最新第一章 质点运动学作业答案
大学物理第1章习题参考答案

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)101(3)01(21)01(32ji ⎥⎦⎤⎢⎣⎡-+--=(3) (4) (5) (6) 1-2 =v c t t t c t v x x +++=+==⎰⎰241d d 34当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++=将t =3s 代入证)sm (45)sm (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααx y tg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆(4) 1-41-5 g)(25m/s1047.280.13600101600223≈⨯=⨯⨯==t v a基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -=代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---=(2) .对应于t 13.184.122212120-=-="t t v ∆m /s )(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v sh s tl hl l ts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d dd d s v h t l v hl l lt va -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动. 1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωgr n gr1-9 物体A 下降的加速度(如图所示)为222m/s 2.04.022=⨯==h a在1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-=由此得s 59.02.18.95.1220=-⨯=-=ag h t而小球相对地面下落的距离为2021gt t v h +=259.08.92159.06.0⨯⨯+⨯=m 06.2= 1-11风地vb )两图中风地v应是同一矢量.1-12 (1) vLv L t 22==(2) 22212uv vL uv L uv L t t t -=++-=+=1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v L v L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v+=',则22uv V -='.习题1-12图习题1-11图2221222⎪⎭⎫ ⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V而1212sin sin =⨯=='αβu V船达到BD OB AB 将式(1) (2) 由t =即 c o s α故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333min =⨯=⨯=⨯=s u t π(3) 设l OB =,则ααββsin cos 2sin sin 22u uV Vu D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV Vu u D l'⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα0c o s 2s i n s i n 2222=⎥⎦⎤'-+''+αuV Vu a a uV简化后可得01cos cos 222=+'+-'αuVV u a即 01c o s 613c o s 2=+'-'αa解此方程得32cos ='α︒=='-2.4832cos1α将α'AB。
大学物理力学一、二章作业答案

大学物理力学一、二章作业答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。
当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。
A .a ;B .a 2;C .2c ;D .224c a +。
2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。
3、一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。
A .2R ;B .R π;C . 0;D .ωπR 。
4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v=2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。
A .22t i +2j m ; B .j t i t2323+m ;C .j t i t343243+; D .条件不足,无法确定。
二、填空题1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。
质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。
2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。
该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22m /5s π 。
3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。
4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。
T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45º角时角位移是 38rad 。
(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
(完整版)第一章,练习册答案

第一章质点运动学1-1质点作曲线运动,在时刻 t 质点的位失为r ,速度为v ,速率为v , t 至(t t 路程为 s ,位失大小的变化量为 r (或称 r ),平均速度为v ,平均速率为v 。
(1)根据上述情况,则必有( B ) 时间内的位移为 r ,(A) r s r (B) r s r ,当 t 0时有 dr ds dr (C ) r r s ,当 t 0时有 dr dr ds (D)r s r ,当 t 0时有 dr dr ds (2)根据上述情况,则必有 ( C )(A) v vj 7 v (B) v vj v v(C ) v v 侗 v (D) v vj v v1-2 一运动质点在某瞬时位于位失 r (x, y )的端点处,对其速度的大小有四种意见,即 dr (1)巴;(2) dr ;(3) ds . (4) J (dx )2 (dy ) dt dt dtXdt dt下述判断正确的是 :( D )(A )只有(1) (2) 正确; (A ) 只有 ( 2)正确(A )只有(2) (3) 正确; (A ) 只有 ( 3) (4) 正确 1-3质点作曲线运动, r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,a t 表示切向加速度。
/、 dv/、 dr / 、ds v ; (4) dv (1) 一a ; (2)— v ; (3)— dt dt dt dt对下列表达式,即 a t 下述判断正确的是( D ) (A )只有(1)( 4 )是对的;(A )只有(2)( 4)是对的 (A )只有(2 )是对的;(A )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( B ) (A )切向加速度一定改变,法向加速度也改变 (B ) 切向加速度可能不变,法向加速度一定改变 (C ) 切向加速度可能不变,法向加速度不变 (D ) 切向加速度一定改变,法向加速度不变 1-5有一质点作直线运动,其运动方程为 x =6t -2t (SI 制),试求: (1) 第二秒内的平均速度; (2) 第三秒末的速度; (3) 第一秒末的加速度;(4) 质点作什么类型的运动?(5 0解:⑴ 先求出质点在第二秒内的位移。
大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
第一章质点运动学_习题及答案

第1章 质点运动学 习题及答案一、填空题1.一质点沿Ox 轴运动,其运动方程为335x t t =-+,则质点在任一时刻的速度为 ,加速度为 。
2.一质点沿Ox 轴运动,其运动方程为335x t t =+-,则质点在2t s =时的加速度大小为 ,方向为 。
3. 一质点沿Ox 轴运动,其速度为22t υ=,初始时刻位于原点,则质点在2t s =时的位置坐标x = ,加速度大小为 。
4.一质点做直线运动,其瞬时加速度的变化规律为t A a ωωcos 2-=,在t=0 时,,,0A x x ==υ其中ω,A 均为正常数,则此质点的运动方程是 。
5.一质点的运动学方程为cos sin R t R t =+r i j ,在任意时刻,切向加速度和法向加速度的大小分别为 , 。
6.质点作圆周运动的法向加速度反映了 的变化快慢,切线加速度反映了 的变化快慢。
7.一质点沿半径为R 的圆周按规律221bt t s o -=υ而运动, o υ,b 都是常数. t 时刻质点的总加速度为 ; t 为 时总加速度在数值上等于b ,当加速度达到b 时,质点已沿圆周运行了 圈。
二、回答问题1.|r ∆|与r ∆ 有无不同?t d d r 和dr dt 有无不同? td d v 和dv dt 有无不同?其不同在哪里?试举例说明. 解: |r ∆|与r ∆ 不同. |r ∆|表示质点运动位移的大小,而r ∆则表示质点运动时其径向长度的增量;t d d r 和dr dt 不同. td d r 表示质点运动速度的大小,而dr dt 则表示质点运动速度的径向分量;t d d v 和dv dt 不同. td d v 表示质点运动加速度的大小, 而dv dt 则表示质点运动加速度的切向分量. 2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线运动?解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么? 解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.三、计算题1.一物体做直线运动,运动方程为2362x t t =-,式中各量均采用国际单位制,求:(1)第二秒内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。
《新编大学物理》(上、下册)教材习题答案

答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),
(完整版)大学物理01质点运动学习题解答

第一章 质点运动学一 选择题1. 下列说法中,正确的是:( )A. 一物体若具有恒定的速率,则没有变化的速度;B. 一物体具有恒定的速度,但仍有变化的速率;C. 一物体具有恒定的加速度,则其速度不可能为零;D. 一物体具有沿x 轴正方向的加速度而有沿x 轴负方向的速度。
解:答案是D 。
2. 长度不变的杆AB ,其端点A 以v 0匀速沿y 轴向下滑动,B 点沿x 轴移动,则B 点的速率为:( )A . v 0 sin θB . v 0 cos θC . v 0 tan θD . v 0 / cos θ 解:答案是C 。
简要提示:设B 点的坐标为x ,A 点的坐标为y ,杆的长度为l ,则222l y x =+ 对上式两边关于时间求导:0d d 2d d 2=+t y y t x x ,因v =tx d d ,0d d v -=t y ,所以 2x v -2y v 0 = 0 即 v =v 0 y /x =v 0tan θ所以答案是C 。
3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( ) A.v H h H - B. v h H H - C. v H h D. v hH 解:答案是B 。
v x选择题2图灯s选择题3图简要提示:设人头影子到灯杆的距离为x ,则H h x s x =-,s hH H x -=, v hH H t s h H H t x u -=-==d d d d 所以答案是B 。
4. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )解:答案是D5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是:( ) A. g 0v v -t B. g 20v v -t C. g 202v v -t D. g2202v v -t 解:答案是C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 选择题:[ C ]1、[基础训练1]如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是(A) 匀加速运动.(B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 【答】如图建坐标系,设船离岸边x 米,222l h x =+,22dl dxlxdt dt=, dx l dl dl dt x dtx dt ==,0dlv dt=-,220dx h xv i v i dt x+==-2203v h dv dv dxa i dt dx dt x==⋅=-,可见,加速度与速度同向,且加速度随时间变化。
[ D ]2、[基础训练3] 一运动质点在某瞬时位于矢径()y x r ,的端点处, 其速度大小为 (A) t r d d (B) t r d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x【答】, dx dy v i j v dt dt =+∴=[ C ]3、[基础训练6] 一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h ,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h ,则飞机飞行方向是 (A) 南偏西16.3°;(B) 北偏东16.3°; (C) 向正南或向正北; (D) 西偏北16.3°; (E) 东偏南16.3°.【答】根据三个速率的数值关系,以及伽利略速度变换式=+v v v →→→机地机空气空气地,可以画出三个速度之间的矢量关系,如图所示。
=200km/h, 56/, =192km/h km h v v v →→→=机空气空气地机地,根据余弦定理,v →机地v →空气地v →空气地空气v →机地θ222200=56192256192cos θ+-⨯⨯,解得:cos =0θ,所以=2πθ±.[ B ]4、(自测提高3)质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. 【答】平均速度大小:0rv t ∆==∆ 平均速率:2s R v t T∆==∆π[ C ] 5、[自测提高6]某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt 【答】t k t 2d /d v v -=,分离变量并积分,020v tv dv ktdt v =-⎰⎰,得02121v v +=kt .[ B ]6、[自测提高7]在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i +2j . (B) -2i +2j . (C) -2i -2j . (D) 2i-2j .【答】B A 对v =B 对v 地+A 对v 地 =B 对v 地-A 对v 地 =2222 (/)j i i j m s -=-+.二. 填空题1、[基础训练7] 已知质点的运动学方程为 j t t i t t r)314()2125(32++-+= (SI),当t = 2 s 时,加速度的大小为a =2/ s ;加速度a 与x 轴正方向间夹角 α =0 104 .【答】22125x t t -+=,3314y t t +=,2222 1/x t s dx a m s dt===-,222222 4 /y t s t s d y a t m s dt=====大小2/a s ===;与x 轴正方向间夹角 001arctan 90arctan 10424x y a a πα⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭2、[基础训练10] 一物体作如图所示的斜抛运动,测得在轨道A点处速度v的大小为v,其方向与水平方向夹角成30°,则物体在A点的切向加速度a t = -0.5g ,轨道的曲率半径2vg.(重力加速度为g)【答】如图,将重力加速度分解为切向加速度分量和法向加速度分量,得2200sin300.5,cos30cos30t nv va g g a ggρρ=-=-==∴=3、[基础训练12] 一质点沿直线运动,其运动学方程为x= 6 t-t2(SI),则在t由0至4s的时间间隔内,质点的位移大小为 8 ()m,在t由0到4s的时间间隔内质点走过的路程为 10 ()m.【答】(1)x = 6 t-t2(SI),位移大小()24064408 ()r x x m∆=-=⨯--=;(2)62xdxv tdt==-,可见,t<3s时,xv>0;t=3s时,xv=0;而t>3s时,xv<0;所以,路程=()()()3034()909810 ()x x x x m-+-=-+-=4、[自测提高9] 一质点从静止出发沿半径R=1m的圆周运动,其角加速度随时间t的变化规律为2126 (SI)t tβ=-,则质点的角速度ω=3243 (/)t t rad s-;加速度切向分量a t =22126 (/)t t m s-。
【答】(1)2126dt tdtωβ=-=,()200126td t t dtωω=-⎰⎰,3243 (/)t t rad sω=-;(2)22126 (/)ta R t t m sβ==-;5、[自测提高11]一质点从O点出发以匀速率1 cm/s作顺时针转向的圆周运动,圆的半径为1 m,如图所示.当它走过2/3圆周时,走过的路程是__4.19(m),这段时间内的平均速度大小为34.1310(/)m s-⨯,方向是__与x轴正方向逆时针成600.【答】24S2R 4.19(m)33ππ=⨯==路程3r2cos30v 4.1310(/)Stvm s-∆⨯====⨯∆平均速度大小;方向如图。
v三.计算题1、[基础训练16 ]有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程. 解:(1)t 1=1s 时,x 1=2.5m ; t 2=2s 时,x 2=2m ;21212 2.50.5 (/)21x x x x v m s t t t -∆-====-∆--,0.5 (/)v i m s =- (2)),69(2t t dtdx v x -== )/(6 ),/( 6 2s m i v s m v s t x -=-==时, (3)令0)69(2=-=t t v x , 得:' 1.5t s =. 此时 3.375m x ='第二秒内的路程()()m ....x'x x x's 2522375352375321=-+-=-+-=2、[基础训练17 ] 倾斜上抛一小球,抛出时初速度与水平面成600角,1.00秒钟后小球仍然斜向上升,但飞行方向与水平面成450角。
试求:(1)小球到达最高点的时间; (2)小球在最高点的速度。
解 :以抛出点为原点、水平向右为x 轴、竖直向上为y 轴,建立坐标系。
(1)设初速度为v 0,则有000v 2160cos =︒=v v x ,000v 2360sin =︒=v v y 任意时刻t :000x v 2160cos v =︒==v v x ,gt gt y -=-=00y v 23v v 依题意,s t 1=时,速度v 与水平方向成450,则有y x v v =, ∴1v 23v 2100⨯-=g 解得 :s m /8.26138.9213g 2v 0=-⨯=-=小球到达最高点时,0v y =,即0v 230=-gt ,解得:s gt 37.21332v 30=-==(2)小球在最高点时的速度沿水平方向,其大小为 s m x /4.13v 21v 0===v3、[基础训练19 ]质点沿半径为R 的圆周运动,加速度与速度的夹角ϕ保持不变,求该质点的速度随时间而变化的规律,已知初速为0v 。
解:tan ,n t a a ϕ= 将t dv a dt=,2n v a R =代入,得2tan dv v dt R ϕ=, 分离变量并积分:002000tan 11, tan tan tan vtv v R dv dt tv v R v v R R v t ϕϕϕϕ=-+=∴=-⎰⎰4、[自测提高15 ]质点按照212s bt ct =-的规律沿半径为R 的圆周运动,其中s 是质点运动的路程,b 、c 是常量,并且b 2>cR 。
问当切向加速度与法向加速度大小相等时,质点运动了多少时间? 解:212s bt ct =-,ds v b ct dt==-, 切向加速度大小t dv a c c dt ==-=,法向加速度大小2n v a R=; 当切向加速度与法向加速度大小相等时:2v c R=,v =(负号表示反向运动),即b ct -= 得12t t ==5、[自测提高17 ] 一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大?(2) 抛出后经过多长时间再回到电梯上?解:(1) 根据伽利略速度变换式对对对v v v =+球地球梯梯地,可得球相对地面的初速度:方向向上,大小为 2010对v =+=球地30 m/s球到达最高点时,对地的速度为零。
可得最大高度为 245.92对v h g==球地m/s离地面高度为 H = (45.9+10) m =55.9 m(2) 以地面作为参考系:球回到电梯上时,电梯上升的高度=球上升的高度,即212v v 对对t t gt =-梯地球地解得: 02v 0 4.08t t g===(舍去)或 s 【若以电梯作为参考系:则再回到电梯上时,满足00v v gt -=-,得:t = 4.08s 】附加题:[ 自测提高16 ] 一飞机相对于空气以恒定速率v 沿正方形轨道飞行,在无风天气其运动周期为T .若有恒定小风沿平行于正方形的一对边吹来,风速为)1(<<=k k V v .求飞机仍沿原正方形(对地)轨道飞行时周期要增加多少. 解:如图,设风对地v kvj =,正方形边长为L ,根据+风对地机对地机对风v v v =求解。