中考数学精选例题解析:平均数、众数与中位数

合集下载

专题:综合分析数据--平均数、中位数、众数、方差

专题:综合分析数据--平均数、中位数、众数、方差

20.20专题:综合分析数据--平均数、中位数、众数、方差一.【知识要点】1.平均数、中位数、众数、方差的综合运用。

二.【经典例题】1.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:(1)在图①中,“80分”所在扇形的圆心角度数为___;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知=135,=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价。

2. 某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100):b.A课程成绩在70≤x<80这一组的是:三.【题库】【A】【B】【C】1.(本题满分7分)如图是甲.乙两人在一次射击比赛中击中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数)每人射击了6次。

(1)请用列表法将他俩的射击成绩统计出来;(2分)(2)请你用学过的统计知识(平均数,中位数,众数,方差等),将他俩的射击成绩进行比较;(5分)2.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【D】1.某排球6名队员的身高(单位:cm)是180,184,188,190,192,194。

现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大。

人教八下 20.1平均数、中位数、众数的应用 精练题和易错题(含解析)

人教八下 20.1平均数、中位数、众数的应用 精练题和易错题(含解析)

平均数、中位数、众数的应用经典题1.已知一组数据为20,30,40,50,50,50,60,70,80,其中平均数、中位数和众数的大小关系是()A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.众数=中位教=平均数分析:众数、中位数和平均数从不同的角度描述一组数据的集中趋势.对于不同的数据三者之间的大小关系也不同,这里可具体计算出来后再比较.答案:解答本题,需求出平均数、众数和中位数众数:50,中位数:50,故选D.2.七(1)班四个绿化小组植树的棵树如下:10,10,x,8,已知这组数据的众数和平均数相等,那么这组数据的中位数是_______棵.分析:分析条件知众数是10,因此1010x8104+++=,解得x=12,因此中位数是10。

答案:103人员经理厨师甲厨师乙会计服务员甲服务员乙服务员丙金额(元) 4000 800 500 500 450 400 350(2)该月能用平均数来表示他们工资的集中趋势吗?你有什么建议?分析:本题共两问,主要涉及平均数计算和中位数、众数的查找,并利用数的特征提出合理的建议.答案:(1)根据表格信息可得工资的平均数1000元,,中位数为500元,众数为500元. (2)一组数据中含有极端值时,利用平均数反映整体的集中趋势不合理.可考虑从中位数或众数的灵活应用。

由于经理和其他员工的工资的差别较大,所以不能用平均数来表示他们工资的集中趋势.建议:a..用众数来表示工资的集中趋势;b.用中位数来表示工资的集中趋势;c.若去掉经理的工资,用6人工资的平均数表示集中趋势4.年某校为选拔参加2018年全国初中数学竞赛的选手,进行了集体培训,在集训期间进行了10次测试,假设其中两位同学的测试成绩如下面的图表所示.(1)根据图表中所示的信息填写下表:平均数众数中位数信息类型甲93 95乙90 90(2)这两位同学的测试成绩各有什么特点(从不同的角度分别说出一条即可)?(3)为了使参赛选手取得好成绩,应选谁参加比赛?为什么?分析:本题是一道统计图与统计表综合型创新题.要会正确分析图表中所提供的数据信息,并且,从平均数、中位数、众数三个不同特殊的量作为出发点分析数据可能得到不同的评价结论.在评价时应注意三者的综合应用.答案:(1)将甲组数据按由小到大的顺序排列,可得处于最中间的两个数据是94和95,所以甲的中位数是94.5,从统计表可知乙组数据中99出现了三次,所以乙的众数是99. (2)从平均数来看,甲的平均数比乙的平均数高,但乙更有潜力,因为乙的最好成绩比甲的最好成绩高.甲的中位数比乙的中位数高,而乙的众数比甲的众数大.甲的成绩比较均匀,而乙的成绩高分较高,但成绩不稳.(3)10次测验,甲有8次不少于92分,而乙仅有6次,若想获奖可能性大,可以选甲参赛;若想拿到更好的名次可选乙,因为乙有4次在99分以上.5.为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图,教练组规定:体能测试成绩70分以上(包括70分)为合格.((2)请从下面两个不同的角度对这两名运动员体能测试结果进行判断:①依据平均数和成绩合格的次数比较甲和乙,_____的体能测试成绩较好;②依据平均数和中位数比较甲和乙,_____的体能测试成绩较好.(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.分析:本题是一道集识图、计算、说理于一题的优秀的综合型试题,解决问题需要从统计图中获得正确的数据信息,正确理解平均数、中位数的概念及特征.答案:(1)(见表格)(2)①依据平均数和成绩合格的次数比较甲和乙,乙的体能测试成绩较好;②依据平均数和中位数比较甲和乙,甲__的体能测试成绩较好;(3)从折线图上看,两名运动员成绩呈上升趋势,但是乙的增长速度比甲快,并且后一阶段乙的成绩合格次数比甲多,所以乙训练效果较好.6.某电脑公司的经理对2019年4月份电脑的销售情况做了调查,情况如下表:为,中位数为,本月平均每天销售台(4月份为30天).(2)如果你是该商场的经理,根据以上信息,应该如何组织货源.分析:本题是求平均数以及利用众数进行说理的实际问题,解题时应注意理解题意,电脑价格的平均数与销量无关,所以(1)平均数为(6000+4500+3800+3000)÷4=4325(元);中位数为(3800+4500)÷2=4150(元),本月平均每天销售(20+40+60+30)÷30=5(台).(2)从销售的数量来看价格为3800元的电脑的售量最大,说明比较畅销,应适当多进货.在商品的销售中,经理最关心的是销售的众数,所以用众数说明此类问题比较合适. 7.某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.分析:问题(1)是希望用三项分数的平均数来评估甲、乙、丙三位候选人能力,问题(2)是根据实际需要的权重求出加权平均数来评估甲、乙、丙三位候选人能力。

初二数学平均数,众数,中位数的区别及相关练习题(含答案)

初二数学平均数,众数,中位数的区别及相关练习题(含答案)

平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。

平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

即x=(x1+x2+……+xn)÷n 中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。

众数:在一组数据中出现次数最多的数叫做这组数据的众数。

平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。

平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。

反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。

平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。

平均数易受极端数据的影响,从而使人对平均数产生怀疑。

中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。

中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。

简单明了,很少受一组数据的极端值的影响。

中位数的缺点。

中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。

当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。

众数:一组数据中出现次数最多的那个数据。

集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。

众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。

全国中考数学真题解析120考点汇编 平均数、中位数、众数、方差、极差、标准差

全国中考数学真题解析120考点汇编 平均数、中位数、众数、方差、极差、标准差

全国中考数学真题解析120考点汇编平均数、中位数、众数、方差、极差、标准差一、选择题1.(2011江苏淮安,6,3分)某地区连续5天的最高气温(单位:℃)分别是30,33,24,29,24.这组数据的中位数是()A.29B.28C.24D.9考点:中位数。

专题:计算题。

分析:求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:数据排序为:24、24、29、30、33,∴中位数为29,故选A.点评:注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.2.(2011盐城,7,3分)某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是()A.平均数为30B.众数为29C.中位数为31D.极差为5 考点:方差;算术平均数;中位数;众数.专题:计算题.分析:分别计算该组数据的平均数,众数,中位数及极差后找到正确的答案即可.x=29.8,∵数据29出现两次最多,∴众数为29,解答:解:中位数为29,极差为:32﹣28=4.故B.点评:本题考查了平均数、中位数及众数的定义,特别是求中位数时候应先排序.3.(2011江苏苏州,5,3分)有一组数椐:3,4,5,6,6,则下列四个结论中正确的是()A、这组数据的平均数、众数、中位数分别是4.8,6,6B、这組数据的平均数、众数、中位数分别是5,5,5C、这组数据的平均数、众数、中位数分别是4.8,6,5D、这组数据的平均数、众数、中位数分别是5,6,6考点:众数;算术平均数;中位数.专题:计算题.分析:要求平均数只要求出数据之和再除以总个数即可;对于众数可由数据中出现次数最多的数写出;对于中位数,因为题中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的一个数.解答:解:一组数椐:3,4,5,6,6的平均数=(3+4+5+6+6)÷5=24÷5=4.8.6出现的次数最多,故众数是6.按从小到大的顺序排列,最中间的一个数是5,故中位数为:5.故选C.点评:本题考查平均数、中位数和众数的概念.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.则这次测试成绩的中位数m 满足( )A .40<m≤50B .50<m≤60C .60<m≤70D .m >70考点:中位数。

中考重点平均数中位数与众数的计算与应用

中考重点平均数中位数与众数的计算与应用

中考重点平均数中位数与众数的计算与应用中考重点平均数、中位数与众数的计算与应用在中考数学考试中,平均数、中位数和众数是重要的统计概念,涉及到对一组数据的整体特征进行描述和分析。

掌握这些概念的计算方法和应用技巧对于解答中考数学题目至关重要。

本文将从平均数、中位数和众数的定义、计算方法及其应用角度进行详细讲解。

一、平均数的计算与应用平均数是一组数据中所有数值的总和除以数量的结果。

记一组数据为a1,a2,...,an,其平均数用符号表示为x。

计算公式如下:x = (a1 + a2 + ... + an) / n平均数常用于表示数据的典型水平。

例如,某班级学生的考试成绩为85、90、92、88、79,要求计算这组数据的平均成绩,可以使用上述公式进行计算。

计算结果为 85+90+92+88+79 / 5 = 86.8 分。

因此,该班级学生的平均成绩为 86.8 分。

在中考题目中,平均数的应用非常广泛。

常见的应用包括求平均数的增减变化、平均数与总和的关系、适合构造平均数的数据等等。

掌握平均数的计算方法和应用技巧可以帮助我们更好地解决相关题目。

二、中位数的计算与应用中位数是一组数据按照从小到大的顺序排列后,位于中间位置的数值。

如果一组数据的数量为奇数,中位数就是唯一的中间数;如果一组数据的数量为偶数,则中位数是中间两个数的平均数。

计算中位数的方法可以通过以下步骤进行:1. 将一组数据按照从小到大的顺序排列;2. 判断数据的数量是奇数还是偶数;3. 如果是奇数,中位数为排列后的中间数;4. 如果是偶数,中位数为排列后的中间两个数的平均数。

例如,某组数据为 2,4,6,8,10,12,14,16。

按照从小到大的顺序排列后,中位数为 8。

在中考考试中,中位数常用于描述数据的集中趋势,特别适用于处理含有离群点的数据。

除了计算中位数的方法,我们还需要掌握中位数的应用技巧,如求中位数的增减变化,比较中位数与平均数等。

三、众数的计算与应用众数是一组数据中出现频率最高的数值。

数据的分析中考题大全

数据的分析中考题大全

数据的分析要点一:平均数、中位数、众数一、选择题1.(2010·XX中考)某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是()A. 22°C,26°CB. 22°C,20°CC. 21°C,26°CD. 21°C,20°C【解析】选D.把这5个数据按大小顺序排列起来后,最中间的是21,所以这组数据的中位数是21.这组数据的中20出现2次是出现次数最多的,所以这组数据的众数是20. 2.(2009·XX中考)在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数是()A.9.2 B.9.3 C.9.4 D.9.5【解析】选D 根据要求去掉9.0、9.9两个数据,因此数据的平均数为数据:9.3、9.4、9.5、9.6、9.7的平均数即:9.5;3.(2009·内江中考)今年我国发现的首例甲型H1N1流感确诊病例在XX某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的()A.众数B.方差C.平均数D.频数【解析】选B 反映数据的波动大小的量为数据的方差,因此选B;4.(2009·XX市中考)一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7,6.5C.5.5,7 D.6.5,7【解析】选D 数据组中出现次数最多的数为7,中位数为6、7的平均数即6.5;5.(2010·潼南中考)数据14 ,10 ,12,13,11 的中位数是()A.14 B.12C.13 D.11【解析】选B,先把所有的数从小到大排列起来,10,11,12,13,14,中间的一个为12 6.(2009·XX中考)(2009威海)某公司员工的月工资如下表:则这组数据的平均数、众数、中位数分别为()A.2200元1800元1600元B.2000元1600元1800元C.2200元1600元1800元D.1600元1800元1900元【解析】选C 由图表信息知:1600元出现的次数最多,因此1600元是数据的众数;将数据按大小排列后可以得到数据的中位数为1800元;平均数为2200元;7、(2009·仙桃中考)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为().A、25.6 26B、26 25.5C、26 26D、25.5 25.5【解析】选D 因为25有2个,25.5有4个,26有2个,26.5有1个,27有1个所以25.5为此数据组的众数;将数据按大小排列为:25、25、25.5、25.5、25.5、25.5、26、26、26.5、27;所以数据的中间两个数为25.5、25.5,所以数据的中位数为25.5;8、(2009·XX中考)某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【解析】选A 根据平均数的计算方法可知全年级学生的平均成绩一定在六个平均成绩的最小值和最大值之间;9、(2009·XX中考)“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,XX市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、30【解析】选C 由统计图可知30的个数最多,因此数据的众数为30,此数组数据的个数为50,将数据按大小排列后中间的两个数为30、30,所以中位数为30;10、(2009·XX中考)某校为了了解七年级学生的身高情况(单位:cm,精确到1cm),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):根据以上信息可知,样本的中位数落在().(A)第二组(B)第三组(C)第四组(D)第五组【解析】选C.有统计图和表知:样本数=12÷12%=100,第三小组人数=100×18%=18,第五十和第五十一个数位于第四小组.11、(2008·XX中考)小丽家下个月的开支预算如图所示.如果用于教育的支出是150元,则她家下个月的总支出为()A.625元B.652元C.750元D.800元答案:选C二、填空题12、(2010·眉山中考)某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数据的中位数是__________(元).【解析】:把这一组数据从小到大排列后,最中间的一个数为30,所以中位数为30(元) 答案:3013、改革开放后,我市农村居民人均消费水平大幅度提升.下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元).则这几年我市农村居民人均食品消费支出的中位数是元,极差是元.【解析】中位数=225602048 =2304,极差=2786-1674=1112.答案:2304,111214、(2009·XX 中考)已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为.【解析】因为三个不相等的正整数的中位数是3,所以三个数中有一个小于3,而另一个大于3,又因为平均数为3,所以数组为1,3,5或2,3,4; 答案:1,3,5或2,3,4; 三、解答题15、(2009·XX 中考)振兴中华某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,并绘制成统计图(如图),图中从左到右各矩形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人。

中考数学模拟试题平均数与中位数的计算

中考数学模拟试题平均数与中位数的计算

中考数学模拟试题平均数与中位数的计算中考数学模拟试题平均数与中位数的计算在中考数学中,平均数和中位数是两个常见的统计概念。

平均数是指一组数值的总和除以其个数,中位数则是将一组数值按照大小顺序排列后,位于中间位置的数值。

本文将探讨如何计算平均数和中位数,并通过数学模拟试题进行应用。

一、平均数的计算方法平均数的计算方法非常简单,只需将一组数值求和后除以其个数即可。

例如,给定一组数值:8,12,15,19,23,我们可以使用以下公式计算平均数:平均数 = (8 + 12 + 15 + 19 + 23) / 5接下来,我们将通过模拟试题的形式来进一步了解平均数的计算方法。

模拟试题1:某班级共有30名学生,数学成绩分别为:78,86,92,75,80,82,88,90,85,79,81,83,85,87,84,89,91,93,95,77,76,74,82,84,87,86,90,85,88,90。

请计算该班级的平均数。

解析:将给定的30个数相加,然后除以30即可得到平均数。

计算过程如下:平均数 = (78 + 86 + 92 + 75 + 80 + 82 + 88 + 90 + 85 + 79 + 81 + 83 + 85 + 87 + 84 + 89 + 91 + 93 + 95 + 77 + 76 + 74 + 82 + 84 + 87 + 86 + 90 + 85 + 88 + 90) / 30通过上述计算,可以得到该班级的平均数为84.6。

二、中位数的计算方法中位数的计算比平均数稍微复杂一些。

首先,需要将一组数值按照大小顺序排列。

如果数值的个数为奇数,那么中位数就是位于中间位置的数值;如果数值的个数为偶数,那么中位数则是中间两个数值的平均值。

以下是一个中位数计算的示例:模拟试题2:某班级共有25名学生,身高分别为:165,163,168,172,170,169,171,170,166,167,165,168,169,162,171,174,172,168,170,166,165,166,169,170,168。

中考数学复习指导:平均数、中位数和众数在生活中的体现

中考数学复习指导:平均数、中位数和众数在生活中的体现

平均数、中位数和众数在生活中的体现在日常生活中,我们经常与数据打交道,常常收集和分析数据,为描述收集到的数据,就需要找到能够“代表”这组数据特征的某些数,而平均数、中位数和众数就是其中的“三个代表”,它们可以从不同的角度来描述数据的集中趋势,下面结合实例说明,供同学们参考.一、小区居民共用多少水?例1.江北水厂为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:(1)计算这10户家庭该月平均用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少立方米?解:(1)根据加权平均数的计算公式得:10213214317218110x⨯+⨯+⨯+⨯+⨯==14(2)根据上面的计算结果,估计该小区居民每月共用14×500=70000立方米评注:本题首先考查加权平均数的计算方法,并会用样本平均数去估计整体平均数的重要统计思想,只要按照加权平均数的公式去计算就可以了二、谁将被录用?例2.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分.(l)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到 0.01 )?经理小张(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按 4 : 3 : 3 的比例确定个人成绩,那么谁将被录用?解:(l)甲、乙、丙的民主评议得分分别为:50 分,80 分,70 分.(2)甲的平均成绩为75935021872.6733++=≈(分),乙的平均成绩为:80708023076.6733++=≈(分),丙的平均成绩90687022876.0033++=≈(分) 由于76.67>76>72.67,所以候选人乙将被录用.(3)如果将笔试、面试、民主评议三项测试得分按4 : 3 : 3的比例确定个人成绩,那么甲的个人成绩为:475393350433⨯+⨯+⨯=++72.9(分),乙的个人成绩为:480370380433⨯+⨯+⨯=++77(分),丙的个人成绩为:490368370433⨯+⨯+⨯=++ 77.4(分) 由于丙的个人成绩最高,所以候选人丙将被录用.评注:实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”,如本例中4,3,3分别是创新、综合知识、语言三项测试成绩的权,结果就不同了.三、工资收入是多少? 例3.某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:请你根据上述内容,解答下列问题: (1)该公司“高级技工”有 名; (2)所有员工月工资的平均数x 为2500元,中位数为 元,众数为 元; (3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍 员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.分析:本题图文并茂,生动形象,先是通过表格给出解题信息,解决第(1)、(2)两问;然后又以“卡通”对话的形式给 出信息,从而解决第(3)、(4)两问,最后做出决策.解:(1)该公司“高级技工”有:50-1-3-2-3-24-1=16;(2)表格中的数据已经按从小到大的顺序排好,只要求第25、26个数的平均数就可以了,结果是:1700;众数显然是:1600;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也得分) (4)250050210008400346y ⨯--⨯=≈1713(元). y 能反映.评注:当一串串数据呈现在我们面前时,统计知识就是帮助我们研究处理数据的有力工具.我们必须学好统计的有关知识,以便用好统计这一有力工具,进而解决我们身边的实际.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 013中考数学精选例题解析
平均数、众数与中位数
知识考点:
1、了解总体、个体、样本及样本容量等基本概念;
2、理解平均数、加权平均数、众数及中位数的概念,掌握它们的计算方法;会用它们描述一组数据的平均水平及集中趋势;会用样本平均数去估计总体平均数。

精典例题:
【例1】为了检查一批电风扇的使用寿命,从中抽取10台电风扇进行检测,以下说法正确的是()
A、这一批电风扇是总体;
B、从中抽取的10台电风扇是总体的一个样本;
C、10台电风扇的使用寿命是样本容量;
D、每台电风扇的使用寿命是全体。

分析:本题中的考察对象是电风扇的使用寿命,不是电风扇本身,因此这批电风扇的使用寿命是总体,每台电风扇的使用寿命是个体,从中抽取的10台电风扇的使用寿命是总体的一个样本,样本容量是10。

故应选D。

【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):
甲群:13,13,14,15,15,15,15,16,17,17;
乙群:3,4,4,5,5,6,6,6,54,57。

解答下列问题(直接填在横线上):
(1)甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。

(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。

分析:平均数、中位数及众数都是反映数据集中趋势的量,当一组数据的大小比较接近时(如甲群游客),平均数、中位数与众数也比较接近;当一组数据中有个别数特别大或特别小时(如乙群游客),它就会影响平均数的大小,但不影响中位数、众数,此时可由中位数或众数反映这缴数据的集中趋势。

答案:(1)15,15,15;平均数、中位数、众数;
(2)15,5.5,6;中位数、众数。

探索与创新:
【问题一】某校为举行百年校庆,决定从高二年级300名男生中挑选80人组成仪仗方队,现随机抽测10名高二男生的身高如下(单位:米):
1.69,1.75,1.70,1.65,1.72,1.69,1.71,1.68,1.71,1.69
试确定参加仪仗方队学生的最佳身高值。

分析:理想的仪仗方队应由身材较高,且高矮一致的人组成,因此身高的挑选标准应由身高中出现次数最多的数值所确定。

解:上面10个数据中的众数为1.69米,说明全年级身高为1.69米的男生最多,估计约有90人,因此将挑选标准定在1.69米,便于组成身高整齐的仪仗方队。

【问题二】某车间准备采取每月任务定额,超产有奖的措施提高工作效率,为制定一个恰当的生产定额,从该车间200名工人中随机抽取20人统计其某月产量如下:
每人生产零件
260 270 280 290 300 310 350 520 数
人数 1 1 5 4 3 4 1 1 据;
(2)你认为管理者将每月每人的生产定额定为多少最合适?为什么?
(3)估计该车间全年可生产零件多少个?
分析:在确定生产定额时,需参考的数据应当有:平均数、众数、中位数。

合理的生产定额应确定在使多数人经过努力能够完成或超额完成的基础上。

如果将众数280定为生产定额,则绝大多数工人不需太努力就可完成任务,但不利于提高工作效率;若将平均数305定为生产定额,则多数工人不可能超产,甚至完不成定额,会挫伤工人的积极性。

解:(1)平均数305,国位数290,众数280;
(2)取中位数290作为生产定额较合适,原因是这个定额使多数工人经过努力能完成或超额完成。

(3)305×12×200=7.32×105(个),估计全年总产量约为7.32×105个。

跟踪训练:
一、选择题:
1、为了了解一种新型机床的性能,从中抽取10台进行测试。

在这个问题中,这10台机床的性能指标是()
A、总体
B、个体
C、样本
D、样本容量。

相关文档
最新文档