中的产物选择性是指在反应过程中产生的不同产物之间的选择性。

通过调节反应条件和优化催化剂等,可以控制产物的选择性,从而实现高效、经济的生化反应。

6. 生化反应工程中的酶催化反应有什么特点?答:生化反应工程中的酶催化反应具有高效、特异性和温和的特点。

酶作为生物催化剂,能够在相对较低的温度和中性条件下催化反应,具有较高的选择性和活性。

7. 生化反应工程中的微生物反应有什么特点?答:生化反应工程中的微生物反应具有较高的底物适应性和底物转化能力。

微生物通过代谢途径将底物转化为产物,具有较高的效率和产物选择性。

生化反应工程原理简答题

生化反应工程原理简答题

1补料分批培养主要应用在哪些情况中?①生长非偶联型产物的生产②高密度培养③产物合成受代谢物阻遏控制④利用营养缺陷型菌株合成产物⑤补料分批培养还适用于底物对微生物具有抑制作用等情况。

⑥此外,如果产物黏度过高或水分蒸发过大使传质受到影响时,可以补加水分降低发酵液黏度或浓度。

2比较理想酶反应器CSTR型与CPFR型的性能?A停留时间的比较:在相同的工艺条件下进行同一反应,达到相同转化率时,两者所需的停留时间不同,CSTR型的比CPFR型反应器的要长,也就是前者所需的反应器体积比后者大。

另外,以对两反应器的体积比作图可知,随反应级数的增加,反应器的体积比急剧增加。

B酶需求量的比较:对一级动力学:转化率越高,CSTR中所需酶的相对量也就越大。

另外,比值还依赖于反应级数,一级反应时其比值最大,0级反应时其比值最小。

C酶的稳定性:0级反应时,CSTR与CPFR内酶活力的衰退没有什么区别。

但如果反应从0级增至一级,那么,两种反应器转化率下降的差别就变得明显。

CPFR产量的下降要比CSTR快得多,因而CPFR中酶的失活比CSTR中更为敏感。

但是,如上所述,在某些场合,操作条件相同,要得到同样的转化率,CSTR所需酶的数量远大于CPFR所需的量。

D反应器中的浓度分布:CSTR与CPFR中的底物浓度分布。

由图可知,在CPFR中,虽然出口端浓度较低,但在进口端,底物浓度较高;CSTR中底物总处于低浓度范围。

如果酶促反应速率与底物的浓度成正比,那么对于CSTR而言,由于整个反应器处于低反应速率条件下,所以其生产能力也低。

3试着分析目前连续式操作难以大规模应用的原因?连续培养的工业生产应用的受限原因(连续培养的应用主要集中在研究领域)。

⑴杂菌污染问题。

因连续培养以长期、稳定连续运转为前提,在整个培养过程中,必需不断地供给无菌的新鲜培养基,好氧发酵时,必需同时供给大量的无菌空气,这两种供给的过程中极易带来杂菌的污染,长期保持连续培养的无菌状态非常困难。

生化反应工程原理

生化反应工程原理

填空题1理想的酶反应器主要有两种:CPFR和CSTR2养的传递有串联模型和并联模型(不好这样说)3KLa中a大小取决于所设计的空气分布器,空气流动速率,反应器的体积和空气泡的直径等且空气泡的直径越小,越有利于传递4的物理意义是最大反应速率和最大传质速率之比。

Da准数越小,固定化酶表面浓度[S]s越是接近主题浓度[S],辨明最大传质速率越是大于最大反应速率,为反应控制。

Da准数越小,越好。

5内部扩散与催化反应是同时进行的,二者相互影响,外扩散通常是先于反应。

6影响固定化酶促反应的蛀牙因素是:分子构象的改变,位阻效应,微扰效应,分配效应和扩散效应7有效电子数:当1mol碳源完全氧化时,所需要氧的摩尔系数的4倍称为基质的有效电子数若碳源为葡萄糖,其完全燃烧是每摩尔葡萄糖需要6mol,所以有效电子数是24,氧化一个有效电子伴随着焓值变化109.0KJ.即8通过对细胞和环境之间能量的交换关系的研究,为培养基中(组分)的选择提供参考9影响酶催化反应的环境因素有(温度),(pH),浓度等。

影响酶催化反应的浓度因素有(底物浓度)和(效应物浓度)。

影响酶催化反应的最基本的因素是(浓度)。

10反应器放大的目的是使产品的(质优)和(成本低效益好);必须使菌体在大中小型反应器中所处的外界环境(相同)。

11若要消除外扩散限制效应,最常用的方法是();若是要消除内扩散限制效应,最常用的方法是()。

12影响机械通气搅拌发酵过程中体系溶氧系数的因素有(操作变量),(培养液的理化性质),(反应器的结构)。

13根据Garden模型,如果产物和细胞的速率-时间曲线的变化趋势同步,则该产物的生成模型是()。

15对米氏方程的讨论当CS<<Km时,,属一级反应。

当CS>>Km时,,属零级反应。

当CS=Km 时,。

Km在数量上等于反应速度达到最大反应速度一半时的底物浓度。

16K m值等于酶促反应速度为最大反应速度一半时的底物浓度,单位是mol/L。

生化反应工程

生化反应工程

生化反应工程1.生物技术产品的生产过程主要由哪四个部分组成?答:1)原材料的预处理(2)生物催化剂的制备;(3)生化反应器及其反应条件的选择和监控;(4)产物的分离纯化。

2.什么是生化反应工程,生化反应工程的研究的主要内容是什么?定义:以生化反应动力学为基础,运用传递过程原理及工程学原理与方法,进行生化反应过程的工程技术分析、开发以及生化反应器的设计、放大、操作控制等综合边缘学科。

主要内容:建立生物反应过程动力学和生物反应器的设计,优化和放大。

3. 生化反应工程研究方法.经验模型法、半经验模型法、数学模型法;多尺度关联分析模型法(因次分析法)和计算流体力学研究法。

.在建立生物反应过程数学模型时,常按下述几个步骤进行: (1)反应过程的适当简化;(2)定量化研究; (3)过程分离原理;4)数学模型的建立。

理想的模型建立通常要考虑的因素1.要明确建立模型的目的2.明确地给出建立模型的假定条件3.希望所含有的参数,能够通过实验逐个确定4.模型应尽可能简单。

第1章 酶催化反应动力学1.有高效的催化活性2.有高度的专一性3.酶反应常需要辅因子的参与4.具有温和的反应条件5.酶的催化活性可被调控6.酶易变性与失活酶反应专一性机制:锁钥学说,诱导契合学说,过渡态学说。

什么叫抑制剂?任何能直接作用于酶并降低酶催化反应速率的物质称为酶的抑制剂1.M-M 方程的建立: E + S 11k k - [E 2k −−→E + P (1)快速平衡假设:2[],p ES r k C =11[],E S ES k C C kC -=[],EO E ES C C C =+得2m axE O S SP S SS S k C C rC r K C K C ==++(2)拟稳态假设:11[]2[]0E S ES ES k C C kC k C ---=得2m axEO S SP m Sm S k C C rC r K C K C ==++2. M-M 方程参数的确定:m ax20E rk C =,mK(1)微分法:* L-B 法 :m axm ax111m SSK r rC r =+* E-H 法:m axss mSr r rK C =- H-W 法:m axm axSm S sC K C r rr=+E-C-B 法:m ax1m sSrK r C =+(2)积分作图法:m ax0m()lnSO S S S C r t C C KC =-+一级反应时,m axmlnSOSC rt K C = 零级反应时,max 0()S S r t C C =-3.有抑制的酶催化反应动力学----由方程推机理,抑制方式(1)竞争性抑制:E + S 11k k - [ES 2k −−→E + PE + I 33k k -−−−→←−−−[EI] 得m ax *SSI Smr C r KC =+,I *m IC 1+)K K mK=((2)非竞争性抑制:E + S 11k k - [E2k −−→E + P ,E + I 33k k -−−−→←−−−[EI], [ES] + I 4-4k k −−−→←−−−[SEI] , [EI] + S 5-5k k −−→←−− [SEI] 得 *max s m I SSr C r K C =+,I *m ax m ax I C /1+)K r r =( (3)反竞争性抑制:E + S 11k k - [E2k −−→E + P ,[ES] + I 33k k -−−−→←−−−[SEI] 得m axI m IC 1+)K SSI S rC r K C =+((4)底物抑制:E + S 11k k - [ES2k −−→E + P ,[ES] + S 33k k - [SES]得m axm 1+)SSS s S SIrC r C K C K =+(,,m axS C =4.双底物酶催化反应(了解):S 1 + S 2 P 1 +P 2(1)随机机制:E + S 1 11k k - [ES 1], E + S 2 2-2k k −−−→←−−−[ES 2], [ES 1] +S 2 12k [ES 1S 2], [ES 2] +S 1 21k [ES 1S 2],[ES 1S 2]K−−→E +P 1+P 2 (2)乒乓机制: E + S 1 11k k - [ES 1]−−→ P 1 +E’,E’ + S 2 2-2k k −−−→←−−−[E’2] −−→ E +P 2(3)顺序机制:E + S 1 11k k - [ES 1],[ES 1] +S 2 2k −−−→←−−−[ES 1S 2],[ES 1S 2]3k −−→ E +P 1+P 2 5.酶的失活动力学:E adrk k −−→←−−E i()[]d r E O k k E a r d d rC tC k k ek k -+=++, 若为不可逆失活,Kr=0,0dK Ea E tC C e-=,K d =1/t d =ln2/t 1/2,K d 为衰变常数,t 1/2为半衰期第2章 细胞反应过程计量学1. 呼吸商:在一定时间内放出的二氧化碳量和消耗的氧气量的比 。

生物反应工程原理

生物反应工程原理

第一章生物工程导论1.生化反应工程的概念以生物反应动力学为基础,利用化学工程方法研究生物反应过程的一门学科。

2.生化反应工程研究对象研究生物反应动力学反应器设计3.生化反应特点优点:反应条件温和设备简单同一设备进行多种反应通过改良菌种提高产量缺点:产物浓度低,提取难度大废水中的COD和BOD较高前期准备工作量大菌种易变异,容易染杂菌4.生化反应动力学本征动力学:又称微观动力学,生化反应所固有的速率没有物料传递等工程因素影响。

反应器动力力学:宏观动力学,在反应器内所观察到的反应速率是总速率考虑。

5.生化工程研究中的数学模型结构模型:由过程机理出发推导得出半结构模型:了解一定机理结合实验数据经验模型:对实验数据的一种关联第二章生物反应工程的生物学与工程基础1.因次:导出单位,也称量纲。

2.红制及基本单位密度比容气体密度压力第三章微生物反应计量学教材p53-641.反应计量学:对反应物组成及转化程度的数量化研究2.得率系数与维持因数:得率系数:细胞生成量与基质消耗量的比值维持因数:单位质量细胞进行维持代谢时所消耗的基质。

3.细胞组成表达式及元素衡算方程细胞组成表达式CH1-8O0.5N0.2元素衡算方程CHmOn+aO2+bNH3=CCH2O3Nr+d H2O +e CO24.得率系数与计量系数关系当细胞反应是细胞外产物的简单反应时,得率系数与计量系数关系如下:5.呼吸商:二氧化碳产生速率与氧气消耗速率之比6.实例计算第四章均相酶反应动力学(教材P8-10,26-38)1.酶活力表达方法及催化特性催化特性:酶具有很强的专一性较高的催化效率反应条件温和易失活,温热,氧化失活2.了解反应速率方程的几种形式零级反应:反应速率与底物浓度零次方成正比一级反应:反应速率与底物浓度一次方成正比二级反应:反应速率与浓度二次方成正比连锁酶促反应:3.米式方程快速平衡和拟稳态三点假设4.米式方程推导5.M-M方程与B-M方程比较6.酶反应一级动力学表达式及计算7.动力学常数Km与Vm的求取8.影响酶反应速率的因素:底物浓度酶浓度产物浓度PH值温度激活剂抑制剂9.竞争性、非竞争性、和反竞争性抑制的概念及动力学表达式竞争性:抑制剂为底物类似物,酶结合位点结合阻碍底物一般可逆非竞争性:抑制剂与酶活性位点以外结合,不影响底物的结合,最终可形成三联复合物反竞争性:抑制剂不与游离酶结合,但与复合物ES结合形成三联复合物10.酶失活动力学模型及测定方法第五章固定化酶与固定化细胞(教材P15-17,39-46)1.固定化酶、细胞制备方法与特点固定化细胞:物理化学手段将细胞限制哎一定空间保持活性并连续使用2.固定化酶与游离酶区别3.评价固定化酶生物催化剂指标固定化酶活力偶联率及相对活力4.固定化酶促反应动力学本征速率及本征动力学代表酶的真实特性;固定化酶催化反应速率受扩散和传质影响;所测速率是宏观有效反应速率和游离酶不同。

生物反应工程原理总复习

生物反应工程原理总复习

扩散效应 传质机理仅为
常数 扩散系数视为
5、底物分配系数是1。
6、固定化酶颗粒处于稳态之下。
7、底物和产物的浓度仅沿r方向而变化。 数学模型简化
第四章 细胞反应过程动力学
4.1 细胞反应的主要特征
1. 细胞是反应的主体。 2. 细胞反应过程的本质是复杂的酶催化反应体系。 3. 细胞反应与酶催化反应也有着明显的不同。
生物反应工程的研究方法
用数学模型方法进行研究: 机理模型:或称结构模型,从过程机理出发推导得到的。 半经验模型:对过程机理有一定了解基础上结合经验数据 得到 经验模型:在完全不了解或不考虑过程机理的情况下,仅 根据一定条件下的实验数据进行的数学关联。
2.1.1 酶的催化共性
它能降低反应的活化能,加快生化反应的速率;但它不能 改变反应的平衡常数,而只能加快反应达到平衡的速率。 酶在反应过程中,其立体结构和离子价态可以发生某种变 化,但在反应结束时,一般酶本身不消耗,并恢复到原来状 态。
2.2 简单的酶催化反应动力学
1、什么是简单的酶催化反应动力学 2、活性中间复合物学说 3、简单的酶催化反应机理 4、推导方程的假设条件 5、“平衡”假设、“拟稳态”假设 6、米氏方程的参数及其物理意义
k +1 + E+S ⎯2 ES ⎯ k⎯→ E + P k −1
1 dns rs = − v dt
4.3.2 分批培养时细胞生长动力学
1、生长历程 2、Monod方程
目前,常使用确定论的 非结构模型是 Monod 方程 µ max ⋅C S µ= ( 3 − 34 ) K S + CS
第五章 生化反应器的设计与分析
间歇操作搅拌槽式反应器 Batch Stir Tank Reactor (BSTR) 连续操作的搅拌槽式反应器 Continuous Stir Tank Reactor (CSTR) 连续操作的管式反应器 continuous plug Flow Reactor (CPFR)

化学工程中的生化反应工程

化学工程中的生化反应工程

化学工程中的生化反应工程化学工程是一门综合性的学科,它以化学反应为基础,涉及到物理学、数学、工程学等多个学科的知识。

其中,生化反应工程是化学工程的一个分支,也是现代工业中不可或缺的一部分。

本文将介绍生化反应工程的相关知识。

一、生化反应工程的定义生化反应是指生物体内对某些物质进行化学转化的过程。

而生化反应工程则是利用化学反应原理进行生物体外的工程生产,包括发酵、纯化、分离等过程。

生物化学工程是生化反应工程的重要组成部分,是指利用化学反应的方式研究生物体内的化学转化及其机制,参与化学反应的大部分为生物大分子,如蛋白质、多糖、核酸等。

二、生化反应工程的应用领域生化反应工程的应用领域非常广泛,主要涉及到以下几个方面:1、生物制药生物制药是生化反应工程最为重要的应用领域之一。

利用生物体内的化学反应原理和技术,可以生产出一系列的生物制品,如酶、抗体、疫苗等。

其中酶是生物制药中的核心产品之一,如著名的碱性磷酸酶和葡萄糖氧化酶等。

生物制药的生产过程较为复杂,需严格控制各个环节的操作,一旦出现失误,将会导致产品失去活性,浪费大量的时间和人力成本。

2、食品工业生化反应工程在食品工业中也拥有广泛的应用,可用于生产具有高营养价值、美味可口的食品,如乳制品、酿造类食品等。

其中,酿酒是最早应用生物反应工程技术的食品行业之一,其主要利用发酵反应原理进行酒的酿造。

随着食品科学和生物技术的不断发展,生化反应工程在食品工业中的应用将更加广泛。

3、环境保护生化反应工程在环境保护领域中也有很大的应用,如处理废水、煤气、固体废料等。

其中最常见的应用是生物法处理废水。

生物法利用生物反应器中的微生物菌群将有害废水中的有机物分解为CO2、水和其他无害的化合物,从而达到净化废水的目的。

三、生化反应工程的工艺流程生化反应工程的工艺流程大致分为三个步骤:发酵、分离和纯化。

1、发酵发酵是生化反应工程的第一步,主要包括物料筛选、微生物菌种筛选、场地规划以及发酵条件的调节等环节。

生化反应工程原理的应用

生化反应工程原理的应用

生化反应工程原理的应用1. 生化反应工程概述生化反应工程是将生物体内的生物化学反应原理与工程原理相结合,通过控制操作条件、提高反应效率和产量,实现工业化生物化学反应的一门学科。

在化工、制药、食品、环保等领域有广泛的应用。

2. 生化反应工程的基本原理生化反应工程的基本原理是通过控制反应的底物浓度、反应温度、pH 值、搅拌速率等因素来改变反应速率和产物生成率。

基于酶促或微生物催化反应原理,通过工程设计和优化,实现高效、高产和可控的反应过程。

3. 生化反应工程的应用领域生化反应工程的应用非常广泛,以下是一些典型的应用领域:3.1 制药工业生化反应工程在制药工业中扮演着非常重要的角色。

通过搭建高效的反应系统和优化操作条件,可以提高药物合成的效率和产量,缩短合成周期。

同时,生化反应工程还可以用于生产酶制剂、抗生素等生物制品。

3.2 食品工业在食品工业中,生化反应工程被广泛应用于酿造、植物提取物制备、食品添加剂生产等过程。

通过优化反应条件,可以提高食品的品质、口感和营养价值。

3.3 环境保护生化反应工程在环境保护领域也有重要应用。

比如利用生物膜反应器、生物滤池等生化反应设备,对水体和废水中的污染物进行处理和降解。

生物反应能够高效地去除有机物和重金属等污染物,同时具有低成本和环保的优势。

4. 生化反应工程的关键技术生化反应工程的应用离不开一些关键技术的支持,以下是一些关键技术的介绍:4.1 酶工程酶工程是通过对酶进行改造和优化,以提高酶的反应活性、热稳定性和耐受性等性能。

酶工程的发展使得生化反应工程可以更好地利用酶来催化反应,提高反应效率。

4.2 微生物筛选与改造对于一些微生物催化的反应,通过对微生物菌种的筛选和改造,可以获得更高效的生物催化剂。

同时,通过对微生物代谢途径的优化,可以提高目标产物的生成率和选择性。

4.3 反应器设计与建模反应器设计与建模是生化反应工程中的重要环节,通过对反应器的结构和操作条件进行设计和优化,可以实现反应过程的高效、可控和稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

填空题
1理想的酶反应器主要有两种:CPFR和CSTR
2养的传递有串联模型和并联模型(不好这样说)
3KLa中a大小取决于所设计的空气分布器,空气流动速率,反应器的体积和空气泡的直径等且空气泡的直径越小,越有利于传递
4的物理意义是最大反应速率和最大传质速率之比。

Da准数越小,固定化酶表面浓度[S]s越是接近主题浓度[S],辨明最大传质速率越是大于最大反应速率,为反应控制。

Da准数越小,越好。

5内部扩散与催化反应是同时进行的,二者相互影响,外扩散通常是先于反应。

6影响固定化酶促反应的蛀牙因素是:分子构象的改变,位阻效应,微扰效应,分配效应和扩散效应
7有效电子数:当1mol碳源完全氧化时,所需要氧的摩尔系数的4倍称为基质的有效电子数若碳源为葡萄糖,其完全燃烧是每摩尔葡萄糖需要
6mol,所以有效电子数是24,氧化一个有效电子伴随着焓值变化109.0KJ.即
8通过对细胞和环境之间能量的交换关系的研究,为培养基中(组分)的选择提供参考
9影响酶催化反应的环境因素有(温度),(pH),浓度等。

影响酶催化反应的浓度因素有(底物浓度)和(效应物浓度)。

影响酶催化反应的最基本的因素是(浓度)。

10反应器放大的目的是使产品的(质优)和(成本低效益好);必须使菌体在大中小型反应器中所处的外界环境(相同)。

11若要消除外扩散限制效应,最常用的方法是();若是要消除内扩散限制效应,最常用的方法是()。

12影响机械通气搅拌发酵过程中体系溶氧系数的因素有(操作变量),(培养液的理化性质),(反应器的结构)。

13根据Garden模型,如果产物和细胞的速率-时间曲线的变化趋势同步,则该产物的生成模型是()。

15对米氏方程的讨论
当CS<<Km时,,属一级反应。

当CS>>Km时,,属零级反应。

当CS=Km 时,。

Km在数量上等于反应速度达到最大反应速度一半时的底物浓度。

16K m值等于酶促反应速度为最大反应速度一半时的底物浓度,单位是mol/L。

Km是酶的特性常数:与pH 、温度、离子强度、酶及底物种类有
关,与酶浓度无关,可以鉴定酶。

1/Km近似表示酶对底物的亲和力:1/Km越大、亲和力越大
17抑制作用的分类不可逆抑制与可逆抑制。

可逆抑制:竞争性抑制,非竞争性抑制,反竞争性抑制。

18固定化对酶性质的影响底物专一性的改变,稳定性增强,最适pH值和最适温度变化,动力学参数的变化。

19Da准数:。

当Da>>1时,过程为外扩散控制。

当Da<<1时, 过程为反应控制
20Da准数是决定效率因子和比浓度C*的唯一参数,因而是表征传质过程对反应速率影响的基本准数。

21为提高固定化酶外扩散效率,应设法减小Da准数。

减小Da准数的措施:降低固定化酶颗粒的粒径,增大比表面积,但由于粒径减小会伴随压降增加,因此应用中综合考虑,确定合适的粒径和使固定化酶表面流体处于湍流状态以增大。

22为提高固定化酶内扩散效率,应设法减小。

减小的措施主要是适当降低固定化酶颗粒粒径。

23能量生长偶联型与能量生长非偶联型:当构成菌体的材料充裕时,菌体的生长受制于ATP的供应,这种生长就是能量偶联型生长;反之,在ATP供应充分,而合成细胞的材料受限制时,这时的生长就是能量生长非偶联型,即与ATP供应无关,此时,大量的ATP在ATP酶的作用下被降解,以热能的形式释放出大量的热量形成发酵热异常升高。

对能量偶联型生长,大约在10左右;非能量偶联型生长,大大低于10;
24μm值基本接近,是同一个数量级。

Ks和μm值不仅随菌种而异,对不同的限制性基质也不同。

Ks的意义:Ks越小,则S增加少许,μ增加很大,所以Ks越小,μ就越敏感。

Ks可以表示菌体细胞与基质亲和力的关系。

25单一限制性底物,临界底物浓度是指达到μm的最低底物浓度S criT。

若SScrit,则为限制性底物,若SScrit,则为非限制性底物。

26发酵过程的操作方式:分批式操作,连续式操作,流加式操作。

反复批式操作,反复半批式操作
27连续式操作稳态操作的条件:稳态下,D=μ,当时,,此时,
故定义临界稀释率为:,通常情况下,K S S0,故有:
可见,用单级恒化器连续培养菌体的稳态操作应有D ,而当D 时,反应
器中菌体浓度终将全部被冲出(wash-out),称为冲出现象。

28评价通风生化反应器的两个重要指标:k La值和单位溶解氧的能耗(Np)。

29提高氧传递速率Na的两条途径:提高氧传质推动力(C*-C),提高k La 值。

30反应器中气泡流动方式分为两类:一类是气泡自由上升,如在鼓泡罐、塔式反应器、气升式反应器和工业中常用的搅拌罐等中;另一类呈高湍流型,主要是实验室中使用的反应器及小型搅拌罐中。

31体积传质系数的测定:亚硫酸盐法,动态法,稳态法,葡萄糖氧化法。

32主动传递中,C2>C1,△G>0,自由能增加;被动传递中,C2<C1,△G<0,自由能减少。

主动传递中,推动力是靠ATP水解释放的能量来进行的。

促进传递是借助载体分子完成的。

33理想的酶反应器:CPFR型酶反应器也称为活塞流式反应器或平推流式反应器.CSTR型酶反应器:continuous stir reactor.
34生物反应器放大的目:依据小的生物反应器的结构、操作条件和生物反应特征,来确定大型生物反应器的结构、操作条件,以使在大型生物反应器中进行的生物反应达到或超过在小的生物反应器中的成绩。

须明确两点:反应是如何进行的,即所期望的生化反应是通过何种渠道完成的。

生物化学反应中哪些反应的反应速度快、哪些反应的反应速度慢。

35生物反应器的放大方法可分为:(1)数学模拟放大;(2)因次分析法放大(3)经验法则放大(包括反复实验法、部分解析法放大等)。

36生物反应器设计的主要目标:使产品的产量高质量高、成本低
37生物团块反应器按催化剂运动状态划分又可分填充床、流化床、生物转盘等多种型式的生物反应器。

填充床型反应器(PBR) 流化床型反应器(FBR)
38生化反应的反应器:生物膜反应器(MBR)利用膜的分离功能,同时完成反应和分离过程的反应器
39生物反应器的放大的目标:使大型生物反应器性能与小型反应器接近,从而使大型反应器生产效率与小型生产设备反应器相似。

放大方法从目前情况来看,主要有经验放大法、因次分析法、时间常数法、数学模拟法等。

公式题
1外扩散效率因子: 2内扩散效率因子:
3错呼吸商: 4米氏方程:
5莫诺方程: 6细胞得率(生长得率Y X/S):
7某一瞬间细胞得率称为微分(瞬时)细胞得率:
8代谢产物生成速率: 最后一步应为Y P/S
9代谢产物比生成速率:最后一步有歧义
10生长速率: 11比生长速率:
12基质消耗速率: 13基质比消耗速率:错了,是dS
14基于基质异化代谢产生ATP为基准生成细胞量的细胞得率:15稀释率: 16固定化酶颗粒酶表面的扩散速率:
17与碳元素相关的细胞得率:
18氧的传递速率:
19单位体积培养液中氧的传质速率:
20当α=0.4,β=0.5,γ=0.5 时,(6-34)式称为Richard公式。

相关文档
最新文档