初三数学第三次月考考试试卷附答案

合集下载

浙教版2022-2023学年九年级数学上册第三次月考测试题(附答案)

浙教版2022-2023学年九年级数学上册第三次月考测试题(附答案)

浙教版2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题:共30分。

1.已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=2.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球3.已知点P到圆心O的距离为4,若点P在圆内,则⊙O的半径可能为()A.2B.3C.4D.54.已知扇形的半径为6cm,圆心角为120°,则扇形的面积为()A.4πcm2B.6πcm2C.12πcm2D.36πcm25.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下面结论正确的是()A.a<0,b<0,b2﹣4ac<0B.a<0,b>0,b2﹣4ac>0C.a>0,b>0,b2﹣4ac<0D.a<0,b<0,b2﹣4ac>06.圆内接正六边形的边长为2,则该圆内接正三角形的边长为()A.4B.C.D.7.如图,已知在△ABC中,点F是三角形的重心,过点F作DE∥BC,交AB于点D,交AC于点E,若DE=7,则BC的值为()A.9B.10.5C.12D.148.在平面直角坐标系中,二次函数y=(x+1)(x﹣3)的图象向右平移2个单位后的函数为()A.y=(x﹣1)(x﹣5)B.y=(x+2)(x﹣2)C.y=(x+3)(x﹣1)D.y=(x+1)(x+5)9.如图,有一块三角形余料ABC,它的面积为36 cm2,边BC=12cm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,则加工成的正方形零件的边长为()cm.A.6B.5C.4D.310.设函数y=x2﹣2kx+k﹣1(k为常数),下列说法正确的是()A.对任意实数k,函数与x轴都没有交点B.存在实数n,满足当x≥n时,函数y的值都随x的增大而减小C.k取不同的值时,二次函数y的顶点始终在同一条直线上D.对任意实数k,抛物线y=x2﹣2kx+k﹣1都必定经过唯一定点二、填空题:共24分11.已知线段a=2,b=18,则a,b的比例中项为.12.如图,AB是半圆O的直径,C,D为圆上的两点,∠BAC=40°,则∠D=度.13.已知线段AB=4,P是线段AB的黄金分割点,AP>BP,则AP=.14.如图,已知抛物线y1=ax2+bx+c(a≠0)与直线y2=mx+n(m≠0)交于点A,B,点A,B的横坐标分别是﹣2,,则不等式ax2+bx+c<mx+n的解为.15.若实数a,b满足a+b2=3,则a2+8b2的最小值为.16.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,且CD=2,AC=6,则AB=.三、解答题,共66分.17.一个不透明的袋子中装有2个红球和1个白球(只有颜色不同),从中随机摸出1个球后放回搅匀,再次随机摸出一个球,请用列表或画树状图的方法求先后摸出的两球颜色不同的概率.18.如图所示,△ABC的各顶点都在8×8网格的格点上,每个小正方形的边长都为1,△ABC绕点A顺时针旋转90°后得到△AB1C1.(1)在图1中画出△AB1C1;(2)在图2中画一个格点△DEF,使△DEF∽△ABC,且相似比为:1.19.如图,在Rt△ABC中,∠C=90°,点D是AB上一点,DE∥BC,BE⊥AB.(1)求证:△DEB∽△BAC;(2)若BE=2,AC=3,△BDE的面积为1,求△ABC的面积.20.二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的自变量x与函数值y的部分对应值如表:x…﹣1034…y…04m0…(1)直接写出m的值,并求该二次函数的解析式;(2)当1<x<5时,求函数值y的取值范围.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD与BC,OC分别交于E,F.(1)求证:;(2)连结AC,若CE=1,EB=3,求AC的长.22.已知二次函数y=﹣x2+bx+c的图象经过点A(x1,y1),B(x2,y2),且当x1=﹣2,x2=6时,y1=y2.(1)求b的值;(2)若P(m+3,n1),Q(m,n2)也是该二次函数图象上的两个点,且n1<n2,求实数m的取值范围;(3)若点T(t,2t)不在该二次函数的图象上,求c的取值范围.23.已知AC,BD为⊙O的直径,连结AB,BC,点F是OC上一点,且CF=2OF.(1)如图1,若BC=6,∠BAC=30°,求OF的长;(2)若AB=BC,点E是AB上一点,连结EF,交OB于点P;①如图2,当点E为AB中点时,求的值;②连结DF,当EF⊥DF时,=;=.(利用备用图探索)参考答案一、选择题:共30分。

九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.52.(3分)如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则()A.BC:DE=1:2B.BC:DE=2:3C.BC•DE=8D.BC•DE=6 3.(3分)(易错题)如图,▱ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是()A.△ABE∽△DGE B.△CGB∽△DGE C.△BCF∽△EAF D.△ACD∽△GCF 4.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.6.(3分)如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF 和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A.=B.=C.=D.=7.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.8.(3分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE :S四边形ABCE为()A.3:4B.4:3C.7:9D.9:79.(3分)如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是()A.位似中心是点B,相似比是2:1B.位似中心是点D,相似比是2:1C.位似中心在点G,H之间,相似比为2:1D.位似中心在点G,H之间,相似比为1:210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(每小题3分,共12分)11.(3分)有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.12.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.13.(3分)如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.14.(3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.三、解答题(共78分)15.(12分)解下列方程:(1)3x2﹣5x﹣2=0(2)x2﹣1=2(x+1)(3)4x2+4x+1=3(3﹣x)2(4)(2x+8)(x﹣2)=x2+2x﹣1716.(6分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,交AC于F点,过点M作ME∥BC,交AB于点E.求证:△ABC∽△MED.17.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.18.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19.(6分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)24.(10分)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.2.【解答】解:∵l1∥l2∥l3∴∵AB=3,DE=4,EF=2∴BC•DE=AB•EF=6.故选D.3.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD∴∠EDG=∠EAB∵∠E=∠E∴△ABE∽△DGE(第一个正确)∵AE∥BC∴∠EDC=∠BCG,∠E=∠CBG∴△CGB∽△DGE(第二个正确)∵AE∥BC∴∠E=∠FBC,∠EAF=∠BCF∴△BCF∽△EAF(第三个正确)第四个无法证得,故选D4.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.5.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.6.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选:C.7.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.8.【解答】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE :S四边形ABCE=9:7.故选:D.9.【解答】解:如图,在正方形网格中,△ABC和△DEF相似,连接AF,CE,∴位似中心在点G,H之间,又∵AC=2EF,∴相似比为2:1,故选:C.10.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(每小题3分,共12分)11.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.12.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.13.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.14.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.三、解答题(共78分)15.【解答】解:(1)3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,∴3x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2﹣1=2(x+1),(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(3)4x2+4x+1=3(3﹣x)2整理得:x2+22x=26,x2+22x+121=26+121(x+11)2=147,x+11=±7,∴x1=﹣11+7,x2=﹣11﹣7;(4)(2x+8)(x﹣2)=x2+2x﹣17整理得:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.16.【解答】证明:∵DM⊥AB,∴∠MDE=∠C=90°,∵EM∥BC,∴∠MED=∠B,∴△ABC∽△MED.17.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;18.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.19.【解答】解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.20.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.21.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.23.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.24.【解答】解:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴=,=,∴=,即=,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.。

人教版九年级上册数学第三次月考试题及答案

人教版九年级上册数学第三次月考试题及答案

人教版九年级上册数学第三次月考试卷一、单选题1.下列图形是中心对称图形的是()A.B.C.D.2.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.无法确定3.如果-1是方程2x²-x+m=0的一个根,则m值()A.-1B.1C.3D.-34.如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.65°D.70°5.在一个不透明的口袋中装有5个白球,若干个黑球,它们除颜色外其它完全相同,已知摸到白球概率为0.2,则袋子中黑球有多少个?()A.15B.10C.5D.206.将抛物线y=(x-1)²+2先向右平移3个单位,再向下平移5个单位得到的抛物线解析式是()A.y=(x-4)²+7B.y=(x-4)²-3C.y=(x+2)²+7D.y=(x+2)²-37.新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x,可列方程为()A.50.7(1+x)2=125.6B.125.6(1﹣x)2=50.7C.50.7(1+2x)=125.6D.50.7(1+x2)=125.68.如图,AB是OO的直径,弦CD⊥AB,垂足为P,若CD=8,PB=2,则⊙O直径()A.10B.8C.5D.39.已知二次函数y=ax²+bx+c(a≠0)图象的一部分如图所示,给出以下结论:①abc<0;②当x=-1时,函数有最大值;③方程ax²+bx+c=0的解是x1=1,x2=-3;④4a+2b+c>0,⑤2a-b=0,其中结论正确的个数是()A.1B.2C.3D.410.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD 运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题11.一个盒子内装有大小、形状相同的6个球,其中红球3个、绿球1个、白球2个,任意摸出一个球,则摸到白球的概率是______12.已知圆锥的底面直径为4cm ,母线长为6cm ,则此圆锥的侧面积为____.13.若关于x 的一元二次方程kx²-x-1=0有两个实数根,则k 的取值范围______14.在Rt ABC 中,∠C=90°,BC=3,AC=4,则ABC 的外接圆半径是______15.如图,将△ABC 的绕点A 顺时针旋转得到△AED ,点D 正好落在BC 边上.已知∠C=80°,则∠EAB=____________°.16.如图,正六边形ABCDEF 内接于圆O ,边长AB=2,则正六边形的面积是______17.如图,点C 在以O 为圆心的半圆内一点,直径AB =4,∠BCO=90°,∠OBC=30°,将△BOC 绕圆心逆时针旋转到使点C 的对应点C′在半径OA 上,则边BC 扫过区域(图中阴影部分)面积为______(结果保留π)三、解答题18.解方程:(1)x 2+2x =2(2)4(3x ﹣2)(x +1)=3x +319.某幢建筑物从10米高的窗户A 用水管向外喷水,喷出的水流呈抛物线状(如图),若抛物线最高点M 离墙1米,离地面403米.问:(1)求抛物线的解析式;(2)求水流落地点B 离墙的距离20.已知:在ABC 中,AB AC =.(1)求作:ABC 的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若ABC 的外接圆的圆心O 到BC 边的距离为4,6BC =,则O S = .21.为落实“垃圾分类”,环卫部门要求垃圾要按A 、B 、C 三类分别装袋投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收垃圾,甲、乙各投放了一袋垃圾.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求甲乙投放的垃圾恰好是同类垃圾的概率(要求画出树状图)22.已知关于x 的一元二次方程x²-(2k+1)x+k 2+k=0(1)求证:无论k 为任何实数,方程总有两个不相等的实数根;(2)若两个实数根x 1,x 2满足()()121130x x ++=,求k 值.23.如图,已知正方形ABCD 的边长为3,E 、F 分别是边BC 、CD 上的点,∠EAF=45°(1)求证:BE+DF=EF(2)当BE=1时,求EF 的长24.如图:以ABC 的边AB 为直径作⊙O ,点C 在OO 上,BD 是⊙O 的弦,∠A=∠CBD ,过点C 作CF ⊥AB 于点交于点G 过作C ∥BD 交AB 的延长线于点E(1)求证:CG=BG(2)∠BAD=30°,CG=4,求BE 的长25.如图,已知抛物线25y ax bx =++经过A(5-,0),B(4-,3-)两点,与x 轴的另一个交点为C ,顶点为D ,连接CD .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B ,C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求PBC 的面积的最大值及点P 的坐标;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.参考答案1.A2.B3.D4.D5.D6.B7.A8.A9.C10.B11.1312.12π13.k≥14-且k≠0.14.52.15.20°.16.17.π18.(1)x 1=﹣1x 2=﹣1+(2)x 1=﹣1,x 2=1112.19.(1)210201033y x x =-++;(2)3米.20.(1)见解析;(2)25π21.(1)13;(2)13,作图见解析22.(1)见详解;(2)17k =-,24k =;23.(1)证明见解析;(2)52.24.(1)见解析;(2)25.(1)265y x x =++;(2)①278,P(52-,154-),②存在,P(32-,74-)或(0,5)。

2022-2023学年浙教版第一学期九年级数学第三次月考综合测试题(附答案)

2022-2023学年浙教版第一学期九年级数学第三次月考综合测试题(附答案)

浙江省杭州市杭州公益中学2022-2023学年第一学期九年级数学第三次月考综合测试题(附答案)一、选择题(共40分)1.已知圆的半径为5cm,圆心到直线l的距离为5cm,那么直线l和这个圆的公共点有()A.0个B.1个C.2个D.1个或2个2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.对于抛物线y=(x﹣1)2+2,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.与y轴交点坐标为(0,2)D.与x轴有两个交点4.某企业对其生产的产品进行抽检,抽检结果如下表:抽检件数1040100200300500不合格件数0123610若该企业生产该产品10000件,估计不合格产品的件数为()A.80件B.100件C.150件D.200件5.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5 m B.2m C.4m D.m6.如图,在△ABC中,D、E分别为AB,AC上的点,若DE∥BC,=,则=()A.B.C.D.7.如图,⊙O的半径为5,弦AB=8,点C在弦AB上,且AC=6,过点C作CD⊥AB交OB于点D,则CD的长为()A.1B.2C.1.5D.2.58.如图所示,已知⊙I是△ABC的内切圆,点I是内心,若∠A=35°,则∠BIC等于()A.35°B.70°C.145°D.107.5°9.如图,已知:45°<∠A<90°,则下列各式成立的是()A.sin A=cos A B.sin A>cos A C.sin A>tan A D.sin A<cos A 10.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣3,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.C.2.4D.3二、填空题(共30分)11.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为.12.如图(1)为折叠椅,图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB和CD的长度相等,O是它们的中点,为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm,∠DOB=100°,那么椅腿AB的长应设计为cm(结果精确到0.1cm)13.如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.14.小明从二次函数y=ax2+bx+c的图象(如图)中观察得出了下面五条信息:①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0.你认为其中正确的信息是.(只填序号)15.如图,半径为5个单位的⊙A与x轴、y轴都相切;现将⊙A沿y轴向下平移个单位后圆与x轴交于点(2,0).16.如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B 的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=2,则BN的长为,sin∠AFE的值为.三、解答题(共80分)17.计算:(1)4sin260°﹣3tan30°;(2)+cos245°+sin245°.18.某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.19.如图,已知四边形ABCD内接于圆O,且∠A=105°,BD=CD(1)求∠DBC的度数(2)若⊙O的半径为3,求的长.20.(10分)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.21.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧的中点,BD交AC于点E.(1)求证:AD2=DE•DB;(2)若BC=,CD=,求DE的长.22.如图所示,在△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线.(2)若点E是BC上一点,已知BE=6,cos∠ABC=,tan∠AEC=,求圆的直径.23.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.24.如图1,四边形ABCD内接于⊙O,BD为直径,上存在点E,满足=,连结BE并延长交CD的延长线于点F,BE与AD交于点G.(1)若∠DBC=α,请用含α的代数式表示∠AGB.(2)如图2,连结CE,CE=BG.求证:EF=DG.(3)如图3,在(2)的条件下,连结CG,AD=2.①若tan∠ADB=,求△FGD的周长.②求CG的最小值.参考答案一、选择题(共40分)1.解:∵圆的半径为5cm,圆心到直线l的距离为5cm,∴d=r,∴直线与圆相切,∴直线l和这个圆的公共点有1个,故选:B.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:A、a=1>0,抛物线开口向上,所以A选项错误;B、y=(x﹣1)2+2,抛物线顶点坐标为(1,2),B选项错正确.C、抛物线与y轴的交点坐标为(0,3),所以C选项错误;D、△=(﹣2)2﹣4×1×3=﹣8<0,则抛物线与x轴没有交点,所以D选项错误;故选:B.4.解:抽查总体数:10+40+100+200+300+500=1150,次品件数:0+1+2+3+6+10=22,P(抽到不合格产品)=≈0.02.则10000×0.02=200(件).∴估计不合格产品的件数为200件,故选:D.5.解:∵AB=10米,tan A==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选:B.6.解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:B.7.解:过点O作OE⊥AB于点E,∵OE⊥AB,∴AE=BE=AB=4,∵BO=5,∴EO==3,∵AC=6,∴BC=EC=2,∵CD⊥BE,OE⊥AB,∴CD∥EO,且CD是△BEO的中位线,∴CD=EO=1.5.故选:C.8.解:∵∠A=35°,∴∠ABC+∠ACB=180°﹣∠A=145°,∵⊙I是△ABC的内切圆,点I是内心,∴BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=∠ABC+∠ACB=(∠ABC+∠ACB)=72.5°,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣72.5°=107.5°,故选:D.9.解:∵45°<A<90°,∴根据sin45°=cos45°,sin A随角度的增大而增大,cos A随角度的增大而减小,当∠A>45°时,sin A>cos A.故选:B.10.解:如图所示:连接OP,OQ,过点O作OP′⊥AB,垂足为P′.∵A(﹣3,0)、B(0,4),∴OA=3,OB=4.由勾股定理可知AB=5.∵OP′•AB=OA•OB,∴OP′=.∵PQ是圆O的切线,∴OQ⊥QP.∴PQ=.∴当OP有最小值时,PQ有最小值.∵由垂线段最短可知PO的最小值=OP′=,∴PQ的最小值==.故选:B.二、填空题(共30分)11.解:从箱中随机取出一个球,这个球是白球的概率为,故答案为:.12.解:连接BD.由题意,OA=OB=OC=OD.∵∠DOB=100°,∴∠ADO=50°,∠OAD=∠ODB=40°,∴∠ADB=90°.又∵BD=32,∴AB=32÷sin50°≈41.8(cm).13.解:如图,过点A1作A1H⊥AB于H,∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=4,∴△A1BA是等腰三角形,∠A1BA=30°,∴A1H=A1B=2,∴S△A1BA=×4×2=4,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=4.故答案为:4.14.解:∵开口向上,∴a>0,∵对称轴为x=>0,∴b<0,﹣=,∴2a=﹣3b,∴2a﹣3b=﹣6b<0,故④错误,不符合题意;∵函数图象与y轴的交点在y轴负半轴上,∴c<0,故①正确,符合题意;∴abc>0,故②正确,符合题意;由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,故③正确,符合题意;∵3b=﹣2a,∴c﹣4b=c﹣3b﹣b=c﹣(﹣2a)﹣b=a﹣b+c+a>0,故⑤正确,符合题意,故答案为:①②③⑤.15.解:设点A向下平移x个单位后经过(2,0),则(5﹣x)2+32=52,解得x=1或9,∴将⊙A沿y轴向下平移1或9个单位后圆与x轴交于点(2,0),故答案为:1或9.16.解:∵BM=BE,∴∠BEM=∠BME,∵AB∥CD,∴∠BEM=∠GCM,又∵∠BME=∠GMC,∴MG=GC=2,∵G为CD中点,∴CD=AB=4.连接BF,FM,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF∥BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF∥BG,∴∠BNF=90°,∵BF平分∠ABN,∴F A=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=4.∵FE=FM,F A=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=4﹣x,NG=MG﹣NM=2﹣x,∵FM∥GC,∴=,即,解得x=4+2(舍)或x=4﹣,∴EF=BE=4﹣x=,∴sin∠AFE===2﹣1.故答案为:4;2﹣1.三、解答题(共80分)17.解:(1)4sin260°﹣3tan30°=4×=3﹣;(2)+cos245°+sin245°==4+1=5.18.解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率;(2)画树状图如下:由树状图知共有6种等可能结果,其中乙、丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为=.19.解:(1)∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠A=105°,∴∠C=180°﹣105°=75°,∵BD=CD,∴∠DBC=∠C=75°;(2)连接BO、CO,∵∠C=∠DBC=75°,∴∠BDC=30°,∴∠BOC=60°,故的长l==π.20.解:(1)由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴=2.解得a=3;(2)由(1)知,a=3,则该抛物线解析式是:y=x²﹣4x+3.∴抛物线向下平移3个单位后经过原点.∴平移后图象所对应的二次函数的表达式是y=x²﹣4x.21.(1)证明:由D是劣弧的中点,得⇒∠ABD=∠DAC,又∵∠ADB=∠EDA,∴△ABD∽△EAD,∴,∴AD2=DE•DB;(2)解:由D是劣弧的中点,得AD=DC,则DC2=DE•DB∵CB是直径,∴△BCD是直角三角形.∴BD===由DC2=DE•DB得,DE,解得DE=.22.(1)证明:∵BC是直径,∴∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACD=∠ABC,∴∠ACD+∠BCD=90°,即∠ACB=90°,∴CA是圆的切线;(2)解:∵cos∠ABC===,tan∠AEC==,∴设CB=3y,AC=5x,则EC=3x,AB=y,由勾股定理得:AC=2y,∴,解得:,∴BC=BE+CE=6+3x=10.23.解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.24.解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∵=,∴∠ABG=∠DBC=α,∴∠AGB=90°﹣α;(2)∵BD为⊙O的直径,∴∠BCD=90°,∴∠BEC=∠BDC=90°﹣α,∴∠BEC=∠AGB,∵∠CEF=180°﹣∠BEC,∠BGD=180°﹣∠AGB,∴∠CEF=∠BGD,又∵CE=BG,∠ECF=∠GBD,∴△CFE≌△BDG(ASA),∴EF=DG;(3)①如图,连接DE,∵BD为⊙O的直径,∴∠A=∠BED=90°,在Rt△ABD中,tan∠ADB=,AD=2,∴AB=×AD=,∵=,∴+=+,即=,∴AD=CE,∵CE=BG,∴BG=AD=2,∵在Rt△ABG中,sin∠AGB==,∴∠AGB=60°,AG=BG=1,∴EF=DG=AD﹣AG=1,∵在Rt△DEG中,∠EGD=60°,∴EG=DG=,DE=DG=,在Rt△FED中,DF==,∴FG+DG+DF=,∴△FGD的周长为;②如图,过点C作CH⊥BF于H,∵△BDG≌△CFE,∴BD=CF,∠CFH=∠BDA,∵∠BAD=∠CHF=90°,∴△BAD≌△CHF(AAS),∴FH=AD,∵AD=BG,∴FH=BG,∵∠BCF=90°,∴∠BCH+∠HCF=90°,∵∠BCH+∠HBC=90°,∴∠HCF=∠HBC,∵∠BHC=∠CHF=90°,∴△BHC∽△CHF,∴=,设GH=x,∴BH=2﹣x,∴CH2=2(2﹣x),在Rt△GHC中,CG2=GH2+CH2,∴CG2=x2+2(2﹣x)=(x﹣1)2+3,当x=1时,CG2的最小值为3,∴CG的最小值为.。

沪科版2022-2023学年九年级数学上册第三次月考测试题(附答案)

沪科版2022-2023学年九年级数学上册第三次月考测试题(附答案)

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(满分40分)1.如果α是锐角,且cosα=,那么sinα的值是()A.B.C.D.22.下列判断正确的是()A.不全等的三角形一定不是相似三角形B.不相似的三角形一定不是全等三角形C.相似三角形一定不是全等三角形D.全等三角形不一定是相似三角形3.如图,点D在△ABC的边AC上,添加下列一个条件仍不能判断△ADB与△ABC相似的是()A.∠ABD=∠C B.∠ADB=∠ABC C.BC2=CD•AC D.AB2=AD•AC 4.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b 的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x2 5.已知在△ABC中,∠C=90°且△ABC不是等腰直角三角形,设sin B=n,当∠B是最小的内角时,n的取值范围是()A.B.C.D.6.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c 在同一坐标系内的图象大致是()A.B.C.D.7.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连接AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于()A.2:3:5B.4:9:25C.4:10:25D.2:5:258.如图,在△ABC中,CD平分∠ACB,过D作BC的平行线交AC于M,若BC=m,AC =n,则DM=()A.B.C.D.9.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C 不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小10.如图,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°,动点P、Q 同时以每秒1cm的速度从点B出发,点P沿BA、AD、DC运动,点Q沿BC、CD运动,P点与Q点相遇时停止,设P、Q同时从点B出发x秒时,P、Q经过的路径与线段PQ 围成的图形的面积为y(cm2),则y与x之间的函数关系的大致图象为()A.B.C.D.二、填空题(满分20分)11.若点A(2,m)在函数y=x2﹣1的图象上,则A点的坐标是.12.在△ABC中,若∠A=30°,∠B=45°,AC=,则BC=.13.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上.设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为.14.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB 的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n 为正整数)三、解答题(满分90分)15.计算:+sin45°.16.已知线段a、b、c满足,且a+2b+c=26.(1)求a、b、c的值;(2)若线段x是线段a、b的比例中项,求x.17.如图,Rt△ABC中,斜边AB上一点M,MN⊥AB交AC于N,若AM=3cm,AB:AC =5:4,求MN的长.18.如图,在矩形ABCD中,E是AD边上的一点,BE⊥AC,垂足为点F.求证:△AEF ∽△CAB.19.如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD 之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1m)【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90】20.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).(1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围.(2)当x取什么值时,y的值最大?并求最大值.21.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.22.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.23.问题提出:数学课本上有这样一道题目:如图①,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?初步思考:(1)试计算出正方形零件的边长;深入探究:(2)李华同学通过探究发现如果要把△ABC按照图②加工成三个相同大小的正方形零件,△ABC的边BC与高AD需要满足一定的数量关系.则这一数量关系是:.(直接写出结论,不用说明理由);(3)若△ABC可以按照图③加工成四个大小相同的正方形,且∠B=30°,求证:AB=BC.参考答案一、选择题(满分40分)1.解:∵sin2α+cos2α=1,∴sinα===.故选:C.2.解:A,不正确,两个相似的三角形相似但不全等;B,正确,因为全等三角形是特殊的相似三角形,不相似即不构成全等的前提;C,不正确,因为相似三角形可以是全等三角形,全等三角形是特殊的相似三角形;D,不正确,因为全等三角形一定是相似三角形;故选:B.3.解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当=,即AB2=AC•AD时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故D正确;当=,即BC2=CD•AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误.故选:C.4.解:用作图法比较简单,首先作出y=(x﹣a)(x﹣b)图象,任意画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是y=(x﹣a)(x﹣b)﹣1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:答案是:x1<a<b<x2.故选:C.5.解:根据题意,知0°<∠B<45°.又sin45°=,∴0<n<.故选:A.6.解:观察二次函数图象可得出:a>0,﹣>0,c>0,∴b<0.∴反比例函数y=的图象在第一、三象限,一次函数y=bx﹣c的图象经过第二、三、四象限.故选:A.7.解:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:CE=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴=()2=,==,∴===(等高的三角形的面积之比等于对应边之比),∴S△DEF:S△ADF:S△ABF等于4:10:25,故选:C.8.解:∵CD平分∠ACB,过D作BC的平行线交AC于M,∴∠MDC=∠MCD,∴DM=MC,∴AM=AC﹣MC=n﹣DM,又∵DM∥BC,∴,即,解得DM=.故选:C.9.解:∵BE⊥AD于E,CF⊥AD于F,∴CF∥BE,∴∠DCF=∠DBE,设∠DCF=∠DBE=α,∴CF=DC•cosα,BE=DB•cosα,∴BE+CF=(DB+DC)cosα=BC•cosα,∵∠ABC=90°,∴O<α<90°,当点D从B向C运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC•cosα的值是逐渐减小的.故选C.面积法:S△ABC=•AD•CF+•AD•BE=•AD(CF+BE),∴CF+BE=,∵点D沿BC自B向C运动时,AD是增加的,∴CF+BE的值是逐渐减小.故选:C.10.解:过点P作PE⊥BC于E,设P、Q同时从点B出发x秒时,△BPQ的面积是y,∴PE=BP•sin B,∴当点P在AB上,即0<x≤10时,y=BQ•BP sin∠B=x2×=x2;∴当点P在AD上,即10≤x≤12时,y=梯形ABCD面积﹣△PDQ面积=36﹣PD•QD.而PD=12﹣x,QD=16﹣x,则y=﹣x2+14x﹣60;P到D之后,面积达到最大36cm2,且不变.故选:C.二、填空题(满分20分)11.解:把A(2,m)代入y=x2﹣1得m=4﹣1=3,所以A点坐标为(2,3).故答案为(2,3).12.解:作AB边的高CE.在Rt△ACE中,∵∠A=30°,AC=,∴CE=AC=.在等腰Rt△CBE中,BC=CE,故BC=.13.解:∵四边形ABCD为矩形,∴AD∥BC,∴△EAD∽△EBF,∴=,即=,解得,AD=12﹣x,∴y=x(12﹣x)=﹣x2+12x=﹣(x﹣)2+15,∴当x=时,长方形的面积最大,故答案为:.14.解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵==,∴=,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴S n=.故答案为:.三、解答题(满分90分)15.解:原式=+=1+=16.解:(1)设===k,则a=3k,b=2k,c=6k,所以,3k+2×2k+6k=26,解得k=2,所以,a=3×2=6,b=2×2=4,c=6×2=12;(2)∵线段x是线段a、b的比例中项,∴x2=ab=6×4=24,∴线段x=2.17.解:由题意得:△AMN∽△ACB∴AB:AC=AN:AM=5:4∴可知AN=,根据勾股定理得AM2+MN2=AN2∴MN=.18.证明:∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB.19.解:由题意得:∠AEB=42°,∠DEC=45°,∵AB⊥BD,CD⊥BD,∴在Rt△ABE中,∠ABE=90°,AB=15,∠AEB=42°,∴BE=≈15÷0.90=,在Rt△DEC中,∠CDE=90°,∠DEC=∠DCE=45°,CD=20,∴ED=CD=20,∴BD=BE+ED=+20≈36.7(m).答:两幢建筑物之间的距离BD约为36.7m.20.解:(1)过A作AE⊥BC于E,如图,∵∠B=30°,AB=x,∴AE=x,又∵平行四边形ABCD的周长为8cm,∴BC=4﹣x,∴y=AE•BC=x(4﹣x)=﹣x2+2x(0<x<4);(2)y=﹣x2+2x=﹣(x﹣2)2+2,∵a=﹣,∴当x=2时,y有最大值,其最大值为2.21.解:过B作BG∥AC交EF于G,∴△DBG∽△ADE,∴==,∵AE:EC=1:2,∴BG:CE=,∵BG∥AC,∴△BFG∽△CFE,22.解:①∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1,∴y=x2﹣3x,②假设存在点B,过点B做BD⊥x轴于点D,∵△AOB的面积等于6,∴AO•BD=6,当0=x2﹣3x,x(x﹣3)=0,解得:x=0或3,∴AO=3,∴BD=4即4=x2﹣3x,解得:x=4或x=﹣1(舍去).又∵顶点坐标为:(1.5,﹣2.25).∵2.25<4,∴x轴下方不存在B点,∴点B的坐标为:(4,4);③∵点B的坐标为:(4,4),∴∠BOD=45°,BO==4,当∠POB=90°,∴∠POD=45°,设P点横坐标为:x,则纵坐标为:x2﹣3x,即﹣x=x2﹣3x,解得x=2 或x=0,∴在抛物线上仅存在一点P(2,﹣2).∴OP==2,使∠POB=90°,∴△POB的面积为:PO•BO=×4×2=8.23.解:(1)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴,∴,解得x=48.答:正方形零件的边长为48mm.(2)BC=AD,如图2由已知条件得:EF∥GH∥BC,在△GBN与△EGM中,,∴△GBN≌△EGM,∴EG=BG,∵△AEF∽△AGH,∴,∴AE=EG,∴AE=EG=GB,∴△AEF∽△ABC,∴,∵PD=2x,∴AD=3x,BC=3x,∴AD=BC,故答案为:AD=BC;(3)如图3,过点A作AD⊥BC于D,分别交EF、GH于点M、N,设每个正方形的边长为a,∵EF∥GH∥BC,∴△AEF∽△AGH∽△ABC,∴,∴,解得AD=2.5a,BC=5a,∴BC=2AD.∵∠B=30°,AD⊥BC,∴AB=2AD,∴AB=BC.。

湖南省长沙市湘郡培萃实验中学2022—2023学年九年级上学期第三次月考数学试题(含答案解析)

湖南省长沙市湘郡培萃实验中学2022—2023学年九年级上学期第三次月考数学试题(含答案解析)

湖南省长沙市湘郡培萃实验中学2022—2023学年九年级上学期第三次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,其中有“把卖马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6+,那么支出2元记作()A .2B .2-C .4D .4-2.下列各曲线是在平面直角坐标系xOy 中根据不同的方程绘制而成的,其中是中心对称图形的是()A .B .C .D .3.党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重要指示批示精神转化为生动实践、交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙着力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增学位近468000个,请将数据468000用科学记数法表示为()A .60.46810⨯B .54.6810⨯C .446.810⨯D .346810⨯4.下列运算正确的是()A .236a a a +=B .3412a a a ⋅=C .()339a a =D .623a a a ÷=5.如图,在平面直角坐标系xOy 中,B 是反比例函数2(0)y x x=>的图象上的一点,则矩形OABC 的面积为()A.1B.2C.3D.46.教育部制定颁布《中小学教育惩戒规则(试行)》回应了社会关切的教育热点问题,受到了各方面高度关注.某校为了了解学生对《中小学教育惩戒规则(试行)》这一规则的了解情况,随机从全校2066名学生中抽取了200名学生进行调查,则下列说法正确的是()A.200名是样本容量B.被抽取的200名学生是调查的样本C.被抽取的200名学生对《中小学教育惩戒规则(试行)》的了解情况是调查的样本D.全校2066名学生对《中小学教育惩戒规(试行)》的了解情况是调查的样本7.如图,在⊙O中,∠ACB=34°,则∠AOB的度数是()A.17°B.34°C.56°D.68°8.笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先经过第一道门(A,B,或C),再经过第二道门(D或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有()种不同的可能?A.12B.6C.5D.29.下列说法:①等弧所对的圆心角相等;②经过三点可以作一个圆;③劣弧一定比优弧短;④平分弦的直径垂直于这条弦;⑤圆的内接平行四边形是矩形.其中正确的有()A .1个B .2个C .3个D .4个10.如图,在等边ABC 中,D 是AC 上一动点,连接BD ,将BCD △绕点B 逆时针旋转60°得到BAE ,连接ED ,若10BC =,则AED △的周长的最小值是()A .10B .C .10+D .20二、填空题11.分解因式:24a -=_____.12.若()()1213y y --,,,在反比例函数()0ky k x=>的图像上,则1y ________2y .(选填:><、或=)13.如图,将AOB 绕点O 逆时针旋转50︒后得到A OB ''△,若15AOB ∠=︒,则AOB '∠等于______.14.为了给同学庆祝生日,小明自己动手用扇形纸片制作了一顶圆锥形生日帽,生日帽的底面圆半径r 为7cm ,高h 为24cm ,则该扇形纸片的面积为________2cm .15.斛是中国古代的一种量器.据《汉书.律历志》记载:“斛底,方而圜(huán )其外,旁有庣(tiāo )焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”.如图所示,问题:现有一斛,其底面的外圆直径....为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差....为0.25尺),则此斛底面的正方形的边长为________尺.16.尊老敬老是中华民族的传统美德,某校文艺社团的同学准备在“五一”假期去一所敬老院进行感问演出,他们一共准备了6个节目,全体演员中有8人需参加两个或两个以上的节目演出,情况如下表.现要求,从演员换装的角度考虑,每位演员不能连续参加两个节日的演出,从节日安排的角度考虑,首尾两个节目分别是A,F,中间节目的顺序可以调换,请写出一种符合条件的节目先后顺序________(只需按演出顺序填写中间4个节目的字母即可).演员1演员2演员3演员4演员5演员6演员7演员8节目A√√√√√节目B√√√节目C√√√节目D√√节目E√√节目F√√√三、解答题17.计算:201|1(2)3-⎛⎫+---- ⎪⎝⎭π18.已知m 是方程250x x +-=的一个根,求代数式2(1)(2)(2)m m m +++-的值.19.已知:如图,A 为O 上的一点.求作:过点A 且与O 相切的一条直线.作法:①连接OA ;②以点A 为圆心,OA 长为半径画弧,与O 的一个交点为B ,作射线OB ;③以点B 为圆心,OA 长为半径画弧,交射线OB 于点P (不与点O 重合);④作直线PA .直线PA 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接BA .由作法可知BO BA BP ==.∴点A 在以OP 为直径的圆上.∴90OAP ∠=︒()(填推理的依据).∵OA 是O 的半径,∴直线PA 与O 相切()(填推理的依据).20.某中学毕业班学生1120人,现抽取240名学生对四个项目中A 长跑、B 跳绳、C 足球、D 实心球的成绩进行抽样调查调查结果如图.(1)补全条形图;(2)依据本次调查的结果,估计全体1120名学生中最喜欢A 长跑的人数;(3)现从喜欢长跑的学生中选取两人作为领跑员,符合条件的有甲乙两名男生和丙丁两名女生,从这四人中任选两人,请用画树状图或列表的方法求出刚好选中甲和丁的的概率.21.如图,在ABC 中,90C AD ∠︒=,是BAC ∠的平分线,O 是AB 上一点,以OA 为半径的O 经过点D ,交AB 于点E .(1)求证:BC 是O 的切线;(2)若24BE BD =,=,求O 的半径.22.某宾馆有若干间标准房,经市场调查表明,每天入住的房间数y (间)与每间标准房的价格x (元)之间满足一次函数关系.当标准房的价格为200元时,每天入住的房间数为60间;当标准房的价格为210元时,每天入住的房间数为55间.该馆规定每间标准房的价格不低于170元,且不高于240元.(1)求房间数y (间)与标准房的价格x (元)的函数关系式,并写出自变量x 的取值范围.(2)设客房的日营业额为w (元).若不考虑其他因素,宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?23.ABC 内接于O ,点E 在O 上,连接CE 和BE ,CE 交OB 于点D ,90CEB ABC ∠+∠=︒.(1)如图1,求证:AB 是O 的直径;(2)如图2,点G 在O 上,连接CG 交OA 于点H ,AC AD =,45ECG ∠=︒,求证:2ABC ACG ∠=∠;(3)如图3,连接AG ,在(2)的条件下,若16BC =,AG =O 的半径.24.定义[],,a b c 为函数2y ax bx c =++的特征数,若a b c t ++=(t 为常数),我们将[],,a b c 称为函数2y ax bx c =++的t 系特征数.(1)已知[],4,2a 为函数2y ax bx c =++的0系特征数,则该函数的顶点坐标是________;(2)若22,4,2n n ⎡⎤-+⎣⎦为函数2y ax bx c =++的特征数.对于任意实数n ,二次函数图象截直线y kx m =+(3)已知[],,a b c 为函数2y ax bx c =++的0系特征数,其中23a b c >>,一次函数2y ax b =+和反比例函数cy x=-交于()11,A x y ,()22,B x y 两点,令12L x x =-,试确定L 的取值范围.25.在平面直角坐标系xOy 中有两点A ,B ,若在y 轴上有一点P ,连接PA ,PB ,当45APB ∠=︒时,则称点P 为线段AB 关于y 轴的“半直点”.例:如图,点()3,1A -,()3,2B --,则点()0,1P 就是线段AB 关于y 轴的一个“半直点”.(1)示例中的线段AB 关于y 轴的另一个“半直点”的坐标为________;(2)若点P 为抛物线2497183y ax a x a ⎛⎫=-+++ ⎪⎝⎭上的定线段CD 关于y 轴的“半直点”,求点P 的坐标.(3)在平面直角坐标系中,点A 与点B 的坐标分别为()1,0,()0m ,,点P 为线段AB 关于y轴的“半直点”,对于y 轴上任意一点Q ,都有AQB APB ∠≤∠,求m 的值.参考答案:1.B【分析】用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.【详解】解:收入6元记作6+元,则支出2元记作2-元,故选:B .【点睛】本题考查正数、负数的意义,用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.2.C【分析】中心对称图形的定义:如果把一个图形绕着一个定点旋转180︒后,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心;根据定义对四个选项进行判断即可.【详解】解:A 、不是中心对称图形,故此选项不符合题意;B 、是旋转对称图形,但不是中心对称图形,故此选项不符合题意;C 、是中心对称图形,故此选项符合题意;D 、不是中心对称图形,故此选项不符合题意.故选C .【点睛】此题考查了中心对称图形的概念,熟练掌握中心对称图形的概念是解决此题的关键.3.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:数据468000用科学记数法表示为54.6810⨯,故选:B .【点睛】此题考查科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C【分析】根据幂的乘方与积的乘方,合并同类项,同底数幂的乘法法则进行计算即可解答.【详解】解:A 、2a 与3a 不能合并,故错误,不符合题意;B、347a a a⋅=,故错误,不符合题意;C、()339a a=,故正确,符合题意;D、624a a a÷=,故错误,符合题意;故选:C.【点睛】本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,熟练掌握它们的运算法则是解题的关键.5.B【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【详解】∵点B在反比例函数y=2x(x>0)的图象上,∴矩形OABC的面积S=|k|=2,故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.6.C【分析】根据总体、个体、样本、样本容量的意义进行判断即可.【详解】解:A.200是样本容量,原说法错误,故本选项不合题意;B.被抽取的200名学生对《中小学教育惩戒规则(试行)》的了解情况是调查的样本,原说法错误,故本选项不合题意;C.被抽取的200名学生对《中小学教育惩戒规则(试行)》的了解情况是调查的样本,说法正确,故本选项符合题意;D.全校2066名学生对《中小学教育惩戒规(试行)》的了解情况是调查的总体,原说法错误,故本选项不合题意.故选:C.【点睛】本题考查总体、个体、样本、样本容量,理解总体、个体、样本、样本容量的意义是正确判断的前提.7.D【分析】欲求∠AOB,又已知一圆周角,可利用圆周角与圆心角的关系求解.【详解】∠AOB、∠ACB是同弧所对的圆心角和圆周角,∠AOB=2∠ACB=68°,故答案为:D.【点睛】此题主要考查的是圆周角定理,解本题的要点在于熟知同弧所对的圆周角是圆心角的一半.8.B【分析】解决本题的关键是分析两道门各自的可能性情况,然后再进行组合得到打开两道门的方法,这类题要读懂题意,从中找出组合的规律进行求解,本题不同的是首先分析每道门的情况数,然后整体进行组合即可得解.【详解】解:因为第一道门有A、B、C三个出口,所以出第一道门有三种选择;又因第二道门有两个出口,故出第二道门有D、E两种选择,因此小松鼠走出笼子的路线有6种选择,分别为AD、AE、BD、BE、CD、CE.故选:B.【点睛】本题考查了概率、所有可能性统计,通过列举法可以举出所有可能性的路径.9.B【分析】利用圆的有关性质分别判断后即可确定正确的选项.【详解】解:①等弧所对的圆心角相等,正确,符合题意;②经过不在同一直线上的三点可以作一个圆,故原说法错误,不符合题意;③同圆或等圆中,劣弧一定比优弧短,故原说法错误,不符合题意;④平分弦(不是直径)的直径垂直于这条弦,故原说法错误,不符合题意;⑤圆内接四边形对角互补,平行四边形对角相等,所以圆的内接平行四边形是矩形,正确,符合题意,正确的有2个,故选:B.【点睛】本题考查了圆周角定理、确定圆的条件、垂径定理及圆内接四边形的性质等知识,熟练利用相关知识是解题关键.10.C【分析】根据旋转的性质,得BD=BE,∠DBE=60°,CD=AE,得△AED的周长=AC+BD,由勾股定理求出BF的长,根据垂线段最短即可得答案.【详解】解:如下图,作BF⊥AC于F,∵△ABC 是等边三角形,BC =10,∴AC =10,AF =FC =5,在Rt △BFC 中,BF ===,∵将△BCD 绕点B 逆时针旋转60°得到△BAE ,∴BD =BE ,∠DBE =60°,CD =AE ,∴△DBE 是等边三角形,BD =DE ,∴△AED 的周长=AE +AD +DE =CD +AD +BD =AC +BD ,∴当BD 最小,即BD =BF =AED 的周长最小,最小值=AC +BF =10+,故选:C .【点睛】本题考查了旋转的性质,等边三角形的性质,勾股定理,垂线段最短,解题的关键是熟练掌握旋转的性质并灵活运用.11.()()22a a +-##()()22a a -+【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式分解因式.【详解】解:()()2422a a a -=+-.故答案为:()()22a a +-【点睛】本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.12.<【分析】判断出反比例函数在每个象限内的增减性即可得到答案.【详解】解:∵反比例函数解析式为()0k y k x=>,∴反比例函数图象经过第二、四象限,在每个象限内y 随x 增大而增大,∵310-<-<,∴12y y <,故答案为:<.【点睛】本题主要考查了比较反比例函数值大小,正确判断出反比例函数在每个象限内的增减性是解题的关键.13.35︒##35度【分析】根据旋转的概念可知50BOB '∠=︒,再求出AOB '∠的度数即可.【详解】解:∵AOB 绕点O 逆时针旋转50︒后得到A OB ''△,∴50BOB '∠=︒,∵15AOB ∠=︒,∴501535AOB BOB AOB ⅱÐ=Ð-Ð=°-°=°,故答案为:35︒.【点睛】本题考查了旋转角的概念,正确找到旋转角50BOB '∠=︒是解答本题的关键.14.175π【分析】先根据勾股定理求出圆锥的母线长,再根据圆锥的侧面展开图是扇形,利用圆锥的侧面积=底面周长×母线长÷2,列式计算即可.【详解】解:生日帽的底面圆半径r 为7cm ,高h 为24cm ,()25cm =,∵底面圆半径r 为7cm ,∴底面周长为14cm π,∴该扇形纸片的面积为:()2114251752cm ππ⨯⨯=.故答案为:175π.【点睛】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15【分析】如图,根据四边形CDEF 为正方形,可得∠D =90°,CD =DE ,从而得到CE 是直径,∠ECD =45°,然后利用勾股定理,即可求解.【详解】解:如图,∵四边形CDEF 为正方形,∴∠D =90°,CD =DE ,∴CE 是直径,∠ECD =45°,根据题意得:AB =2.5, 2.50.2522CE =-⨯=,∴22222CE CD DE CD =+=,∴CD ,尺.【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.16.EBDC (答案不唯一)【分析】根据题意,可先确定第二个节目为节目E ,继而确定第三个节目和第五个节目的可能性,最后确定了第四个节目,即可得到答案.【详解】解:由题意得,首尾两个节目分别是A ,F ,节目A 参演演员有1、3、5、6、8,节目F 参演演员有5、7,由于从演员换装的角度考虑,每位演员不能连续参加两个节目的演出,故可先确定第二个节目为不含演员1、3、5、6、8的节目,即节目E ,第三个节目为不含2、7的节目,即节目B 或C ,第五个节目为不含5、7的节目,即节目B 或C ,所以,可确定第四个节目为节目D ,综上,演出顺序为节目AEBDC 或AECDBF .故答案为:EBDC (答案不唯一)【点睛】此题考查了统计表,利用信息做出决策或方案,能够正确理解题意是解题的关键.17.【分析】先根据负整数指数幂、零指数幂的运算法则,绝对值的意义和二次根式的性质进行化简,然后再进行计算即可.【详解】解:201|1(2)3-⎛⎫+---- ⎪⎝⎭π211113=---⎛⎫ ⎪⎝⎭11=---=7-【点睛】本题主要考查了实数的混合运算,熟练掌握负整数指数幂、零指数幂的运算法则,绝对值的意义和二次根式的性质,是解题的关键.18.7【分析】由题意易得25m m +=,然后把代数式进行化简,最后整体代入求解即可.【详解】解:∵m 是方程250x x +-=的一个根,∴250m m +-=,∴25m m +=,∴2(1)(2)(2)m m m +++-22214m m m =+++-2223m m =+-22()3m m =+-2537=⨯-=.【点睛】本题主要考查一元二次方程的解、乘法公式及代数式的值,熟练掌握一元二次方程的解、乘法公式及代数式的值是解题的关键.19.(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理【分析】(1)根据所给的几何语言作出对应的图形即可;(2)根据圆周角定理和切线的判定定理解答即可.【详解】解:(1)补全图形如图所示,直线AP 即为所求作;(2)证明:连接BA ,由作法可知BO BA BP ==,∴点A 在以OP 为直径的圆上,∴90OAP ∠=︒(直径所对的圆周角是直角),∵OA 是O 的半径,∴直线PA 与O 相切(切线的判定定理),故答案为:直径所对的圆周角是直角,切线的判定定理.【点睛】本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键.20.(1)见解析(2)280人(3)16【分析】(1)总人数乘以A 项目对应百分比求出其人数,再根据四个项目人数之和等于240求出C 项目人数,从而补全图形;(2)总人数乘以样本中A 项目人数所占比例即可;(3)画树状图展示所有12种等可能的结果,找出刚好选中甲和丁的结果数,然后根据概率公式计算.【详解】(1)解:A 项目人数为24025%60⨯=(人),C 项目人数为240(608424)72-++=(人),补全图形如下:(2)解:估计全体1120名学生中最喜欢A 中长跑的人数为112025%280⨯=(人);(3)解:画树状图如下:共有12种等可能的结果,其中刚好选中甲和丁的有2种结果,∴刚好选中甲和丁的概率为21126=.【点睛】此题考查的是条形统计图,扇形统计图,用树状图法求概率.树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)见解析(2)3【分析】(1)由OA OD =及AD 平分BAC ∠,则可得//OD AC ,再由90C ∠=︒即得到要证的结论;(2)连接DE ,证明BDE BAD ∽△△,由相似三角形的性质即可求得半径.【详解】(1)证明:∵OA OD =,AD 平分BAC ∠,∴ODA OAD ∠=∠,DAC OAD ∠=∠,∴ODA DAC ∠=∠,∴//OD AC ,∵90C ∠=︒,∴90ODB C ∠=∠=︒,即BC 是O 的切线;(2)连接DE ,如图,∵AE 是圆的直径,∴90ADE C ∠=∠=︒,∵DAC OAD ∠=∠,∴AED ADC ∠=∠,∵B B ∠=∠,∴BDE BAD ∽△△,∴BD AB BE BD=,∴21682BD AB BE ===,∴826=-=-=AE AB BE ,则圆的半径为:132AE =.【点睛】本题主要考查了切线的判定,相似三角形的判定与性质,掌握这两点知识是关键,其它还涉及平行线的判定与性质,等腰三角形的性质,角平分线的定义,直径所对的圆周角是直角等知识,证明三角形相似是本题的关键.22.(1)11602y x =-+,170240x ≤≤(2)当宾馆标准房的价格定为170元时,客房的日营业额最大,最大为12750元【分析】(1)直接利用待定系数法求解即可;(2)根据营业额=单价⨯数量,建立w 与x 的二次函数关系式,利用二次函数的性质求解即可.【详解】(1)解:设房间数y (间)与标准房的价格x (元)的函数关系式为y kx b =+,由题意得2006021055k b k b +=⎧⎨+=⎩,∴12160k b ⎧=-⎪⎨⎪=⎩,∴房间数y (间)与标准房的价格x (元)的函数关系式为()11601702402y x x =-+≤≤;(2)解:由题意得()2211116016016012800222w x x x x x ⎛⎫=-+=-+=--+ ⎪⎝⎭,∵102-<,∴当170240x ≤≤时,w 随x 增大而减小,∴当170x =时,w 最大,最大为()2117016012800127502-⨯-+=,∴当宾馆标准房的价格定为170元时,客房的日营业额最大,最大为12750元.【点睛】本题主要考查了一次函数的实际应用,二次函数的实际应用,理解题意,正确列出对应的关系式是解题的关键.23.(1)见解析(2)见解析(3)10【分析】(1)根据圆周角定理,可得BAC CEB ∠=∠进而推出90BAC ABC ∠+∠=︒,即90ACB ∠=︒,即可得出结论;(2)令ACG x ∠=,由45ECG ∠=︒,90ACB ∠=︒,可表示出45BCE x ∠=︒-,45ACD x ∠=︒+,在根据AC AD =和三角形外角性质可推出()45452ABC x x x ∠=︒+-︒-=,即可得到结论;(3)连接OG ,过点O 作BC 的垂线,垂足为M ,过点G 作OA 的垂线,垂足为K ,可证明()AAS OKG BMO ≅△△,故8OK BM ==,设AK m =,根据GK 为Rt AGK △和Rt OGK △的公共边可得出2222AG AK OG OK -=-,求出m 后,可求出AO ,继而得出结论.【详解】(1)证明: BCBC =,∴BAC CEB ∠=∠,90CEB ABC ∠+∠=︒,∴90BAC ABC ∠+∠=︒,∴()18090ACB BAC ABC ∠=︒-∠+∠=︒,∴AB 是O 的直径;(2)证明:令ACG x ∠=, 45ECG ∠=︒,90ACB ∠=︒,∴45BCE x ∠=︒-,45ACD x ∠=︒+, AC AD =,∴ACD ADC ∠=∠,∴45ADC x ∠=︒+,又 ADC BCE ABC ∠=∠+∠,∴()45452ABC x x x ∠=︒+-︒-=,∴2ABC ACG ∠=∠;(3)由(2)可知2ABC ACG ∠=∠,连接OG ,∴2AOG ACG ∠=∠,∴AOG OBC ∠=∠,过点O 作BC 的垂线,垂足为M , 16BC =,∴182MB BC ==,过点G 作OA 的垂线,垂足为K ,∴90OKG OMB ∠=∠=︒, OB OG =,∴()AAS OKG BMO ≅△△,∴8OK BM ==,又 AG =设AK m =,则8OG OA m ==+,在Rt AGK △和Rt OGK △中,2222AG AK OG OK -=-,∴()2240864m m -=+-,解得2m =或10m =-(舍去),∴2810OG =+=,即O 的半径为10.【点睛】本题考查了圆周角定理,三角形外角性质,全等三角形的性质和判定,勾股定理,解一元二次方程等,综合性较强,难度较大.解题时注意结合图形分析已知条件与问题之间的位置关系,把条件与问题的联系作为主要的思考方向.24.(1)18(,)33(2)2y =+L ≤<【分析】(1)根据定义求出a 的值,然后代入求出顶点式即可得到答案;(2)先将22,4,2n n ⎡⎤-+⎣⎦代入2y ax bx c =++,得到22242y x nx n =-++,根据题意,=,计算即可求出答案;(3)联立一次函数与反比例函数得2c ax b x-+=,进而有12L x x =-=,由0a b c ++=得c a b =--代入,得L ==23a b c >>,即可求出答案.【详解】(1)解:由题意可知,6a =-,4b =,2c =,∴函数解析式为2642y x x =-++,2186()33y x =--+∴函数图象的顶点坐标是18(,)33;(2)∵22,4,2n n ⎡⎤-+⎣⎦为函数2y ax bx c =++的特征数,∴22242y x nx n =-++,令22242x nx n kx m -+=+,∴222420x nx kx n m --+-=,∴222(4)20x n k x n m -++-=∴x =∵二次函数图象截直线y kx m =+=∴即对于任意的n=80k -=,解得k =将k ==2m =.∴直线的解析式为2y =+;(3)∵[],,a b c 为函数2y ax bx c =++的0系特征数,即0a b c ++=,∵一次函数2y ax b =+和反比例函数c y x=-交于()11,A x y ,()22,B x y 两点,联立得2c ax b x-+=,即220ax bx c ++=,则22b x a-=,代入12L x x =-可得,12L x x a=-=,∵0a b c ++=,∴c a b =--,将c a b =--代入上式得:L ==又∵23a b c >>,即233a b a b >>--,解得:3152b a -<<,当12b a =-时,min L =当12b a =时,L =.L ≤<【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质,理解定义,将所求问题与所求函数问题相结合是解题的关键.25.(1)()0,2-(2)定线段CD 关于y 轴的“半直点”为()0,2E ,()0,3F -(3)3m =±【分析】(1)利用对称性质,根据“半直点”即可求解;(2)如图1,以CD 为斜边作等腰直角CMD △,以点M 为圆心,MC 为半径作圆M ,交y 轴于点E ,F ,作GH y ∥轴,分别过点C ,D 作CG GH ⊥于点G ,DH GH ⊥于点H ,求得51,22M ⎛⎫- ⎪⎝⎭,再连接CE ,DE ,CF ,DF ,如图2,求出定线段CD 关于y 轴的“半直点”为()10,2P ,()20,3P-即可;(3)分两种情况:①当1m >时,②当01m <<时,分别求解即可.【详解】(1)解:如图:∵()3,1A -,()3,2B --,∴线段AB 关于y 轴的另外的“半直点”P '的坐标为()0,2-,(2)解:∵CD 为抛物线2497183y ax a x a ⎛⎫=-+++ ⎪⎝⎭上的定线段,所以C ,D 为抛物线上的定点.即29180ax ax a -+=,解得3x =或6,则()3,3C ,()6,1D -,如图1,以CD 为斜边作等腰直角CMD △,以点M 为圆心,MC 为半径作圆M ,交y 轴于点E ,F ,作GH y ∥轴,分别过点C ,D 作CG GH ⊥于点G ,DH GH ⊥于点H ,∵CMD △是等腰直角三角形,∴MC MD =,90CMD ∠=︒,∴90GMC DMH ∠+∠=︒,∵CG GH ⊥,DH GH ⊥,∴90CGM MHD ∠=∠=︒,∴90GMC GCM ∠+∠=︒,∴GCM DMH ∠=∠,∴()AAS CGM MHD ≅△△,∴CG MH =,GM DH =,设(),M m n ,由题知3CG m =-,1MH n =+,3GM n =-,6DH m =-,∴3136m n n m -=+⎧⎨-=-⎩,,解得5212m n ⎧=⎪⎪⎨⎪=-⎪⎩,∴51,22M ⎛⎫- ⎪⎝⎭,如图2,连接CE ,DE ,CF ,DF,则1452CED CFD CMD ∠=∠=∠=︒,∴则线段CD 关于y 轴的“半直点”即为点E ,F ,设点()0,E t ,∵2ME MD ==,∴2225122t ⎛⎫⎛⎫⎛++= ⎪ ⎪ ⎝⎭⎝⎭⎝,解得13t =-,22t =,∴定线段CD 关于y 轴的“半直点”为()10,2P ,()20,3P-.(3)解:∵点P 为线段AB 关于y 轴的“半直点”,∴45APB ∠=︒,当0m ≤时,在y 轴上必然存在Q ,使得45AQB ∠>︒,∴0m >且1m ≠.①当1m >时,如图所示的构造经过A 、B 两点的圆C ,使圆C 与y 轴相切.要使AQB APB ∠≤∠恒成立,则P 为切点.连接CP ,CA ,CB ,则CP y ⊥轴,CP CA CB ==;又∵45APB ∠=︒,∴90ACB ∠=︒,则CAB △为等腰直角三角形,∵()1,0A ,(),0B m ,点C 的横坐标为12m +,则12m CP CA CB +===,又1AB m =-,∴1m -=3m =+;②当01m <<时,如图所示构造经过A 、B 两点的圆C ,使圆C 与y 轴相切.要使AQB APB ∠≤∠恒成立,则P 为切点.连接CP ,CA ,CB ,则CP y ⊥轴,CP CA CB ==;又∵45APB ∠=︒,∴90ACB ∠=︒,则CAB △为等腰直角三角形,∵()1,0A ,(),0B m ,点C 的横坐标为12m +,则12m CP CA CB +===,又1AB m =-,∴1m -=解得3m =-.综上,3m =±【点睛】本题考查新定义问题,抛物线的图象性质,等腰直角三角形的判定与性质,切线的性质,全等三角形的判定与性质,解一元二次方程,本题综合性较虽,属中考试压轴题目,熟练掌握相关知识面是解题的关键.。

北师大版2022-2023学年九年级数学上册第三次月考测试题(附答案)

北师大版2022-2023学年九年级数学上册第三次月考测试题(附答案)

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共36分)1.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别交于点A,B,C和点D,E,F.若,DE=4,则DF的长是()A.B.C.6D.102.已知点A(0,3),B(﹣4,8),以原点O为位似中心,把线段AB缩短为原来的,点D与点B对应.则点D的坐标为()A.(﹣1,2)B.(1,﹣2)C.(﹣1,2)或(1,﹣2)D.(2,﹣1)或(﹣2,1)3.若反比例函数的图象经过点,且m≠0,则下列说法不正确的是()A.图象位于第一、三象限B.图象经过点P(2,3)C.y随x的增大而减小D.图象关于原点对称4.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A.B.C.D.5.如图,一次函数y=ax+b与反比例函数y=(k>0)的图象交于点A(1,2),B(m,﹣1).则关于x的不等式ax+b>的解集是()A.x<﹣2或0<x<1B.x<﹣1或0<x<2C.﹣2<x<0或x>1D.﹣1<x<0或x>26.如图,AB∥EF∥CD,FG∥BH,下列结论一定正确的是()A.B.C.D.7.下列命题中,正确的是()A.两个相似三角形的面积之比等于它们周长之比B.两边成比例且一角相等的两个三角形相似C.反比例函数y=(k>0)中,y随x的增大而减小D.位似图形的位似中心不一定是唯一的8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.9.广场上有旗杆如图1所示,某学校兴趣小组测量了该旗杆的高度,如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°,1米的标杆EF竖立在斜坡上的影长FG为2米,则旗杆的高度为()A.18B.20C.22D.2410.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线(x>0)上,则图中S△OBP=()A.B.C.D.411.如图,△ABC中,∠B=90°,点E在AC上,EF⊥AB于点F,EG⊥BC,已知△AFE 的面积为a,△EGC的面积为b,则矩形BFEG的面积为()A.a+b B.ab C.D.12.如图,在平面直角坐标系中,平行四边形ABCD的边AB交x轴于点E,反比例函数的图象经过CD上的两点D,F,若DF=2CF,EO:OC=1:3,平行四边形ABCD的面积为7,则k的值为()A.B.C.2D.二、填空题(共16分)13.如图,P是反比例函数y=图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为.14.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=2,AC=4,则BD =.15.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=3,AD=6,点A的坐标为(3,8).将矩形向下平移a,若矩形的两个顶点恰好同时落在反比例函数的图象上,则矩形的平移距离a的值为.16.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.在△ABC内并排放入(不重叠)边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点分别在AC、BC上,依次这样摆放上去,则最多能摆放个小正方形纸片.三、解答题(共68分)17.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.(3)求出△A2B2C2的面积.18.已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC延长线相交于点E.(1)求证:△ABM∽△MCD;(2)若AM=2,AB=5,求⊙O半径.19.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.20.某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图象的一部分,设公司销售这种电子产品的年利润为w(万元).(1)请求出y(万件)与x(元/件)之间的函数关系式;①求出当4≤x≤8时的函数关系式;②求出当8<x≤28时的函数关系式.(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;21.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在上,求的值;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<180°),如图2,求:的值;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<180°),当C,G,E三点共线时,请直接写出DG的长度.22.如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON 交于A,B两点,如果∠APB绕点P旋转时始终满足OA⋅OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图1,已知∠MON=α,若∠APB是∠MON的智慧角,写出∠APB的度数(用含α的式子表示);(2)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB叫做∠MON的智慧角;(3)如图3,C是函数y=图象上的一个动点,过点C的直线CD分别交x 轴和y轴于点A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.参考答案一、选择题(共36分)1.解:∵l1∥l2∥l3,∴==,又DE=4,∴EF=6,∴DF=DE+EF=10,故选:D.2.解:∵以原点O为位似中心,把线段AB缩短为原来的,点B的坐标为(﹣4,8),∴点D的坐标为(﹣4×,8×)或,即(﹣1,2)或(1,﹣2).故选:C.3.解:把代入得,k=6,∴,当x=2,y=3,∴经过P(2,3),当k=6>0,反比例函数图像位于一、三象限;在每一项内y随x的增大而减小;图像关于原点对称.故选:C.4.解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB∥DG,∴△ABE∽△CGE,∴===,故选:C.5.解:∵A(1,2)在反比例函数图象上,∴k=1×2=2,∴反比例函数解析式为,∵B(m,﹣1)在反比例函数图象上,∴,∴B(﹣2,﹣1),由题意得关于x的不等式的解集即为一次函数图象在反比例函数图象上方时自变量的取值范围,∴关于x的不等式的解集为﹣2<x<0或x>1,故选:C.6.解:∵AB∥EF∥CD,∴,故A不符合题意;∵FG∥BH,∴△DFG∽△DBH,∴,∴故C符合题意,D不符合题意;根据现有条件无法证明,故B不符合题意;故选:C.7.解:A、两个相似三角形的面积之比等于它们周长之比的平方,说法错误,不符合题意;B、两边成比例且这两边的夹角相等的两个三角形相似,说法错误,不符合题意;C、反比例函数中,在每个象限内y随x的增大而减小,说法错误,不符合题意;D、位似图形的位似中心不一定是唯一的,说法正确,符合题意;故选:D.8.解:因为二次函数y=ax2+bx+c的图象开口向上,得出a>0,与y轴交点在y轴的负半轴,得出c<0,利用对称轴x=﹣<0,得出b>0,所以一次函数y=ax+b经过一、二、三象限,反比例函数y=经过二、四象限,故选:A.9.解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意得△MCD∽△EFG,∴,即,∴CM=4米,又∵∥BC,AB∥CM,AB⊥BC,∴四边形MNBC是矩形,∴MN=BC=16米,BN=CM=4米.在直角△AMN中,∠AMN=45°,∴AN=MN=16米,∴AB=AN+BN=20米.故选:B.10.解:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP=S△AOP,∴S△OBP=S△AOB,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB,∵点B在反比例函数y=的图象上,∴S△OBE=×4=2,∴S△OBP=S△AOB=2S△OBE=4.故选:D.11.解:∵∠B=90°,EF⊥AB,EG⊥BC,∴四边形BFEG是矩形,∴EF∥CG,BF∥EG,∴∠A=∠CEG,∠AEF=∠C,∴△AEF∽△ECG,∴,∴EF⋅EG=AF⋅CG,∵△AFE的面积为a,△EGC的面积为b,∴,∴,∴,∴(EF⋅EG)2=4ab,∴,故选:D.12.解:如图,分别过点D,点F作x轴的垂线,垂足分别为G,H,连接DE,∴DG∥FH,∴FH:DG=CF:CD=CH:CG,∵DF=2CF,∴CF:CD=1:3,设点F的横坐标为m,则F(m,),∴FH=,∴DG=3FH=,∴D(m,),∴OG=m,OH=m,∴GH=m,CH=m,∴OC=m,∵EO:OC=1:3,∴OE=m,∴CE=m.∵平行四边形ABCD的面积为7,∴△CDE的面积为,∴•m•=,整理得k=.故选:A.二、填空题(共16分)13.解:依据比例系数k的几何意义可得,△P AO面积等于|k|,即|k|=1,k=±2,由于函数图象位于第一、三象限,则k=2,∴反比例函数的解析式为y=;故答案为:y=.14.解:∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,∴,即,∴BD=6,故答案为:6.15.解:∵四边形ABCD是矩形,AD平行于x轴,且AB=3,AD=6,点A的坐标为(3,8),∴AB=CD=3,AD=BC=6,∴B(3,5),C(9,5),∴矩形平移后A的坐标是(3,8﹣a),C的坐标是(9,5﹣a),∵A、C落在反比例函数的图象上,∴k=3(8﹣a)=9(5﹣a),解得a=3.5,故答案为:3.5.16.解:如解图,过点C作CF⊥AB于点F.在Rt△ABC中,∠C=90°,AC=6,BC=8,则由勾股定理,得;∴,∴.∴小正方形最多可以排4排.设最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E.∵DE∥AB,∴△CED∽△CAB,∴,∴,∴最下边一排是7个正方形.设第二排正方形的上边的边所在的直线与△ABC的边交于点G、H,同理可得,∴,∴第二排是5个正方形;同理,第三排是3个;第四排是1个,∴正方形的个数是7+5+3+1=16,故答案为:16.三、解答题(共68分)17.解:(1)如图所示,△A1B1C1为所作;(2)如图所示,△A2B2C2为所作,点B2的坐标为(﹣4,﹣6);(3)△A2B2C2面积=6×4﹣×4×4﹣﹣=8.18.(1)证明:∵AD为⊙O的直径,∴∠AMD=90°,∴∠AMB+∠DMC=90°,∵AB⊥BC,CD⊥BC,∴∠ABM=∠MCD=90°,∴∠BMA+∠BAM=90°,∴∠BAM=∠CMD,∴△ABM∽△MCD;(2)解:如图所示,连接OM,∵BC为⊙O的切线,切点为M,∴OM⊥BC,又∵AB⊥BC,∴AB∥OM,∴∠BAM=∠AMO,∵OA=OM,∴∠OAM=∠OMA,∴∠OAM=∠BAM,又∵∠ABM=∠AMD=90°,∴△ABM∽△AMD,∴=,即=,∴AD=8,∴⊙O半径为4.19.解:(1)∵y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B (6,n),∴m=2,n=1,∴A(2,3),B(6,1),则有,解得,∴直线AB的解析式为y=﹣x+4(2)如图,当P A⊥OD时,∵P A∥OC,∴△ADP∽△CDO,此时P(2,0).②当AP′⊥CD时,易知△P′DA∽△CDO,∵直线AB的解析式为y=﹣x+4,∴D(8,0),C(0,4),∴CD==4,AD=2,∵DP′:CD=AD:OD,∴DP′:4=3:8,∴DP′=,∴OP′=,∴P′(3,0),∴直线P′A的解析式为y=2x﹣1,令y=0,解得x=,∴P′(,0),综上所述,满足条件的点P坐标为(2,0)或(,0).20.(1)解:①4≤x≤8时,设,将点A(4,40)的坐标代入,得k=4×40=160,②8<x≤28时,设y=k'x+b(k'≠0),分别将点B(8,20),C(28,0)的坐标代入y=k'x+b,得,解得,∴y=﹣x+28;(2)解:当4≤x≤8时,;y=﹣x+28时,20≤y≤24;综上可知,w(万元)与x(元/件)之间的函数关系式为w=.21.解:(1)∵四边形ABCD是正方形,四边形AFEG是正方形,∴∠AGE=∠D=90°,∠DAC=45°,∴=,GE∥CD,∴==;(2)连接AE,由旋转性质知∠CAE=∠DAG=α,在Rt△AEG和Rt△ACD中,=cos45°=,=cos45°=,∴=,∴△ADG∽△ACE,∴==,(3)①如图:由(2)知△ADG∽△ACE,∴==,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴CG===8,∴CE=CG﹣EG=8﹣8,∴DG=CE=4﹣4;②如图:由(2)知△ADG∽△ACE,∴==,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC=16,∵AG=AD∴AG=AD=8,∵四边形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴∠AGC=90°∴CG===8,∴CE=CG+EG=8+8,∴DG=CE=4+4.综上,当C,G,E三点共线时,DG的长度为4﹣4或4+4.22.(1)解:∵∠APB是∠MON的智慧角,∴OA•OB=OP2,∴=,∵P为∠MON的平分线上一点,∴∠AOP=∠BOP=∠MON=α,∴△AOP∽△POB,∴∠OAP=∠OPB,∴∠APB=∠OPB+∠OP A=∠OAP+∠OP A=180°﹣∠AOP=180°﹣α;(2)证明:∵∠MON=90°,P为∠MON的平分线上一点,∴∠AOP=∠BOP=∠MON=45°,∵∠AOP+∠OAP+∠APO=180°,∴∠OAP+∠APO=135°,∵∠APB=135°,∴∠APO+∠OPB=135°,∴∠OAP=∠OPB,∴△AOP∽△POB,∴,∴OP2=OA•OB,∴∠APB是∠MON的智慧角;(3)解:设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,如图2:BC=2CA不可能;当点A在x轴的正半轴上时,如图3:∵BC=2CA,∴,∵CH∥OB,∴△ACH∽△ABO,∴,∴OB=3b,OA=a,∴OA•OB=a•3b==,∵∠APB是∠AOB的智慧角,∴OP==,∵∠AOB=90°,OP平分∠AOB,∴点P到x,y轴的距离相等为∴点P的坐标为:(,);②当点B在y轴的负半轴上时,如图4,∵BC=2CA,∴AB=CA,在△ACH和△ABO中,,∴△ACH≌△ABO(AAS),∴OB=CH=b,OA=AH=a,∴OA•OB=a•b=,∵∠APB是∠AOB的智慧角,∴OP==,∵∠AOB=90°,OP平分∠AOB,∴点P到x,y轴的距离相等为,∴点P的坐标为:(,﹣);综上所述:点P的坐标为:(,)或(,﹣).。

人教版九年级上册数学第三次月考试题带答案

人教版九年级上册数学第三次月考试题带答案

人教版九年级上册数学第三次月考试卷一、单选题1.下列4个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.如图,⊙O的半径是5,弦AB=6,OE⊥AB于E,则OE的长是()A.2B.3C.4D.53.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣34.若⊙O的半径为8cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定5.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=()A.2B.3C.4D.56.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25πB.65πC.90πD.130π7.如图,已知C、D在以AB为直径的⊙O上,若∠CAB=30°,则∠D的度数是()A.30°B.70°C.75°D.60°8.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC =5,则△ABC的周长为()A.16B.14C.12D.109.如图,在矩形ABCD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A.4B.214C.5D.25410.如图,点C在以AB为半径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关AC对称,DF⊥DE于点D,并交EC的延长线与点F.下列结论:①CE=CF;②线段EF的最小值为3③当AD=2时,EF与半圆相切;④当点D从点A运动到点B时,线段EF扫过的面积是3.其中正确的结论()A.1个B.2个C.3个D.4个二、填空题11.若点P(a,﹣2)、Q(3,b)关于原点对称,则a﹣b=_____.12,则它的周长是______.13.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为________.14.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径为______.15.如图,正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上.若AB =4,则CN=_____.三、解答题16.如图,⊙O的弦AB与半径OC相交于点P,BC∥OA,∠C=50°,那么∠APC的度数为.17.解方程(1)x2﹣4x=0(2)2x2+3=7x18.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).19.如图,AB是⊙O的一条弦,且AB=C,E分别在⊙O上,且OC⊥AB于点D,∠E=30°,连接OA.求OA的长.20.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求 BC的长.21.如图,AB为⊙O的直径,直线l经过⊙O上一点C,过点A作AD⊥l于点D,交⊙O 于点E,AC平分∠DAB.(1)求证:直线l是⊙O的切线;(2)若DC=4,DE=2,求线段AB的长.22.如图,以等边三角形ABC一边AB为直径的⊙O与边AC,BC分别交于点D,E,过点D作D F⊥BC,垂足为点F.(1)求证:D F为⊙O的切线;(2)若等边三角形ABC的边长为4,求D F的长;(3)求图中阴影部分的面积.23.如图直角坐标系中,已知A(-8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.24.已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A,B两点(点A在点B左侧),与y轴交于点C、设直线CM与x轴交于点D.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点P,使以点P为圆心的圆经过A、B两点,且与直线CD相切?若存在,求出P的坐标;若不存在.请说明理由.(3)设直线y=kx+2与抛物线交于Q、R两点,若原点O在以QR为直径的圆外,请直接写出k的取值范围.参考答案1.A2.C3.A4.A5.B6.B7.D8.B9.D10.C 11.-5 12.12 13.240°14.315.6-16.75°.17.(1)x1=0,x2=4;(2)x1=12,x2=318.(1)画图见解析;(2)点B所经过的路径长为5π2.19.4.20.(1)证明过程见解析;(2)π21.(1)详见解析;(2)AB=10.22.(1)证明见解析;(2(3)332 23π-.23.(1)直线OB与⊙M相切.;(2)M的坐标为(-247,247).24.(1)y=﹣x2+2x+3;(2)满足题意的点P存在,其坐标为(1,﹣);(3)213 3 -<k<213 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学第三次月考考试试卷
(满分:120分 时间:120分钟 )
一、填空题(共30分) 1、=+82
2、已知在⊙O 中,弦AB 的长为8㎝,圆心O 到弦AB 的距离为3㎝,则⊙O 的半径是______
3、用长为4㎝,5㎝,6㎝的三条线段围成三角形的事件,是________ 事件..
4、某工厂今年利润为a 万元,计划今后每年增长m ﹪,两年后的利润为____________
5、若圆锥的底面半径为3㎝,母线长是5㎝,则它的侧面展开图的面积为____________.
6、用反证方法证明“在△ABC 中,不能有两个钝角”的第一步是假设: 7
的点的距离最近的整数点所表示的数是 . 8、请写出有一个解是-1的一元二次方程:__________
9、如图,点A B ,⊙O 是上两点,10AB =,点P 是⊙O 的动点(P 与A B ,不重合),连
结AP PB ,,过点O 分别作OE AP ⊥于E ,OF PB ⊥于F ,则EF = . 10、如图,矩形A BCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E ,GB=8
AD=2㎝,则EF=
二、选择题:(18分)
11、下列各式是二次根式的是( )
(A )7- (B )m (C )
12+a (D )33
12、如图,ΔABC 和ΔADE 均为正三角形,则图中可看作是旋转关系的三角形是( ) (A ) ΔABC 和ΔADE (B ) ΔABC 和ΔABD
(C ) ΔABD 和ΔACE (D ) ΔACE 和ΔADE
13、已知扇形的半径是12㎝,圆心角是60°,则扇形的弧长是( ) (A )24 ∏㎝ (B )12 ∏ ㎝ (C )4 ∏ ㎝ (D )2∏㎝ 14、已知两圆的半径分别为3㎝和4㎝,两个圆的圆心距为10㎝,则两
圆的位置关系( ) (A )内切 (B )相交 (C )外切 (D )外离
15、初三(1)班每一个同学都将自己的相片向全班其他同学各送一张表示
留念,全班共送了2550张相片,如果全班有x 名学生,根据题意,列出方程为
( )
( A )x(x+1)=2550 (B)x(x-1)=2550 (C)2x(x+1)=2550 (D)x(x-1)=2550×2 16、⊙O 的半径为13㎝,弦AB ∥CD ,AB=24㎝,CD=10㎝,则AB 与CD 间的距离为( ) (A)7㎝ (B)17㎝ (C)5㎝ (D)7㎝或17㎝ 三、(本大题共3小题,17题6分,18、19题各7分,共20分) 17、计算:323
327--
18、解方程:x 2-3x-4=0
19、如图,AB 、BC 、CD 分别与⊙O 相切于E 、F 、G ,且AB ∥CD ,BO=6㎝,CO=8㎝,求BC 长
班级 姓名 学号 考场号
密 封 线 内 不 得 答
12题目
A P
(第9题)
四、(本大题共两小题,每小题8分,共16分)
20、阅读下面的解答过程,请判断其是否有错,请你写出正确解答:
已知:m是关于x的方程mx2-2x+m=0的一个根,求m的值。

解:把x=m代入原方程,化简得m3=m,
两边同时除以m得:m2=1
所以: m=1
把m=1代入原方程检验可知,
m=1符合题意。

答:m的值是1
21、布袋中有红、黄、蓝三种颜色的球各一个,
(1)从中先摸出一个球,记录下它的颜色,将它放回布袋,搅匀,再摸出一个球,记录下颜
色,求得到的两个颜色中有“一红一黄”的概率;
(2)如果摸出第一个球后不放回布袋,再摸第二个球,这时得到的两个颜色中有“一红一
黄”的概率是多少? 五、(本大题共2小题,第22小题8分,第23小题9分,共17分)
22、要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相
同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度?(保留根号)
23、如图,AB是圆O的直径,BC是弦,OD⊥BC于E,交BC于D。

(1)请写出四个不同类型的正确结论;
(2)连结CD,设∠CDB=α,∠ABC=β,试找出α与β之间的一种关系式,并给予证明。

六、(本大题共2小题,第24小题9分,第25小题10分,共19分)
24、某地方有座弧形的拱桥,如图,桥下的水面宽为7.2米,拱顶高出水面2.4米,现有一
艘宽3米,船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这
座拱形桥吗?
25.在同一平面直角坐标系中有6个点:(11)(31)(31)(22)A B C D -----,,,,,,,,
(23)E --,,(04)F -,.
(1)画出ABC △的外接圆⊙P ,并指出点D 与⊙P 的位置关系;
(2)若将直线EF 沿y 轴向上平移,当它经过点D 时,设此时的直线为1l . ①判断直线1l 与⊙P 的位置关系,并说明理由;
②再将直线1l 绕点D 按顺时针方向旋转,当它经过点C 时,设此时的直线为2l .求直线2l 与⊙P 的劣弧..CD 围成的图形的面积(结果保留π).
班级
姓名 学号 考场号
密 封 线 内 不 得 答
试卷答案 初 三 数 学
一、填空题
1、32
2、5㎝
3、必然事件
4、a (1+m ﹪)2
5、15∏㎝2
6、假设△ABC 中有两个角是钝角
7、3
8、略
9、5 10、43 二、选择题: 11-16 C C C D B C
三、17、0 18、x 1=4 x 2=-1 19、10㎝
四、20、解: 把x=m 代入原方程化简得m 3-m=0 ∴ m(m 2-1)=0 ∴m(m+1)(m-1)=0
∴m=0或m+1=0或m-1=0 ∴m 1=0 m 2=-1 m 3=1 21、(1)
92 (2) 3
1
五、22、解:设中央矩形的长与宽的比为9x,7x,由题意得: 9x ×7x=
43×27×21 解得:x=2
3
3 ∴中央矩形的长为:9x=2327 宽为:7x=2
3
21
∴左右边宽为:
227 - 4327 上下边宽为: 221 - 4
321 23、(1)不同类型的正确结论有:
①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ; ⑦2
2
2
OB BE OE =+;⑧OE BC S ABC ⋅=Δ;⑨△BOD 是 等腰三角形;⑩BAC BOE ΔΔ~;等等。

(2) ①答:α与β之间的关系式为:︒=-90βα (1分) 证明: (略) (4分)
说明:如得出α与β之间的关系式为:βα2>或α>β且证明 正确也对。

六、24、解:假设圆心在O 处,连接OB ,OD ,过O 作OK ⊥AB 于K ,交CD 于K ,
交圆O 于G 点。

设圆O 的半径为r ,则: (r-2.4)2
+3.62
=r
2
解得:r=3.9
∴OK=3.9-2.4=1.5米
当CD=3米时,HD=1.5米,则 OH 2=3.92-1.52
OH=3.6
∴ HK=OH-OK=3.6-1.5=2.1米>2米 ∴此货船能顺利通过这座拱形桥.
25、.解:(1)所画⊙P 如图所示,由图可知⊙P
PD .
∴点D 在⊙P 上.·········································· 3分 (2) ①
直线EF 向上平移1个单位经过点D ,且经过点(03)G -,,
∴2221310PG =+=,25PD =,25DG =. 222PG PD DG ∴=+.
则∠PDG=90°,1PD l ∴⊥.∴直线1l 与P 相切.
(另法参照评分)……………………..7分

PC PD ==
CD =
222PC PD CD ∴+=. 90CPD ∴∠=.
2π5
π44
S ∴==扇形
,21522PCD S ==△.
∴直线2l 与劣弧CD 围成的图形的面积为
5π5
42
-. ……10分。

相关文档
最新文档