(完整版)导数的几何意义(基础练习题)
(完整版)导数基础练习.

导数基础练习(共2页,共17题)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=( )A.2sinx B.2sin2x C.2cosx D.sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是( )A.3x﹣y+1=0 B.3x﹣y﹣1=0 C.3x+y﹣1=0 D.3x﹣y﹣5=0 3.若函数f(x)=sin2x,则f′()的值为()A. B.0 C.1 D.﹣4.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.xcosx﹣sinx D.cosx﹣sinx5.的导数是( )A.B.C.D.6.y=xlnx的导数是()A.x B.lnx+1 C.3x D.17.函数y=cose x的导数是( )A.﹣e x sine x B.cose x C.﹣e x D.sine x8.已知,则f′()=()A.﹣1+B.﹣1 C.1 D.09.函数的导数是( )A.B. C.e x﹣e﹣x D.e x+e﹣x10.函数y=x2﹣2x在﹣2处的导数是()A.﹣2 B.﹣4 C.﹣6 D.﹣811.设y=ln(2x+3),则y′=()A.B.C.D.12.已知函数,则f′(x)等于()A.B. C.0 D.13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是( )A.4 B.5 C.6 D.714.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A.(1,3)B.(3,3)C.(6,﹣12) D.(2,4)二.填空题(共2题)15.求导:()′=_________ .16.函数y=的导数是_________ .三.解答题(共1题)17.求函数y=e x5 +2的导数.导数基础练习(试题解析)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=( )A.2sinx B.2sin2x C.2cosx D.s in2x考点:简单复合函数的导数.考查学生对复合函数的认识,要求学生会对简单复合函数求导.分析:将f(x)=sin2x看成外函数和内函数,分别求导即可.解答:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,∴可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x.∴选D.红色sin2x、蓝色sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是( )A.3x﹣y+1=0B.3x﹣y﹣1=0C.3x+y﹣1=0D.3x﹣y﹣5=0考点:简单复合函数的导数;直线的点斜式方程.考查学生对切线方程的理解,要求写生能够熟练掌握.分析:先要求出在给定点的函数值,然后再求出给定点的导数值.将所求代入点斜式方程即可.解答:对f(x)=lnx+2x求导,得f′(x)=+2.∴在点(1,f(1))处可以得到f(1)=ln1+2=2,f′(1)=1+2=3.∴在点(1,f(1))处的切线方程是:y﹣f(1)=f′(1)(x﹣1),代入化简可得,3x﹣y﹣1=0.∴选B.红色lnx+2x、蓝色3x﹣y﹣1=0(即y=3x-1)3.若函数f(x)=sin2x,则f′()的值为()A.B.0C.1D.﹣考点:简单复合函数的导数.计算题.求函数在某点处的导数值,应该先利用导数的运算法则及初等函数的导数公式求出导函数,再求导函数值.分析:先利用复合函数的导数运算法则求出f(x)的导函数,将x=代入求出值.解答:解:f′(x)=cos2x(2x)′=2cos2x,∴f′()=2cos=1,∴选C.红色sin2x、蓝色2cos2x4.函数f(x)=xsinx+cosx的导数是()A.x cosx+sinx B.x cosx C.x cosx﹣sinx D.c osx﹣sinx考点:导数的乘法与除法法则;导数的加法与减法法则.计算题.本题考查导数的运算法则、基本初等函数的导数公式.属于基础试题.分析:利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数.解答:解:∵f(x)=xsinx+cosx,∴f′(x)=(xsinx+cosx)′=(xsinx)′+(cosx)′=x′sinx+x(sinx)′﹣sinx=sinx+xcosx﹣sinx=xcosx,∴选B.红色xsinx+cosx、蓝色xcosx5.的导数是()A.B.C.D.考点:导数的乘法与除法法则.计算题.本题考查导数的除法运算法则,解题时认真计算即可,属于基础题.分析:利用导数的四则运算法则,按规则认真求导即可解答:解:y′===∴选A.红色、绿色y′=6.y=xlnx的导数是()A.x B.l nx+1C.3x D.1考点:导数的乘法与除法法则.导数的综合应用.本题考查导数的乘法法则,考查了基本初等函数的导数公式,属于基础题.分析:直接由导数的乘法法则结合基本初等函数的导数公式求解.解答:解:∵y=xlnx,∴y′=(xlnx)′=x′lnx+x(lnx)′=.∴选B.红色xlnx、绿色lnx+17.函数y=cose x的导数是()A.﹣e x sine x B.c ose x C.﹣e x D.s ine x考点:导数的乘法与除法法则.导数的概念及应用.本题主要考查导数的基本运算,要求熟练掌握常见函数的导数公式以及导数的运算法则.分析:根据导数的运算法则即可得到结论.解答:解:函数的导数为f′(x)=﹣sine x•(e x)′=﹣e x sine x,∴选A.红色cose x、绿色﹣e x sine x8.已知,则f′()=()A.﹣1+B.﹣1C.1D.0考点:导数的加法与减法法则.计算题.本题主要考查了导数的运算,以及求函数值,解题的关键是正确求解导函数,属于基础题.分析:本题先对已知函数进行求导,再将代入导函数解之即可.解答:解:∴选B.红色、绿色-sinx9.函数的导数是( )A.B.C.e x﹣e﹣x D.e x+e﹣x考点:导数的加法与减法法则.计算题.本题考查导数的运算,牢记求导公式是解本题的关键.分析:根据求导公式(u+v)′=u′+v′及(e x)′=e x即可求出函数的导数.解答:解:∵,∴y′==.∴选A.红色、蓝色10.函数y=x2﹣2x在﹣2处的导数是( )A.﹣2B.﹣4C.﹣6D.﹣8考点:导数的加法与减法法则.计算题;导数的概念及应用.本题考查导数的加法与减法法则,考查基本初等函数的导数公式,是基础的计算题.分析:求出原函数的导函数,在导函数解析中取x=﹣2计算即可得到答案.=2×(﹣2)﹣2=﹣6.∴选C.解答:解:由y=x2﹣2x,得y′=2x﹣2.∴y′|x=﹣2红色y=x2﹣2x、蓝色y′=2x﹣211.设y=ln(2x+3),则y′=()A.B.C.D.考点:导数的运算.导数的概念及应用.本题主要考查导数的计算,要求熟练掌握复合函数的导数公式,属于基础题.分析:根据复合函数的导数公式即可得到结论.解答:解:∵y=ln(2x+3),∴,∴选:D红色ln(2x+3)、蓝色12.已知函数,则f′(x)等于()A.B.C.0D.考点:导数的运算.导数的概念及应用.本题考查了常数的导数,只要理解常数c′=0即可解决此问题.分析:我们知道:若函数f(x)=c为常数,则f′(x)=0,∴可得出答案.解答:解:∵函数,∴f′(x)=0.∴选C.13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是()A.4B.5C.6D.7考点:导数的几何意义.计算题.本题考查函数在某点导数的几何意义的应用.分析:曲线y=x2+3x在点A(2,10)处的切线的斜率k就等于函数y=x2+3x在点A(2,10)处的导数值.解答:解:曲线y=x2+3x在点A(2,10)处的切线的斜率,k=y′=2x+3=2×2+3=7,∴答案为7.红色x2+3x、蓝色2x+314.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A.(1,3)B.(3,3)C.(6,﹣12)D.(2,4)考点:导数的几何意义.考核导数的几何意义及两条直线平行斜率的关系.分析:首先求出弦AB的斜率,再利用导数的几何意义求出P点坐标.解答:解:设点P(x0,y),∵A(4,0),B(2,4),∴kAB==﹣2.∵过点P的切线l平行于弦AB,∴kl=﹣2,∴根据导数的几何意义得知,曲线在点P的导数y′=4﹣2x=4﹣2x=﹣2,即x=3,∵点P(x0,y)在曲线y=4x﹣x2上,∴y=4x﹣x2=3.∴选B.红色4x﹣x2、蓝色4﹣2x二.填空题(共2题)15.求导:()′=,.考点:简单复合函数的导数.导数的概念及应用.本题主要考查导数的计算,根据复合函数的导数公式是解决本题的关键.分析: 根据复合函数的导数公式进行求解即可. 解答: 解:=(x 2+1)21,则函数的导数为y′=(x 2+1)21-(x 2+1)′=(x 2+1)21-×2x=,∴答案为:红色、蓝色16.函数y =的导数是 .考点: 简单复合函数的导数.导数的概念及应用.本题主要考查导数的计算,根据复合函数的导数公式进行计算是解决本题的关键.分析: 根据复合函数的导数公式进行计算即可. 解答:解:函数的导数为y′==,∴答案为:红色、蓝色三.解答题(共1题)17.求函数y=e x5-+2的导数.考点:简单复合函数的导数.导数的概念及应用.本题考查导数的运算,以及导数基本知识的考查.分析:直接利用复合函数的导数求解运算法则求解即可.解答:解:函数y=e x5-+2的导数:y′=﹣5e x5-.∴答案为:y′=﹣5e x5-.红色e x5-+2、蓝色﹣5e x5-。
1导数的概念及其几何意义 习题 简单 (2)

导数的概念及其几何意义习题一、选择题(共14小题;共70分)1. 若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则limℎ→0f(x0−ℎ)−f(x0)ℎ的值为( )A. fʹ(x0)B. −fʹ(x0)C. −2fʹ(x0)D. 02. 已知函数f(x),则limΔx→0f(2+Δx)−f(2)Δx的含义是( )A. 表示函数f(x)在区间[2,2+Δx]的平均变化率B. 表示函数f(x)在区间[Δx,2]的平均变化率C. 表示函数f(x)在点(2,f(2))处的瞬时变化率D. 表示函数f(x)在区间[2,2+Δx]内任意一点的瞬时变化率3. 质点M按规律s=2t2+3作直线运动,则质点M在t=2时瞬时速度是( )A. 2B. 6C. 4D. 84. 设f(x)=ax+4,若fʹ(1)=2,则a=( )A. 2B. −2C. 3D. 45. 在求平均变化率的式子中,自变量的增量Δx应满足条件( )A. Δx>0B. Δx<0C. Δx=0D. Δx≠06. 函数f(x)=ax2+bx+c(a≠0)在x=1处的瞬时变化率为( )A. 4aB. 2a+bC. bD. 4a+b7. 已知函数y=f(x)的图象如图,则fʹ(x A)与fʹ(x B)的大小关系是( )A. fʹ(x B)<fʹ(x A)<0B. fʹ(x A)<fʹ(x B)<0C. fʹ(x A)=fʹ(x B)D. fʹ(x A)>fʹ(x B)>08. 某质点的位移函数是s(t)=2t3−12gt2(g=10m/s2),则当t=2s时,它的加速度是( )A. 14m/s2B. 4m/s2C. 10m/s2D. −4m/s29. 如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A. 12B. 16C. 18D. 2710. 如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x轴的直线l:x=t(0≤t≤a)经过原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若函数y=f(t)的大致图象如图,那么平面图形的形状不可能是( )A. B.C. D.11. 设函数 f (x )=x 2+1,当自变量 x 由 1 变到 1.1 时,函数 f (x ) 的平均变化率为 ( )A. 2.1B. 1.1C. 2D. 112. 函数在某一点的导数是 ( )A. 在该点的函数的增量与自变量的增量的比B. 一个函数C. 一个常数,不是变数D. 函数在这一点到它附近一点之间的平均变化率 13. 已知 f (x )=1x+1,则 limΔx→0f (2+Δx )−f (2)Δx 的值是 ( )A. −14B. 14C. −19D. 1914. 物体自由落体运动的方程为 s (t )=12gt 2,g =9.8 m/s 2,若 v =limΔt→0s (1+Δt )−s (1)Δt=9.8 m/s ,那么下列说法正确的是 ( ) A. 9.8 m/s 是在 1 s 这段时间内的速度B. 9.8 m/s 是从 1 s 到 (1+Δt )s 这段时间内的速度C. 9.8 m/s 是物体在 t =1 s 这一时刻的速度D. 9.8 m/s 是物体从 1 s 到 (1+Δt )s 这段时间内的平均速度二、填空题(共4小题;共20分) 15. 函数 y =ax +b 从 1 到 2 的平均变化率是 .=.16. 在曲线y=x2+1的图象上取一点(1,2)及其附近一点(1+Δx,2+Δy),则ΔyΔx(t是时间,s是位移),那么物体在时刻t=2时的速度17. 已知物体的运动方程为s=t2+3t为.18. 一个物体的位移s(米)与时间t(秒)的关系为s=4−2t+t2,则该物体在3秒末的瞬时速度是.三、解答题(共2小题;共26分)19. 求曲线f(x)=2x2−x在点(1,1)处的切线斜率.20. 求下列函数的导数:(1)y=−x2+6x;(2)y=x3−x;(3)y=3;x2(4)y=(x+2)2−3.第一部分1. B2. C3. D4. A5. D6. B 【解析】fʹ(1)=2a+b.7. B 【解析】fʹ(x A)和fʹ(x B)分别表示函数图象在点A,B处的切线斜率,故fʹ(x A)<fʹ(x B)<0 .8. A 【解析】由v(t)=sʹ(t)=6t2−gt,a(t)=vʹ(t)=12t−g,当t=2时,a(2)=vʹ(2)=12×2−10=14.9. C10. C【解析】从函数的图象观察可得,函数的导数开始比较小,然后变大,后又减小,反映到实际中,是图形面积相对于t的变化率ΔSΔt开始小,然后增大,后又变小.11. A12. C13. C14. C第二部分15. a16. Δx+2【解析】ΔyΔx =(1+Δx)2+1−2Δx=Δx+2.17. 134【解析】因为sʹ=2t−3t2,所以t=2时,v=4−34=134.18. 4米/秒第三部分19. 因为f(1+Δx)−f(1)Δx =3+Δx,所以k=limΔx→0(3+2Δx)=3 .20. (1)因为Δy=−(x+Δx)2+6(x+Δx)−(−x2+6x) =−(Δx)2−2xΔx+6Δx,所以yʹ=limΔx→0Δy Δx=limΔx→0−(Δx)2−2xΔx+6ΔxΔx=−2x+6.(2)因为Δy=(x+Δx)3−(x+Δx)−(x3−x) =3x2Δx+3x(Δx)−Δx,所以yʹ=limΔx→0Δy Δx=limΔx→03x2Δx+3x(Δx)2−ΔxΔx=3x2−1.(3)因为Δy=3(x+Δx)2−3x2=3[2Δx+(Δx)2]x(x+Δx)2,所以yʹ=limΔx→0Δy Δx=limΔx→0−3[2Δx+(Δx)2]Δx⋅x(x+Δx)2=−6x3.(4)因为y=x2+4x+4−3=x2+4x+1,所以Δy=(x+Δx)2+4(x+Δx)+1−(x2+4x+1) =(Δx)2+2xΔx+4Δx.因此yʹ=limΔx→0Δy Δx=limΔx→0(Δx)2+2xΔx+4ΔxΔx=2x+4.。
导数的几何意义专题练习题含答案

导数的几何意义专题练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 函数f (x )在x =4处的切线方程为y =3x +5,则f (4)+f ′(4)=( ) A.10 B.20C.30D.402. 函数f (x )=x 3−7x 2+1的图象在点(4,f (4))处的切线的斜率为( ) A.−8 B.−7C.−6D.−53. 已知三次函数y =f (x )的图像如右图所示,若f ′(x )是函数f (x )的导函数,则关于x 的不等式(x −2)f ′(x )>f (7)的解集为( )A.{x|1<x <2或x >4}B.{x|x <7}C.{x|1<x <4}D.{x|x <1或2<x <4}4. 已知曲线y =ae x +x ln x 在点(1,ae )处的切线方程为y =2x +b ,则( ) A.a =e ,b =−1 B.a =e ,b =1 C.a =1e ,b =eD.a =1e , b =−15. 已知曲线y =ae x +x ln x 在点(1,ae )处的切线方程为y =2x +b ,则( ) A.a =e ,b =−1 B.a =e ,b =1 C.a =1e , b =−1 D.a =1e ,b =e6. 如图,直线l 是曲线y =f (x )在x =2处的切线,则f ′(2)=( )A.1B.2C.3D.47. 设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象为()A.B.C.D.8. 已知函数f (x )=53x −ln (2x +1),则lim Δx→0f (1+Δx )−f (1)2Δx=( ) A.1 B.12C.43D.539. 已知直线y =ax +2a 与曲线y =ln (x +2)相切,则a 的值为( ) A.1 B.2C.1eD.1e 210. 已知f(x)=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2,都有f(x 1)−f(x 2)x 1−x 2>2恒成立,则a 的取值范围是( )A.[1, +∞)B.(1, +∞)C.(0, 1)D.(0, 1]11. 设f (x )为可导函数,且满足lim Δx→0f (1+3Δx )−f (1)Δx=−3,则函数y =f (x )在x =1处的导数为( ) A.1 B.−1C.1或−1D.以上答案都不对12. 已知函数f (x )={e −x +2mx +m, x <0,e x (x −1), x ≥0, (e 为自然对数的底),若F (x )=f (x )+f (−x )且F (x )有四个零点,则实数m 的取值可以( )A.1B.2C.eD.2e13. 函数f(x)=2x3−2的图象在点(1,0)处的切线的斜率为________.14. 曲线y=ln x−在x=1处的切线的倾斜角为α,则sin2α=________.15. 已知函数f(x)=log a x(a>1)的导函数是f′(x),记A=f′(a),B=f′(a+1),C=f(a+1)−f(a)(a+1)−a,则A,B,C的大小关系是________.16. 已知曲线y=x+ln x在点(1,1)处的切线为l.若l与曲线y=ax2+(a+2)x+1相切,则a=________.17. 函数在点处的切线方程为________.18. 已知函数,则曲线在处的切线方程为________.19. 曲线f(x)=e x−x ln x+2在x=1处的切线与两坐标轴围成的三角形的面积为________.20. 若函数y=x3+ax2(a∈R)的图象在点(1,b)处切线的斜率为−1,则a+b=________.21. 曲线f(x)=x sin x在x=π2处的切线方程为________22. 已知直线y=kx+b是曲线y=e x的一条切线,则k+b的取值范围是________.23. 已知曲线y=1x +ln xa在x=1处的切线l与直线2x+3y=0垂直,则实数a的值为________.24. 已知P是曲线y=14x2−12ln x上的动点,Q是直线y=34x−2上的动点,则PQ的最小值为________.25. 求函数y=(2x−1)2在x=3处的导数.26. 已知圆的面积S是半径r的函数S=πr2,用定义求S在r=5处的导数,并对S′(5)的意义进行解释.27. 求曲线y=1x+2x在x=1处切线的斜率,并求该切线的切线方程.28. 已知函数f(x)=a ln xx+1+bx,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y−3=0.(Ⅰ)求a,b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>ln xx−1.29. 已知函数f(x)=ln x−12ax2+bx+1的图象在x=1处的切线l过点(12,12).(Ⅰ)若函数g(x)=f(x)−(a−1)x(a>0),求g(x)的最大值(用a表示);(Ⅱ)若a=−4,f(x1)+f(x2)+x1+x2+3x1x2=2,证明:x1+x2≥12.30. 已知函数f(x)=x2+a ln x.(Ⅰ)若曲线y=f(x)−1在点(1,0)上的切线与直线y=x垂直,求a的值;(Ⅱ)函数y=f′(x)是函数y=f(x)的导函数,若f′(x)≥ln xx恒成立,求a的取值范围.31. 已知函数f(x)=e x−a,g(x)=ln x−b.(1)当a=1时,求曲线y=f(x)在点(1,1)处的切线方程;(2)若a=b+2,是否存在直线与曲线y=f(x)和y=g(x)都相切?若存在,求出所有这样的直线;若不存在,请说明理由.x3−x2+2,M为函数f(x)图象上一点,曲线y=f(x)在M处的32. 已知函数f(x)=13切线为l.(1)若M点坐标为(0,2),求切线l的方程;(2)求当切线l的斜率最小时M点的坐标.33. 已知函数f(x)=ln x−mx,m∈R.(1)若f(x)在点x=1处的切线与直线x+2y+1=0垂直,求该切线的方程;(2)设函数g(x)=1x2+f(x)有两个相异的极值点x1,x2,求g(x1)+g(x2)的取值范围.2−8ln x (a∈R)34. 已知函数f(x)=2x−ax(1)若f(x)在点A(1,f(1))处取得极值,求过点A且与f(x)在x=a处的切线平行的直线方程;(2)若函数f(x)有两个都大于1的极值点x1,x2(1<x1<x2),求证:当m≤1时,总有a ln x1>m(5x2−x22)成立.1−x135. 已知函数f(x)=−x3+ax2−4(a∈R).(1)若函数y=f(x)的图象在点P(1, f(1))处的切线的倾斜角为π,求a的值;4(2)若存在t∈(0, +∞),使f(t)>0,求a的取值范围.参考答案与试题解析导数的几何意义专题练习题含答案一、选择题(本题共计 12 小题,每题 3 分,共计36分)1.【答案】B【考点】利用导数研究曲线上某点切线方程导数的几何意义【解析】根据切点在切线上可求出f(4)的值,然后根据导数的几何意义求出f′(4)的值,从而可求出所求.【解答】解:根据切点在切线上可知当x=4时,y=17,∴f(4)=17,∵函数y=f(x)的图象在x=4处的切线方程是y=3x+5,∴f′(4)=3,则f(4)+f′(4)=17+3=20.故选B.2.【答案】A【考点】利用导数研究曲线上某点切线方程导数的几何意义【解析】本题考查导数的几何意义,考查运算求解能力.【解答】解:因为f(x)=x3−7x2+1,所以f′(x)=3x2−14x,所以f(x)在(4,f(4))处切线的斜率为f′(4)=3×42−14×4=−8.故选A.3.【答案】D【考点】函数恒成立问题利用导数研究函数的单调性函数的图象与图象变化导数的几何意义【解析】由图象做出其导函数的图像,用符号法则即可求解不等式.【解答】解:由图象可知, f (7)=0 ,即原不等式转化为(x −2)f ′(x )>0又由于三次函数y =f (x )的导函数是二次函数,结合f (x )的图象可知, x =1和x =4分别是函数f (x )的极小值点和极大值点,则x =1和x =4是函数f ′(x )的两个零点,我们可以做出导函数f ′(x )的图象如图,由图象可知,当x <1时, f ′(x )<0, 当1<x <4时, f ′(x )>0, 当x >4时, f ′(x )<0接下来利用符号法则即可求解,当x <1时,f ′(x )<0,而x −2<0,故(x −2)⋅f ′(x )>0,故x <1满足题意; 当1<x <2时, f ′(x )>0,但x −2<0,故(x −2)⋅f ′(x )<0,不满足题意; 当2<x <4时, f ′(x )>0,且x −2>0,故(x −2)⋅f ′(x )>0,满足题意; 当x >4时, f ′(x )<0,但x −2>0,故(x −2)⋅f ′(x )<0,不满足题意; 综上所述,不等式x ⋅f ′(x )>0的解为x <1或者2<x <4, 故不等式(x −2)f ′(x )>f (7)的解集 {x|x <1或2<x <4}. 故选D . 4.【答案】 D【考点】导数的几何意义利用导数研究曲线上某点切线方程【解析】利用切线的斜率为2,切点坐标(1,a e )在切线上,列方程求解即可. 【解答】解:y ′=a e x +ln x +1, 由题意可得{a e +1=2,a e=2+b,解得a =1e ,b =−1. 故选D . 5.【考点】导数的几何意义利用导数研究曲线上某点切线方程【解析】利用切线的斜率为2,切点坐标(1,a e )在切线上,列方程求解即可. 【解答】解:y ′=a e x +ln x +1, 由题意可得{a e +1=2,a e=2+b,解得a =1e ,b =−1.故选C . 6.【答案】 A【考点】斜率的计算公式 导数的几何意义【解析】由图象可知直线1经过(2,3) (0,1) ,由两点的斜率公式可得切线l 的斜率,再由导数的几何意义可得所求值. 【解答】解:由图象可得直线l 与曲线y =f (x )相切的切点为(2,3), ∵ 直线l 经过点(0,1), ∴ 直线l 的斜率为k =3−12−0=1,由导数的几何意义可得f ′(2)=k =1. 故选A . 7.【答案】 C【考点】导数的几何意义 函数的图象【解析】根据原函数图像,由导函数与原函数图像之间关系,逐项判断,即可得出结果. 【解答】解:由图可知,函数f (x )在(−∞,0)上单调递减,∴ y =f ′(x )<0在(−∞,0)上恒成立,排除选项B 和D . 函数f (x )在(0,+∞)上先递减后递增再递减,∴ y =f ′(x )在(0,+∞)上应为负、正、负的趋势,即选项A 错误,C 正确. 故选C . 8.【考点】导数的几何意义【解析】无【解答】解:由题得f′(x)=53−22x+1,∴f′(1)=1.∵limΔx→0f(1+Δx)−f(1)Δx=f′(1)=1,∴limΔx→0f(1+Δx)−f(1)2Δx=12.故选B.9.【答案】C【考点】导数的几何意义利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:由题意,得y′=1x+2=a,解得x=1a−2,∴ a(1a −2)+2a=ln(1a+2−2),解得a=1e.故选C.10.【答案】A【考点】导数的几何意义利用导数研究函数的单调性【解析】先将条件“对任意两个不等的正实数x1,x2,都有f(x1)−f(x2)x1−x2>2恒成立”转换成当x>0时,f′(x)≥2恒成立,然后利用参变量分离的方法求出a的范围即可.【解答】解:对任意两个不等的正实数x1,x2,都有f(x1)−f(x2)x1−x2>2恒成立,则当x>0时,f′(x)≥2恒成立,则f′(x)=ax+x≥2在(0, +∞)上恒成立,则a≥(2x−x2)max=1,即a的取值范围是[1, +∞). 故选A.11.【答案】B【考点】导数的几何意义【解析】【解答】解:∵f(x)为可导函数,且满足limΔx→0f(1+3Δx)−f(1)Δx=−3,∴f′(1)=limΔx→0f(1+3Δx)−f(1)3Δx=13limΔx→0f(1+3Δx)−f(1)Δx=13×(−3)=−1,∴f′(1)=−1.故选B.12.【答案】D【考点】利用导数研究函数的单调性导数的几何意义函数的零点与方程根的关系函数奇偶性的判断【解析】根据定义域为R,且F(−x)=F(x),可知函数F(x)是偶函数.所以只需研究x>0时函数F(x)有两个零点即可,然后再转化为两个函数图象交点的问题,结合导数研究函数的切线等,即可解决问题.【解答】解:∵函数的定义域为R,且F(−x)=f(−x)+f(x)=F(x),∴函数F(x)是偶函数,∵f(x)={e −x+2mx+m,x<0,e x(x−1),x≥0,(e为自然对数的底),∴f(−x)={e −x(−x−1), x≤0,e2−2mx+m, x>0,又因为F(x)有四个零点,所以只需研究x >0时函数F (x )=0有两个不等根即可,即e 2(x −1)+e x −2mx +m =0在(0,+∞)上有两个互异根,即x e 2=2m (x −12) 在(0,+∞)上有两个根, 令H (x )=x e 2,L (x )=2m (x −12)过定点(12,0),∵ H ′(x )=e x (x +1)>0,所以H (x )在(0,+∞)上是增函数,下面求H (x )过(12,0)的切线斜率.设切点为Q (t,t e t ),t >0,则切线斜率为k =e t (t +1),故切线为y −t e t =e t (t +1)(x −t ),将(12,0)代入得:−t e t =e t (t +1)(12−t),即2t 2−t −1=0,解得:t =1或t =−12(舍), 此时切线斜率k =2e ,作出H (x )与L (x )图象:可见,当L (x )与H (x )相切,即2m =2e 时,只有一个公共点;当m >e 时,就会有两个交点.故m 的值可以为2e .故选D .二、 填空题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )13.【答案】6【考点】利用导数研究曲线上某点切线方程导数的几何意义【解析】本题考查导数的几何意义,考查运算求解能力.【解答】解:因为f ′(x )=6x 2,所以f ′(1)=6.故答案为:6.14.【答案】【考点】导数的几何意义【解析】先求出曲线y=ln x−的导数,得到曲线在x=1处的斜率,再根据切线的倾斜角为α,得到tanα的值,进一步求出sin2α的值.【解答】由y=ln x−,得y′=,∴曲线y=ln x−在x=3处的切线斜率k=2,∵曲线y=ln x−在x=2处的切线的倾斜角为α,∴tanα=2,∴sin2α=5sinαcosα=.15.【答案】A>C>B【考点】导数的几何意义【解析】本题考查导数的几何意义.【解答】解:设M(a,f(a)),N(a+1,f(a+1)),表示直线MN的斜率k MN;则C=f(a+1)−f(a)(a+1)−aA=f′(a)表示函数f(x)在点M处的切线的斜率;B=f′(a+1)表示函数f(x)在点N处的切线的斜率,作出函数f(x)的大致图像,由图易知f′(a)>k MN>f′(a+1),所以A>C>B.故答案为:A>C>B.16.【答案】8【考点】利用导数研究曲线上某点切线方程导数的几何意义【解析】本题考查导数的几何意义、数形结合思想的应用.【解答】,解:函数f(x)=x+ln x的导函数为f′(x)=1+1x=2,所以切线l的方程为y−1=2(x−1),则f′(1)=1+11即y=2x−1,因为直线l与曲线y=ax2+(a+2)x+1相切,所以方程ax2+(a+2)x+1=2x−1,即ax2+ax+2=0有两个相等的实数根,显然a≠0,则Δ=a2−4×2a=0,解得a=8.故答案为:8.17.【答案】7x−v−4=0【考点】利用导数研究曲线上某点切线方程圆的切线方程导数的几何意义【解析】求得函数f(x)的导数,可得切线的斜率和切点坐标,由点斜式方程即可得切线方程.【解答】由函数f(x)=2x3+x,得f′(x)=6x2+1f′(1)=7,即曲线在点(1,f(1))处的切线斜率为k=7,又f(1)=3.曲线在点(1,f(1))处的切线方程为y−3=7(x−1),即7x−y−4=0故答案为:7x−y−4=018.【答案】y=0【考点】利用导数研究曲线上某点切线方程圆的切线方程导数的几何意义【解析】求出f(0)和f′(0)即可因为f(x)=x3,所以f(0)=0,f′(x)=3x2所以f′(0)=0所以曲线y=f(x)在(0,0)处的切线方程为:y−0=0×(x−0)即y=0故答案为:y=019.【答案】92(e−1)【考点】导数的几何意义利用导数研究曲线上某点切线方程【解析】求导得f′(x)=e x−ln x−1,故f′(1)=e−1,再结合f(1)=e+2和直线的点斜式方程得切线方程y−(e+2)=(e−1)(x−1),进而求在坐标轴上的点的坐标,计算三角形的面积.【解答】解:因为f′(x)=e x−ln x−1,所以f′(1)=e−1,又f(1)=e+2,故曲线y=f(x)在x=1处的切线方程为y−(e+2)=(e−1)(x−1),切线交两坐标轴于点A(0,3),B(31−e,0),所以S△AOB=12⋅OA⋅OB=92(e−1).故答案为:92(e−1).20.【答案】−3【考点】导数的几何意义利用导数研究曲线上某点切线方程【解析】求得f(x)的导数,可得切线的斜率和切点,求出a,b的值,即可得解.【解答】解:函数y=x3+ax2(a∈R)的导数为f′(x)=3x2+2ax,可得函数在点(1,b)处的切线斜率为:k=f′(1)=3+2a=−1,所以a=−2,因为点(1,b)在函数y=x3+ax2(a∈R)上,所以b=1+a=−1,所以a+b=−2+(−1)=−3.故答案为:−3.21.y=x【考点】利用导数研究曲线上某点切线方程利用导数研究函数的单调性导数的几何意义抛物线的性质抛物线的求解【解析】此题暂无解析【解答】略22.【答案】(−∞,e]【考点】利用导数研究曲线上某点切线方程导数的几何意义【解析】此题暂无解析【解答】解:设f(x)=e x,切点为(x0,e x0),f′(x)=e x,∴ k=e x0,b=e x0−kx0=e x0(1−x0),∴ k+b=e x0+e x0(1−x0)=e x0(2−x0).令g(x)=e x(2−x),g′(x)=e x(2−x)−e x=e x(1−x),当x∈(−∞,1)时,g′(x)>0,g(x)单调递增;当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.又g(1)=e,∴ k+b的取值范围是(−∞,e].故答案为:(−∞,e].23.【答案】25【考点】利用导数研究曲线上某点切线方程导数的几何意义两条直线垂直与倾斜角、斜率的关系【解析】此题暂无解析【解答】解:直线2x+3y=0的斜率为−23,设曲线y=1x +ln xa在x=1处的切线l的斜率为k,则k⋅(−23)=−1,k=32,又曲线y=1x +ln xa在x=1处有切线l,则y′=−1x2+1ax,y′(1)=1a−1=k,即1a −1=32,解得a=25.故答案为:25.24.【答案】6−2ln25【考点】导数的几何意义点到直线的距离公式【解析】此题暂无解析【解答】解:函数的定义域为(0,+∞),由y=14x2−12ln x内导数为y′=12x−12x,令12x−12x=34,可得x=2或x=−12(舍去),所以切点为(2,1−12ln2).它到直线y=34x−2即3x−4y−8=0的距离d=√9+16=6−2ln25,即点P到直线y=34x−2的距离的最小值6−2ln25.故答案为:6−2ln25.三、解答题(本题共计 11 小题,每题 10 分,共计110分)25.【答案】20【考点】导数的几何意义导数的运算【解析】求出函数的导函数,然后求解在x=3处的导数值即可.【解答】函数y=(2x−1)2=4x2−4x+1,y′=8x−4.y′|x=3=8×3−4=20.26.【答案】△S=π(5+△r)2+π×52=π(△r2+10△r)∴△S=π(△r+10),△r∴limπ(△r+10)=10π,△r→0S′(5)的意义是半径r=5时,其圆的周长.【考点】导数的几何意义导数的运算【解析】根据导数的定义即可求出.【解答】△S=π(5+△r)2+π×52=π(△r2+10△r)∴△S=π(△r+10),△r∴limπ(△r+10)=10π,△r→0S′(5)的意义是半径r=5时,其圆的周长.27.【答案】+2,函数的导数f′(x)=−1x2在x=1处切线的切线斜率k=f′(1)=−1+2=1,f(1)=1+2=3,即切点坐标为(1, 3),则对应的切线方程为y−3=x−1,即y=x+2.【考点】导数的几何意义【解析】求函数的导数,利用导数的几何意义进行求解即可.【解答】函数的导数f′(x)=−1x 2+2,在x =1处切线的切线斜率k =f′(1)=−1+2=1, f(1)=1+2=3,即切点坐标为(1, 3),则对应的切线方程为y −3=x −1,即y =x +2.28.【答案】(Ⅰ)解:f ′(x)=a(x+1x−ln x)(x+1)2−b x 2.由于直线x +2y −3=0的斜率为−12,且过点(1,1),故{f(1)=1,f ′(1)=−12,即{b =1,a 2−b =−12, 解得a =1,b =1.(Ⅱ)证明:由(Ⅰ)知f(x)=ln x x+1+1x , 所以f(x)−ln x x−1=11−x 2(2ln x −x 2−1x ). 令ℎ(x)=2ln x −x 2−1x (x >0), 则ℎ′(x)=2x −2x 2−(x 2−1)x 2=−(x−1)2x 2.所以当x ≠1时,ℎ′(x)<0,而ℎ(1)=0,故当x ∈(0,1)时,ℎ(x)>0,可得11−x 2ℎ(x)>0;当x ∈(1,+∞)时,ℎ(x)<0,可得11−x 2ℎ(x)>0.从而当x >0,且x ≠1时,f(x)−ln x x−1>0.即f(x)>ln x x−1.【考点】导数的几何意义导数的运算【解析】本题考查导数的运算、几何意义、导数与函数的综合应用.【解答】(Ⅰ)解:f ′(x)=a(x+1x−ln x)(x+1)2−b x 2.由于直线x +2y −3=0的斜率为−12,且过点(1,1),故{f(1)=1,f ′(1)=−12, 即{b =1,a 2−b =−12, 解得a =1,b =1.(Ⅱ)证明:由(Ⅰ)知f(x)=ln x x+1+1x , 所以f(x)−ln x x−1=11−x 2(2ln x −x 2−1x ). 令ℎ(x)=2ln x −x 2−1x (x >0), 则ℎ′(x)=2x −2x 2−(x 2−1)x 2=−(x−1)2x 2.所以当x ≠1时,ℎ′(x)<0,而ℎ(1)=0, 故当x ∈(0,1)时,ℎ(x)>0,可得11−x 2ℎ(x)>0; 当x ∈(1,+∞)时,ℎ(x)<0,可得11−x 2ℎ(x)>0. 从而当x >0,且x ≠1时,f(x)−ln x x−1>0. 即f(x)>ln x x−1.29.【答案】(Ⅰ)解:由f ′(x)=1x −ax +b , 得f ′(1)=1−a +b ,f(1)=−12a +b +1, ∴ 切线l 的方程为y −(−12a +b +1)=(1−a +b)⋅(x −1), 又切线l 过点(12,12),∴ 12−(−12a +b +1)=(1−a +b)(12−1), 解得b =0.∵ g(x)=f(x)−(a −1)x =ln x −12ax 2+(1−a)x +1(x >0), ∴ g ′(x)=1x −ax +1−a =−ax 2+(1−a)x +1x=−a(x−1a )(x+1)x (a >0).当x∈(0,1a)时,g′(x)>0,g(x)单调递增,当x∈(1a,+∞)时,g′(x)<0,g(x)单调递减,故g(x)max=g(1a)=ln 1a−12a(1a)2+(1−a)1a+1=12a−ln a.(Ⅱ)证明:∵a=−4,∴f(x)=ln x+2x2+1,∴f(x1)+f(x2)+x1+x2+3x1x2=ln x1+2x12+1+ln x2+2x22+1+x1+x2+3x1x2=ln(x1x2)+2(x1+x2)2+x1+x2−x1x2+2=2,∴x1+x2+2(x1+x2)2=x1x2−ln(x1x2).令x1x2=m(m>0),φ(m)=m−ln m,φ′(m)=m−1m,令φ′(m)<0得0<m<1,令φ′(m)>0得m>1,∴φ(m)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(m)≥φ(1)=1,∴x1+x2+2(x1+x2)2≥1,又x1+x2>0,∴x1+x2≥12.【考点】导数的几何意义不等式的综合【解析】本题考查导数的几何意义、导数、函数、不等式的综合应用.【解答】(Ⅰ)解:由f′(x)=1x−ax+b,得f′(1)=1−a+b,f(1)=−12a+b+1,∴切线l的方程为y−(−12a+b+1)=(1−a+b)⋅(x−1),又切线l过点(12,12 ),∴12−(−12a+b+1)=(1−a+b)(12−1),解得b=0.∵g(x)=f(x)−(a−1)x=ln x−12ax2+(1−a)x+1(x>0),∴g′(x)=1x−ax+1−a=−ax2+(1−a)x+1x=−a(x−1a)(x+1)x(a>0).当x∈(0,1a)时,g′(x)>0,g(x)单调递增,当x∈(1a,+∞)时,g′(x)<0,g(x)单调递减,故g(x)max=g(1a)=ln 1a−12a(1a)2+(1−a)1a+1=12a−ln a.(Ⅱ)证明:∵a=−4,∴f(x)=ln x+2x2+1,∴f(x1)+f(x2)+x1+x2+3x1x2=ln x1+2x12+1+ln x2+2x22+1+x1+x2+3x1x2=ln(x1x2)+2(x1+x2)2+x1+x2−x1x2+2=2,∴x1+x2+2(x1+x2)2=x1x2−ln(x1x2).令x1x2=m(m>0),φ(m)=m−ln m,φ′(m)=m−1m,令φ′(m)<0得0<m<1,令φ′(m)>0得m>1,∴φ(m)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(m)≥φ(1)=1,∴x1+x2+2(x1+x2)2≥1,又x1+x2>0,∴x1+x2≥12.30.【答案】解:(Ⅰ)令ℎ(x)=f(x)−1=x2+a ln x−1,所以ℎ′(x)=2x+ax,又ℎ(x)在点(1,0)处的切线与直线y=x垂直,所以ℎ′(1)=2+a=−1,所以a=−3.(Ⅱ)由题意可得f′(x)≥ln xx,即2x+ax ≥ln xx(x>0),也即a≥ln x−2x2恒成立,令g(x)=ln x−2x2,g′(x)=1x −4x=1−4x2x,令g ′(x)=0,解得x =12(舍去x =−12),所以g(x)=ln x −2x 2在(0,12)上单调递增,在[12,+∞)上单调递减,所以g(x)max =g (12)=ln 12−2×14 =ln 12−12=−ln 2−12. 所以a ≥−ln 2−12. 【考点】函数的单调性与导数的关系 导数的几何意义【解析】本题考查导数的几何意义、导数与函数单调性之间的关系. 【解答】 解:(Ⅰ)令ℎ(x)=f(x)−1=x 2+a ln x −1, 所以ℎ′(x)=2x +a x ,又ℎ(x)在点(1,0)处的切线与直线y =x 垂直, 所以 ℎ′(1)=2+a =−1, 所以a =−3.(Ⅱ)由题意可得f ′(x)≥ln x x,即2x +ax ≥ln x x(x >0),也即a ≥ln x −2x 2恒成立,令g(x)=ln x −2x 2,g ′(x)=1x −4x =1−4x 2x,令g ′(x)=0,解得x =12(舍去x =−12),所以g(x)=ln x −2x 2在(0,12)上单调递增,在[12,+∞)上单调递减, 所以g(x)max =g (12)=ln 12−2×14 =ln 12−12=−ln 2−12. 所以a ≥−ln 2−12. 31.【答案】解:(1)当a =1时,f (x )=e x−1,f ′(x )=e x−1, ∴ f ′(1)=1,f(1)=1,∴ 曲线y =f (x )在点(1,1)处的切线方程为y −1=x −1, 即y =x .(2)设直线与曲线y =f (x )相切于点A (x 1,y 1),与曲线y =g (x )相切于点B (x 2,y 2),则f′(x)=e x−a,g′(x)=1x,∵曲线y=f(x)在点A处的切线为y−e x1−a=e x1−a(x−x1),与曲线y=g(x)相切于点B,∴{e x1−a=1x2①,ln x2−b−e x1−a=e x1−a(x2−x1)②,由①,得x1−a=ln1x2=−ln x2,即ln x2=a−x1,将e x1−a=1x2,ln x2=a−x1代入②,得a−x1−b−1x2=1x2(x2−x1),又a=b+2,整理,得(x1−1)(x2−1)=0,当x1=1时,y−e1−a=e1−a(x−1),即y=e1−a x;当x2=1时,a−x1=ln x2=0,x1=a,∴y−1=x−a,即y=x+1−a,∴存在这样的直线,直线为y=e1−a x或y=x+1−a.【考点】利用导数研究曲线上某点切线方程导数的几何意义【解析】(1)当a=1时,f(x)=e x−1,f′(x)=e x−1,故k=f′(1)=1,再根据点斜式方程求解即可 .(2)设直线与曲线y=f(x)相切于点A(x1,y1),与曲线y=g(x)相切于点B(x2,y2),①则根据切点在切线上,也在曲线上得{e x1−a=1x2①,ln x2−b−e x2−a(x2−x1)②,,整理得(x1−1)(x2−1)=0,再分当x1=1时和x2=1时两种情况求解即可.【解答】解:(1)当a=1时,f(x)=e x−1,f′(x)=e x−1,∴f′(1)=1,f(1)=1,∴曲线y=f(x)在点(1,1)处的切线方程为y−1=x−1,即y=x.(2)设直线与曲线y=f(x)相切于点A(x1,y1),与曲线y=g(x)相切于点B(x2,y2),则f′(x)=e x−a,g′(x)=1x,∵曲线y=f(x)在点A处的切线为y−e x1−a=e x1−a(x−x1),与曲线y=g(x)相切于点B,∴{e x1−a=1x2①,ln x2−b−e x1−a=e x1−a(x2−x1)②,由①,得x1−a=ln1x2=−ln x2,即ln x2=a−x1,将e x1−a=1x2,ln x2=a−x1代入②,得a−x1−b−1x2=1x2(x2−x1),又a=b+2,整理,得(x1−1)(x2−1)=0,当x1=1时,y−e1−a=e1−a(x−1),即y=e1−a x;当x2=1时,a−x1=ln x2=0,x1=a,∴y−1=x−a,即y=x+1−a,∴存在这样的直线,直线为y=e1−a x或y=x+1−a.32.【答案】解:(1)由题意,得f′(x)=x2−2x,∵f′(0)=0,∴ k=0,∴ 切线l的方程为y=2.(2)∵f′(x)=x2−2x=(x−1)2−1≥−1,∴ 当x=1时,切线l的斜率最小,∴ y=13−1+2=43,∴ M点的坐标为(1,43).【考点】利用导数研究曲线上某点切线方程导数的几何意义【解析】左侧图片未给出解析左侧图片未给出解析【解答】解:(1)由题意,得f′(x)=x2−2x,∵f′(0)=0,∴ k=0,∴ 切线l的方程为y=2.(2)∵f′(x)=x2−2x=(x−1)2−1≥−1,∴ 当x=1时,切线l的斜率最小,∴ y=13−1+2=43,∴ M点的坐标为(1,43).33.【答案】解:(1)∵f(x)=ln x−mx,∴f′(x)=1x−m .∵ 直线x +2y +1=0的斜率为k =−12,∴ f (x )在点x =1处的切线斜率为−2. ∴ f ′(1)=1−m =2, 解得m =−1,∴ f (x )=ln x +x ,f (1)=1, ∴ 切点坐标为(1,1),∴ 切线的方程为y −1=2(x −1),即2x −y −1=0 . (2)∵ f (x )=ln x −mx ,∴ g (x )=12x 2+f (x )=12x 2−mx +ln x ,定义域为(0,+∞),∴ g ′(x )=x −m +1x =x 2−mx+1x(x >0).∵ 函数g (x )=12x 2+f (x )有两个不相等的极值点x 1,x 2, ∴ 方程x 2−mx +1=0有两个不相等的正实数解x 1,x 2, ∴ {Δ=m 2−4>0,x 1+x 2=m >0,x 1x 2=1>0,解得m >2 , ∴ g (x 1)+g (x 2)=(12x 12−mx 1+ln x 1)+(12x 22−mx 2+ln x 2)=12(x 12+x 22)−m (x 1+x 2)+(ln x 1+ln x 2)=12[(x 1+x 2)2−2x 1x 2]−m (x 1+x 2)+ln (x 1x 2) =12(m 2−2)−m 2+ln 1 =−12m 2−1.∵ m >2,∴ g (x 2)+g (x 2)<−3,∴ g (x 1)+g (x 2)的取值范围是(−∞,−3) . 【考点】利用导数研究曲线上某点切线方程 导数的几何意义 利用导数研究函数的极值 【解析】 此题暂无解析 【解答】解:(1)∵ f (x )=ln x −mx , ∴ f ′(x )=1x −m .∵ 直线x +2y +1=0的斜率为k =−12,∴ f (x )在点x =1处的切线斜率为−2. ∴ f ′(1)=1−m =2, 解得m =−1,∴ f (x )=ln x +x ,f (1)=1, ∴ 切点坐标为(1,1),∴ 切线的方程为y −1=2(x −1),即2x −y −1=0 . (2)∵ f (x )=ln x −mx ,∴ g (x )=12x 2+f (x )=12x 2−mx +ln x ,定义域为(0,+∞), ∴ g ′(x )=x −m +1x =x 2−mx+1x(x >0).∵ 函数g (x )=12x 2+f (x )有两个不相等的极值点x 1,x 2, ∴ 方程x 2−mx +1=0有两个不相等的正实数解x 1,x 2, ∴ {Δ=m 2−4>0,x 1+x 2=m >0,x 1x 2=1>0,解得m >2 , ∴ g (x 1)+g (x 2)=(12x 12−mx 1+ln x 1)+(12x 22−mx 2+ln x 2)=12(x 12+x 22)−m (x 1+x 2)+(ln x 1+ln x 2)=12[(x 1+x 2)2−2x 1x 2]−m (x 1+x 2)+ln (x 1x 2) =12(m 2−2)−m 2+ln 1 =−12m 2−1.∵ m >2,∴ g (x 2)+g (x 2)<−3,∴ g (x 1)+g (x 2)的取值范围是(−∞,−3) . 34. 【答案】解:(1)f ′(x)=2+a x 2−8x=2x 2−8x+ax 2(x >0),由已知f ′(1)=2−8+a 12=0知a =6,f ′(6)=2×62−8×6+662=56,点A(1,−4),故所求直线方程为5x −6y −29=0. (2)f(x)定义域为(0,+∞), 令t(x)=2x 2−8x +a ,由f(x)有两个极值点x 1,x 2(1<x 1<x 2)得:t(x)=2x 2−8x +a =0,有两个都大于1的不等的零点, {Δ=64−8a >0,t(0)=a >0,t(1)>0,∴ 6<a <8, {x 1+x 2=4,x 1x 2=a 2,∴ {x 2=4−x 1,a =2x 1x 2=2x 1(4−x 1),由1<x 1<x 2知1<x 1<2, 原不等式等价于:2x 1(4−x 1)ln x 11−x 1>m[5(4−x 1)−(4−x 1)2],∵ 4−x 1>0, ∴ 2x 1ln x 11−x 1>m(1+x 1),∴x 11−x 1[2ln x 1+m(x 12−1)x 1]>0,①1<x 1<2,x 11−x 1<0,令ℎ(x)=2ln x +m(x 2−1)x(1<x <2),ℎ′(x)=mx 2+2x+mx 2,m ≤−1时,Δ=4−4m 2≤0,ℎ′(x)<0恒成立,所以ℎ(x)在(1,2)上单调递减. ∵ ℎ(1)=0,∴ ℎ(x)<0,不等式①成立, ∴ m ≤−1时原不等式成立. 【考点】利用导数研究不等式恒成立问题 利用导数研究曲线上某点切线方程 利用导数研究函数的极值 导数的几何意义 【解析】 【解答】解:(1)f ′(x)=2+ax 2−8x =2x 2−8x+ax 2(x >0),由已知f ′(1)=2−8+a 12=0知a =6,f ′(6)=2×62−8×6+662=56,点A(1,−4),故所求直线方程为5x −6y −29=0. (2)f(x)定义域为(0,+∞), 令t(x)=2x 2−8x +a ,由f(x)有两个极值点x 1,x 2(1<x 1<x 2)得:t(x)=2x 2−8x +a =0,有两个都大于1的不等的零点, {Δ=64−8a >0,t(0)=a >0,t(1)>0,∴ 6<a <8, {x 1+x 2=4,x 1x 2=a 2,∴ {x 2=4−x 1,a =2x 1x 2=2x 1(4−x 1),由1<x 1<x 2知1<x 1<2, 原不等式等价于:2x 1(4−x 1)ln x 11−x 1>m[5(4−x 1)−(4−x 1)2],∵ 4−x 1>0, ∴2x 1ln x 11−x 1>m(1+x 1),∴ x 11−x 1[2ln x 1+m(x 12−1)x 1]>0,①1<x 1<2,x11−x 1<0,令ℎ(x)=2ln x +m(x 2−1)x(1<x <2),ℎ′(x)=mx 2+2x+mx 2,m ≤−1时,Δ=4−4m 2≤0,ℎ′(x)<0恒成立,所以ℎ(x)在(1,2)上单调递减. ∵ ℎ(1)=0,∴ ℎ(x)<0,不等式①成立, ∴ m ≤−1时原不等式成立. 35.【答案】解:(1)依题意f ′(x)=−3x 2+2ax , f ′(1)=tan π4=1,∴ −3+2a =1,即a =2. (2)f′(x)=−3x(x −2a 3).①若a ≤0,当x >0时,f′(x)<0,∴f(x)在[0, +∞)上单调递减.又f(0)=−4,则当x>0时,f(x)<−4.∴a≤0时,不存在t>0,使f(t)>0.②若a>0,则当0<x<2a3时,f′(x)>0,当x>2a3时,f′(x)<0.从而f(x)在(0,2a3]上单调递增,在[2a3,+∞)上单调递减.∴当x∈(0, +∞)时,f(x)max=f(2a3)=−8a327+4a39−4=4a327−4,据题意,4a 327−4>0,即a3>27,∴a>3.综上,a的取值范围是(3, +∞).【考点】利用导数研究函数的最值利用导数研究曲线上某点切线方程利用导数研究函数的单调性导数的几何意义【解析】(1)求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,然后再根据切线的倾斜角求出切线的斜率,两个斜率相等即可求出a的值;(2)求出f(x)的导函数,当a小于等于0时,由x大于0,得到导函数小于0,即函数在(0, +∞)上为减函数,又x=0时f(x)的值为−4且当x大于0时,f(x)小于−4,所以当a 小于等于0时,不存在x0>0,使f(x0)>0;当a大于0时,分区间讨论导函数的正负得到函数的单调区间,根据函数的增减性得到f(x)的最大值,让最大值大于0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,综上,得到满足题意a的取值范围.【解答】解:(1)依题意f′(x)=−3x2+2ax,f′(1)=tanπ4=1,∴−3+2a=1,即a=2.(2)f′(x)=−3x(x−2a3).①若a≤0,当x>0时,f′(x)<0,∴f(x)在[0, +∞)上单调递减.又f(0)=−4,则当x>0时,f(x)<−4.∴a≤0时,不存在t>0,使f(t)>0.②若a>0,则当0<x<2a3时,f′(x)>0,当x>2a3时,f′(x)<0.从而f(x)在(0,2a3]上单调递增,在[2a3,+∞)上单调递减.∴当x∈(0, +∞)时,f(x)max=f(2a3)=−8a327+4a39−4=4a327−4,据题意,4a 327−4>0,即a3>27,∴a>3.综上,a的取值范围是(3, +∞).试卷第31页,总31页。
导数练习题(含答案)

导数练习题(含答案)导数概念及其几何意义、导数的运算一、选择题:1 已知32()32f x ax x =++,若(1)4f '-=,则a 的值等于A 193B 103C 163D 1332 已知直线1y kx =+与曲线3y xax b =++切于点(1,3),则b 的值为A 3B -3C 5D -5 3 函数2y x a a =+2()(x-)的导数为 A 222()xa - B 223()xa + C 223()xa - D 222()xa +4 曲线313y xx=+在点4(1,)3处的切线与坐标轴围成的三角形的面积为 A 19 B 29 C 13 D 23 5 已知二次函数2y axbx c=++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为 A 3 B 52 C 2 D 326 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B()2(1)f x x =- C 2()2(1)f x x =- D()1f x x =-7 下列求导数运算正确的是A 211()1x x x '+=+ B 21(log )ln 2x x '= C 3(3)3log xxe'=⋅ D2(cos )2sin x x x x'=-8 曲线32153y x x =-+在1x =处的切线的倾斜角为A 6πB 34πC 4πD 3π9 曲线3231y xx =-+在点(1,1)-处的切线方程为A 34y x =-B 32y x =-+C 43y x =-+ D45y x =-10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为11 一质点的运动方程为253s t =-,则在一段时间[1,1]t +∆内相应的平均速度为A 36t ∆+B 36t -∆+C 36t ∆-D 36t -∆-12 曲线()ln(21)f x x =-上的点到直线230x y -+=的最短距离是A 5B 25 5 D 0 13 过曲线32y xx =+-上的点0P 的切线平行于直线41y x =-,则切点0P 的坐标为A (0,1)(1,0)-或B (1,4)(1,0)--或C (1,4)(0,2)---或D (2,8)(1,0)或14 点P 在曲线323y xx =-+上移动,设点P 处切线的倾斜A BC D角为α,则角α的取值范围是A [0,]2πB 3[0,)[,)24πππC 3[,)4ππ D 3(,]24ππ二、填空题15 设()y f x =是二次函数,方程()0f x =有两个相等实根,且()22f x x '=+,则()y f x =的表达式是______________ 16函数2sin x y x=的导数为_________________________________17 已知函数()y f x =的图像在点(1,(1))M f 处的切线方程是122y x =+,则(1)(1)f f '+=_________18 已知直线y kx =与曲线ln y x =有公共点,则k 的最大值为___________________________ 三、解答题19 求下列函数的导数 (1)1sin 1cos x y x-=+ (2)5sin x x xy ++=(3)11x xy x x=-+ (4)tan y x x=⋅20 已知曲线21:Cy x =与22:(2)Cy x =--,直线l 与12,C C 都相切,求直线l 的方程21 设函数()b f x ax x =-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --= (1)求()f x 的解析式(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值。
《导数的概念及其几何意义》典型例题

《导数的概念及其几何意义》典型例题深研1 导数的几何意义1.可导函数在0x x =处切线的斜率为此处函数的导数值.2.根据导数值的变化可确定原函数图象的变化情况. 考向1 由切线确定导数值例1(★)如图,函数()y f x =的图象在点P 处的切线方程是29y x =-+,点P 的横坐标是4,则(4)(4)f f +'=_______________.解析 ∵函数()f x 的图象在点P 处的切线为29y x =-+, ∴2(4)k f '=-=切.又 ∵点P 在切线29y x =-+上,∴(4)1f =,∴(4)(4) 1.f f +'=-① 答案 1-考向2 由切线特点确定函数图象②例2(★)已知函数()y f x =的图象如图所示,则其导函数()y f x '=的图象可能是___________.(填序号)解析 由()y f x =的图象及导数的几何意义可知,当x <0时,()f x '>0;当x =0时,()f x '=0;当x >0时,()f x '<0,故②符合. 答案 ② 方法技巧①1.由切线方程可确定函数()y f x =在0x 处的导数值,即()0f x k '=切. 2.切点为切线与曲线的公共点. 即时训练1.(1)(★★)已知函数()f x 在R 上可导,其部分图象如图所示,设(2)(1)21f f a -=-,则下列不等式正确的是( )A.(1)(2)f f a '<'<B.(1)(2)f a f '<<'C.(2)(1)f f a '<'<D.(1)(2)a f f <'<'解析 由题中图象可知,在区间(0,)+∞上,函数()f x 增长得越来越快,∴(1)f '(2)f <',∵(2)(1)21f f a -=-,∴通过作切线与割线可知(1)(2)f a f '<<',故选B.答案 B 方法技巧②导数的符号、曲线的升降、切线的斜率、切线的倾斜角之间的关系即时训练2.(★)()()()y f x y g x y h x ===,,的图象如图1所示:而图2是其对应导数的图象:则()y f x =的导数图象对应___________;()y g x =的导数图象对应___________;()y h x =的导数图象对应___________.解析 由导数的几何意义,知()f x 图象上任一点处的切线斜率均小于零且保持不变,故()y f x =的导数图象对应B ;()y g x =图象上任一点处的切线斜率均小于零,且在起始部分斜率值趋近负无穷,故()y g x =的导数图象对应C ;()y h x =图象上任一点处的切线斜率都大于零,且先小后大,故()y h x =的导数图象对应A. 答案 B ;C ;A深研2 求曲线的切线方程由于可导函数()f x 在0x x =处切线的斜率为0()f x ',从而可用点斜式确定切线方程.考向1 求过曲线上一点的切线方程 例3(★★)求曲线213y x x=+-在2x =处的切线方程. 解析 设()y f x =,则21()3f x x x=+-.2222(2)(2)11(2)32322114()224().2(2)14.2(2)y f x f x x x x x xx x x yx x x ∆=+∆-⎛⎫=+∆+--+- ⎪+∆⎝⎭=∆+∆+-+∆∆=∆+∆+∆∆∴=+∆-∆+∆-∵当x ∆无限趋近于0时,y x ∆∆无限趋近于115444-=, ∴曲线()y f x =在2x =处的切线斜率为154. 又2x =时,32y =,∴切点坐标为32,2⎛⎫ ⎪⎝⎭. ∴曲线在2x =处的切线方程为315(2)24y x -=-, 即154240x y --=.考向2 求过曲线外一点的切线方程例4(★★)求曲线2y x =过点(3,5)的切线方程.思路分析 先判断点(3,5)是否在曲线上,不在曲线上则需设切点坐标为(0x ,20x ),再利用(3,5)与(0x ,20x )连线的斜率等于0()f x '建立方程求0x ,从而确定切线斜率.解析 因为点(3,5)不在曲线上,所以设切点坐标为(0x ,20x ), 又()()()220000lim lim 22x x x x x f x x x x x∆→∆→+∆-'==+∆=∆,故切线斜率为02x ,则切线方程为()20002y x x x x -=-, 因为点(3,5)在切线上,所以()2000523x x x -=-,解得01x =或05x =,则切点坐标为(1,1)或(5,25),故切线方程为12(1)y x -=-或2510(5)y x -=-, 即210x y --=或10250x y --=. 主编点评求过某点的曲线的切线方程④时,需先设切点(0x ,0y ),再对()y f x =求导得出切线斜率()0f x ',从而得到含参的切线方程0y y -=()()00f x x x '-,最后代入已知点,从而求出切点坐标以及切线方程.即使已知点在曲线上,也不能按在某点处的切线方程求解,否则易漏解.⑤ 方法技巧③求曲线()y f x =在点()00,P x y 处的切线方程,其切线只有一条,点()00,P x y 在曲线()y f x =上,且是切点.切线方程为()()000y y f x x x -='-.如图1,在点()00,P x y 处的切线为1l ,如图2,在点()00,P x y 处的切线为(22l l 与曲线()y f x =有两个公共点不影响结果).即时训练3.(★★)已知3()21f x x x =-+,求曲线()y f x =在点(1,0)处的切线方程.解析 因为330()2()121()lim x x x x x x x f x x ∆→∆+-∆++-+-'=∆3220()3()32lim x x x x x x xx∆→∆+⋅∆+⋅∆-∆=∆ 220lim ()332x x x x x ∆→⎡⎤=∆+⋅∆+-⎣⎦ 232x =-,所以(1)321f '=-=, 所以切线的方程为1y x =-, 即10x y --=. 知识补充④求曲线()y f x =过点()00,P x y 的切线方程的步骤 第一步:设出切点坐标()()11,P x f x ';第二步:写出过()()11,P x f x '的切线方程()()()111y f x f x x x -='⋅-; 第三步:将点P 的坐标()00,x y 代入切线方程,求出1x ;第四步:将1x 的值代入方程()()11y f x f x -='()1x x ⋅-,由此即可得过点()00,P x y 的切线方程. 误区警示⑤此处点()00,P x y 可以在曲线()y f x =上,也可以不在曲线()y f x =上.如图1,过点()00,P x y (不在曲线()y f x =上)的切线12l l ,,如图2,过点(0P x ,0y )(在曲线()y f x =上)的切线34l l ,.即时训练4.(★★)求过点(-1,-2)且与曲线32y x x =-相切的直线方程.解析 33002()()2limlim x x y x x x x x x y x x∆→∆→∆+∆-+∆-+'==∆∆2220lim 233()23x x x x x x ∆→⎡⎤=--∆-∆=-⎣⎦. 设切点坐标为()3000,2x x x -,则切线方程为()320000223()y x x x x x -+=--.∵切线过点(1,2)--,∴()()32000022231x x x x --+=---,即320230x x +=,解得00x =或032x =-, ∴切点坐标为(0,0)或33,28⎛⎫- ⎪⎝⎭,当切点坐标为(0,0)时,切线斜率2k =,切线方程为20x y -=;当切点坐标为33,28⎛⎫- ⎪⎝⎭时,切线斜率23192324k ⎛⎫=-⨯-=- ⎪⎝⎭,切线方程为192(1)4y x +=-+,即194270x y ++=. 综上可知,过点(1,2)--且与曲线32y x x =-相切的直线方程为20x y -=或19x +4270y +=.考点3 导数几何意义的综合应用求解导数几何意义的综合应用问题的关键是对函数进行求导,利用题目所提供的直线的位置关系、斜率的范围等条件求解相关问题,此处常与函数、方程、不等式等知识相结合. 考向1 求切点坐标⑥例5(★★)在曲线2y x =上取一点,使得在该点处的切线; (1)平行于直线45y x =-; (2)垂直于直线2650x y -+=; (3)倾斜角为135︒.分别求出满足上述条件的点的坐标.思路分析 先求函数的导函数()f x ',再设切点()00,P x y ,由导数的几何意义知切点()00,P x y 处的切线的斜率为()0f x ',最后根据题意列方程,解关于0x 的方程即可求出0x ,又点()00,P x y 在曲线2y x =上,易得0y .解析 设()y f x =,则2200()()()()lim lim x x f x x f x x x x f x x x∆→∆→+∆-+∆-'==∆∆lim(2)2x x x x ∆→=+∆=.设()00,P x y 是满足条件的点.(1)因为点P 处的切线与直线45y x =-平行,所以024x =,解得0x 2=,所以04y =,即(2,4)P .(2)因为点P 处的切线与直线2650x y -+=垂直,且直线265x y -+0=的斜率为13, 所以01213x ⋅=-,解得032x =-,所以094y =,即39,24P ⎛⎫- ⎪⎝⎭. (3)因为点P 处的切线的倾斜角为135︒,所以切线的斜率为tan1351︒=-,即021x =-,解得012x =-,所以014y =,即11,24P ⎛⎫- ⎪⎝⎭.⑦知识补充⑥根据切线斜率求切点坐标的步骤 (1)设切点坐标为()00,x y ; (2)求导函数()f x '; (3)求切线的斜率()0f x ';(4)由斜率间的关系列出关于0x 的方程,解方程求0x ;(5)由点()00,x y 在曲线()f x 上,将()00,x y 代入解析式求0y ,即得切点坐标. 知识补充⑦求解本题注意方程思想的应用.切点坐标()00,x y 有两个变量,因此需建立两个方程求解. 即时训练5.(★)已知曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.解析 设点P 的坐标为()300,x x ,∵()()000limx f x x f x x∆→+∆-∆22300033()()lim x x x x x x x ∆→∆+∆+∆=∆ 22000lim 33()x x x x x ∆→⎡⎤=+∆+∆⎣⎦ 203x =,2033x =,解得01x =±,∴点P 的坐标是(1,1)或(1,1)--. 考向2 切线围成的三角形的面积问题例6(★★)已知直线1l 为曲线22y x x =+-在点(1,0)处的切线,2l 为该曲线的另一条切线,且12l l ⊥. (1)求直线2l 的方程;(2)求由直线1l 、2l 和x 轴所围成的三角形的面积.解析(1)因为()2200()()22lim lim x x x x x x x x y y x x∆→∆→+∆++∆--+-∆'==∆∆21x =+,所以12113x y ='=⨯+=,所以直线1l 的方程为3(1)y x =-,即330x y --=. 设直线2l 与曲线22y x x =+-切于点()2,2B b b b +-,则2l 的方程为2(21)2y b x b =+--.因为12l l ⊥,所以1213b +=-,所以23b =-,所以直线2l 的方程为12239y x =--,即39220x y ++=.(2)由(1)知,联立330,39220,x y x y --=⎧⎨++=⎩解得1,65.2x y ⎧=⎪⎪⎨⎪=-⎪⎩所以直线1l 和2l 的交点坐标为15,62⎛⎫- ⎪⎝⎭.又易知1l 、2l 与x 轴的交点的坐标分别为22(1,0),03⎛⎫- ⎪⎝⎭、,所以所求三角形的面积125512523212S =⨯⨯-=.主编点评本题求解时应抓住两切线斜率的关系及切线斜率与导数的关系,构建方程组求解. 方法技巧求切线围成的三角形的面积时,关键是准确求得切线方程,然后分析围成的三角形的特点,进而求其面积.6.(★★)求曲线1(0)y x x x =->上一点()00,P x y 处的切线分别与x 轴、y 轴交于点,A B O 、是坐标原点,若△OAB 的面积为13,则0x =_____________.解析 ∵1(0)y x x x=->, ∴011lim x x x x x x x y x∆→⎡⎤⎛⎫+∆--- ⎪⎢⎥+∆⎝⎭⎣⎦'=∆011()lim x x x x x x x x∆→⎡⎤⎛⎫+∆-+- ⎪⎢⎥+∆⎝⎭⎣⎦=∆ 0()lim x x x x x x x∆→∆∆++∆=∆ 01lim 1()x x x x ∆→⎡⎤=+⎢⎥+∆⎣⎦ 211x=+, ∴切线的斜率为2011x +,则切线的方程为()00200111y x x x x x ⎛⎫-+=+- ⎪⎝⎭, 令0x =得02y x =-,令0y =得02021x x x =+,∴△OAB 的面积020********x S x x =⨯⨯=+,解得0x =(负根舍去).答案考向3 根据切线求参数值例7(★★)设函数32()91(0)f x x ax x a =+--<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值.思路分析 先利用定义求导,结合二次函数求最值,最后结合切线斜率求a . 解析 ∵32()()()()9()1y f x x f x x x a x x x x ∆=+∆-=+∆++∆-+∆--()()3222391329(3)()()xax x x ax x x a x x +--=+-∆++∆+∆, ∴22329(3)()y x ax x a x x x∆=+-++∆+∆∆, ∴22220()lim 329399333x y a a a f x x ax x x ∆→∆⎛⎫'==+-=+---- ⎪∆⎝⎭. 由题意知()f x '的最小值是12-,∴29123a --=-,即29a =,∵0a <,∴3a =-.⑨ 主编点评本题得到()f x '的表达式是关于x 的二次函数,从而可利用二次函数求最值. 方法技巧⑨当题中涉及切线方程、切线的斜率(或倾斜角)、切点坐标等问题时,可利用导数的定义与几何意义迅速获解.遇到“切线的斜率最小、最大”问题时,通常只需求出导函数,再求其最值即可解决.即时训练⑦(★★)已知函数3()1f x x ax =++的图象在点(1,(1))f 处的切线过点(1,1)-,求a 的值.解析 函数3()1f x x ax =++的导函数为3320()()11()lim 3x x x a x x x ax f x x a x∆→⎡⎤+∆++∆+---⎣⎦'==+∆, ∴(1)3f a '=+,而(1)2f a =+,∴切线方程为2(3)(1)y a a x --=+-,∵切线方程过点(1,1)-,∴12(3)(11)a a --=+--,解得5a =-.。
(完整版)导数的几何意义练习题

导数的几何意义命题人:刘春来 时间:9.18 姓名: 学号:1.曲线x y e 在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e 2.若曲线y =在点(a ,)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于( ) A .64B .32C .16D .8 3.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .(0,π4) B .(π4,π2) C .(π2,3π4) D .[3π4,π) 4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A.94e 2 B .2e 2 C .e 2 D.e 225.若函数f (x )=e x +a e -x 的导函数是奇函数,并且曲线y =f (x )的一条切线的斜率是32,则切点的横坐标是 ( )A .-ln 22B .-ln 2 C.ln 22D .ln 2 6.如图是函数f (x )及f (x )在点P 处切线的图像,则f (2)+f ′(2)=________.7.若曲线 f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为________.8.若点P 是曲线f (x )=x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.9.设点P 是曲线y =x 33-x 2-3x -3上的一个动点,则以P 为切点的切线中,斜率取得最小值时的切线方程是__________________.10.已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程;(3)求满足斜率为1的曲线的切线方程.12.已知曲线y =16x 2-1与y =1+x 3在x =x 0处的切线互相垂直,求x 0的值.13.已知函数f (x )=12x 2-a ln x (a ∈R). (1)若函数f (x )的图象在x =2处的切线方程为y =x +b ,求a ,b 的值;(2)若函数f (x )在(1,+∞)上为增函数,求a 的取值范围.。
2.2导数的概念及其几何意义(讲义+典型例题+小练)(解析版)

2.2导数的概念及其几何意义(讲义+典型例题+小练)一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆例1:1.设()()22lim2x f x f x x∆→+∆--∆=-∆,则曲线()y f x =在点()()22f ,处的切线的倾斜角是( ) A .4π B .3π C .34π D .23π 【答案】C 【分析】根据导数的概念可得()21f '=-,再利用导数的几何意义即可求解. 【详解】 因为()()()022lim222x f x f x f x∆→+∆--∆'==-∆,所以()21f '=-,则曲线()y f x =在点()()22f ,处的切线斜率为1-,故所求切线的倾斜角为34π. 故选:C2.已知函数()y f x =在0x x =处的导数为1,则()()000lim 2x f x x f x x∆→+∆-=∆( )A .0B .12C .1D .2【分析】由已知结合导数的定义即可直接求解. 【详解】解:因为函数()y f x =在0x x =处的导数为1, 则()()()()()0000000111limlim 2222x x f x x f x f x x f x f x x x ∆→∆→+∆-+∆-'===∆∆.故选:B . 【点睛】本题考查导数的概念,涉及极限的性质,属于基础题.举一反三:1.设()f x 是可导函数,且()()000lim 2x f x x f x x∆→+∆-=-∆,则0()f x '=( )A .2B .1-C .1D .2-【答案】D 【分析】由导数的定义可得()()0000lim ()x f x f x f x x x∆→+-'=∆∆,即可得答案.【详解】 根据题意,()()0000lim()2x f x f x f x x x∆→∆+-'==-∆,故0()2f x '=-. 故选:D . 【点睛】本题考查导数的定义,属于基础题. 2.若()02f x '=,则()()000lim2h f x h f x h→+-=______.【答案】1 【解析】 【分析】根据导数的几何定义即可计算.()()()()()000000011limlim 1222h h f x h f x f x h f x f x h h →→+-+-'===.故答案为:1.二.导数的几何意义:函数()f x 在0x 处导数的几何意义,曲线()y f x =在点()()00,P x f x 处切线的斜率是()0k f x '=。
导数的概念及几何意义和导数的运算强化训练

5.1导数的概念及几何意义5.2导数的运算强化训练一、选择题1、一质点运动的方程为s=5-3t2,若该质点在时间段[1,1+Δt]内相应的平均速度为-3Δt-6,则该质点在t=1时的瞬时速度是() A.-3B.3 C.6 D.-62、现有一球形气球,在吹气球时,气球的体积V(单位:L)与直径d(单位:dm)的关系式为V=π6d3,估计当d=1 dm时,气球体积的瞬时变化率为()A.2πB.πC.π2D.π43、如图,函数y=f(x)在[x1,x2],[x2,x3],[x3,x4]这几个区间内,平均变化率最大的一个区间是()A.[x1,x2] B.[x2,x3]C.[x1,x3] D.[x3,x4]4、已知某物体的运动方程为s(t)=7t2+8(0≤t≤5),则下列说法中错误的是()A.该物体当1≤t≤3时的平均速度是28B.该物体在t=4时的瞬时速度是56C.该物体位移的最大值为43D.该物体在t=5时的瞬时速度是705、已知f(x)=cos 2x+e2x,则f′(x)=()A.-2sin 2x+2e2xB.sin 2x+e2xC.2sin 2x +2e 2xD.-sin 2x +e 2x6、若函数f (x )在R 上可导,且f (x )=x 2+2f ′(1)x +3,则( )A.f (0)<f (4)B.f (0)=f (4)C.f (0)>f (4)D.以上都不对7、已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )8、曲线f (x )=2ln x 在x =t 处的切线l 过原点,则l 的方程是( )A.2x -e y =0B.2x +e y =0C.e x -2y =0D.e x +2y =09、函数f (x )=e x -2x 的图象在点(1,f (1))处的切线方程为( )A.2x +y +e -4=0B.2x +y -e +4=0C.2x -y +e -4=0D.2x -y -e +4=010、已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A.a =e ,b =-1B.a =e ,b =1C.a =e -1,b =1D.a =e -1,b =-111、函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( )A.(-∞,2]B.(-∞,2)C.(2,+∞)D.(0,+∞)12、已知曲线f (x )=e 2x -2e x +ax -1存在两条斜率为3的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫3,72B.(3,+∞)C.⎝⎛⎭⎪⎫-∞,72D.(0,3)13、(多选)下列导数的运算中正确的是( )A.(3x )′=3x ln 3B.(x 2ln x )′=2x ln x +xC.⎝ ⎛⎭⎪⎫cos x x ′=x sin x -cos x x 2 D.(sin x cos x )′=cos 2x14、(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A.f ′(3)>f ′(2)B.f ′(3)<f ′(2)C.f (3)-f (2)>f ′(3)D.f (3)-f (2)<f ′(2)15、(多选)已知函数f (x )及其导函数f ′(x ),若存在x 0∈R 使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( )A.f (x )=x 2B.f (x )=e -xC.f (x )=ln xD.f (x )=tan x二、填空题16、曲线y =f (x )在点P (-1,f (-1))处的切线l 如图所示,则f ′(-1)+f (-1)=________.17、日常生活中的饮用水通常都是经过净化的.随着水的纯净度的提高,所需净化费用会不断增加.已知1 t 水净化到纯净度为x %时所需费用(单位:元)为c (x )=4 015100-x (80<x <100).那么净化到纯净度为90%时所需净化费用的瞬时变化率是________元/t.18、若函数f (x )=ln x -f ′(1)x 2+3x -4,则f ′(3)=________. 19、曲线y =2x -1x +2在点(-1,-3)处的切线方程为________.20、过原点与曲线y =(x -1)3相切的切线方程为________.21、曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.22、设函数f (x )=13x 3+43,则曲线y =f (x )过P (2,4)的切线方程为________.23、设函数f (x )=e x x +a.若f ′(1)=e4,则a =________.24、已知函数f (x )=x 2+x ln x 的图象在点(1,f (1))处的切线与直线x -ay -1=0平行,则实数a =________.25、已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.26、在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________. 三、解答题27、求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos xe x ;(4)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2.28、已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.29、设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.30、已知函数f(x)=x3-x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.5.1导数的概念及几何意义5.2导数的运算强化训练(答案)一、选择题1、一质点运动的方程为s=5-3t2,若该质点在时间段[1,1+Δt]内相应的平均速度为-3Δt-6,则该质点在t=1时的瞬时速度是(D)A.-3B.3 C.6 D.-62、现有一球形气球,在吹气球时,气球的体积V(单位:L)与直径d(单位:dm)的关系式为V=π6d3,估计当d=1 dm时,气球体积的瞬时变化率为(C)A.2πB.πC.π2D.π43、如图,函数y=f(x)在[x1,x2],[x2,x3],[x3,x4]这几个区间内,平均变化率最大的一个区间是(D)A.[x1,x2] B.[x2,x3]C.[x1,x3] D.[x3,x4]4、已知某物体的运动方程为s(t)=7t2+8(0≤t≤5),则下列说法中错误的是(C)A.该物体当1≤t≤3时的平均速度是28B.该物体在t=4时的瞬时速度是56C.该物体位移的最大值为43D.该物体在t=5时的瞬时速度是705、已知f(x)=cos 2x+e2x,则f′(x)=(A)A.-2sin 2x+2e2xB.sin 2x+e2xC.2sin 2x+2e2xD.-sin 2x+e2x6、若函数f(x)在R上可导,且f(x)=x2+2f′(1)x+3,则(B)A.f(0)<f(4)B.f(0)=f(4)C.f (0)>f (4)D.以上都不对7、已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( B )8、曲线f (x )=2ln x 在x =t 处的切线l 过原点,则l 的方程是( A )A.2x -e y =0B.2x +e y =0C.e x -2y =0D.e x +2y =09、函数f (x )=e x -2x 的图象在点(1,f (1))处的切线方程为( C )A.2x +y +e -4=0B.2x +y -e +4=0C.2x -y +e -4=0D.2x -y -e +4=010、已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( D )A.a =e ,b =-1B.a =e ,b =1C.a =e -1,b =1D.a =e -1,b =-111、函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( B )A.(-∞,2]B.(-∞,2)C.(2,+∞)D.(0,+∞)12、已知曲线f (x )=e 2x -2e x +ax -1存在两条斜率为3的切线,则实数a 的取值范围是( A )A.⎝ ⎛⎭⎪⎫3,72 B.(3,+∞) C.⎝ ⎛⎭⎪⎫-∞,72D.(0,3)13、(多选)下列导数的运算中正确的是( ABD )A.(3x )′=3x ln 3B.(x 2ln x )′=2x ln x +xC.⎝ ⎛⎭⎪⎫cos x x ′=x sin x -cos x x 2 D.(sin x cos x )′=cos 2x14、(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( BCD )A.f ′(3)>f ′(2)B.f ′(3)<f ′(2)C.f (3)-f (2)>f ′(3)D.f (3)-f (2)<f ′(2)15、(多选)已知函数f (x )及其导函数f ′(x ),若存在x 0∈R 使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( AC )A.f (x )=x 2B.f (x )=e -xC.f (x )=ln xD.f (x )=tan x二、填空题16、曲线y =f (x )在点P (-1,f (-1))处的切线l 如图所示,则f ′(-1)+f (-1)=____-2____.17、日常生活中的饮用水通常都是经过净化的.随着水的纯净度的提高,所需净化费用会不断增加.已知1 t 水净化到纯净度为x %时所需费用(单位:元)为c (x )=4 015100-x (80<x <100).那么净化到纯净度为90%时所需净化费用的瞬时变化率是___40.15_____元/t.18、若函数f (x )=ln x -f ′(1)x 2+3x -4,则f ′(3)=____-143____. 19、曲线y =2x -1x +2在点(-1,-3)处的切线方程为___ y =5x +2_____.20、过原点与曲线y =(x -1)3相切的切线方程为___y =0或27x -4y =0_____.21、曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为____2x -y =0____.22、设函数f (x )=13x 3+43,则曲线y =f (x )过P (2,4)的切线方程为___x -y +2=0或4x -y -4=0_____.23、设函数f (x )=e x x +a.若f ′(1)=e4,则a =___1_____.24、已知函数f (x )=x 2+x ln x 的图象在点(1,f (1))处的切线与直线x -ay -1=0平行,则实数a =___ 13_____.25、已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=____0____.27、在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是__(e ,1)______.三、解答题27、求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ; (3)y =cos x e x ;(4)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2. 解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′ =1x -1x 2.(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x. (4)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2 =12x sin(4x +π)=-12x sin 4x ,∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .28、已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解 f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3, 解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,所以Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0,所以a ≠-12. 所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 29、设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x-4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.(1)解 方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又∵f ′(x )=a +b x 2,∴⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3,∴f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,∴切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,∴切线与直线y =x 的交点坐标为(2x 0,2x 0).∴曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0和y =x 所围成的三角形的面积S =12|-6x 0||2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0和y =x 所围成的三角形面积为定值,且此定值为6.30、已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.解 (1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3, 令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )在⎝ ⎛⎭⎪⎫-∞,1-1-3a 3上单调递增,在⎝ ⎛⎭⎪⎫1-1-3a 3,1+1-3a 3上单调递减, 在⎝ ⎛⎭⎪⎫1+1-3a 3,+∞上单调递增. (2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .由⎩⎪⎨⎪⎧y =(1+a )x ,y =x 3-x 2+ax +1解得⎩⎪⎨⎪⎧x =1,y =1+a 或⎩⎪⎨⎪⎧x =-1,y =-1-a .所以曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标为(1,1+a )和(-1,-1-a ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的几何意义(1)
1.设f(x)=1
x
,则lim
x→a
f x-f a
x-a
等于( )
A.-1
a
B.
2
a
C.-1
a2
D.
1
a2
2.在曲线y=x2上切线倾斜角为π
4
的点是( )
A.(0,0) B.(2,4)
C.(1
4
,
1
16
) D.(
1
2
,
1
4
)
3.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=( )
A.1 B.1 2
C.-1
2
D.-1
4.若曲线y=h(x)在点P(a,h(a))处切线方程为2x+y+1=0,则( )
A.h′(a)<0 B.h′(a)>0
C.h′(a)=0 D.h′(a)的符号不定
5.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t
之间的函数关系为s=1
8
t2,则当t=2时,此木块在水平方向的瞬时速
度为( )
A. 2
B. 1
C.12
D.14
6.函数f (x )=-2x 2+3在点(0,3)处的导数是________.
7.如图是函数f (x )及f (x )在点P 处切线的图像,则f (2)+f ′(2)=________.
8.设曲线y =x 2在点P 处的切线斜率为3,则点P 的坐标为________.
9.已知曲线y =2x 2上的点(1,2),求过该点且与过该点的切线垂直的直线方程.
10.求双曲线y =1
x 在点(1
2
,2)处的切线的斜率,并写出切线方程.
导数的几何意义(2)
1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那
么( )
A .f ′(x 0)>0
B .f ′(x 0)<0
C .f ′(x 0)=0
D .f ′(x 0)不存在
2.函数在处的切线斜率为( ) A .0 B 。
1 C 。
2 D 。
3
3.曲线y =12x 2-2在点⎝ ⎛
⎭⎪⎫1,-32处切线的倾斜角为( )
A .1
B.
π4 C.5
4
π
D .-
π
4
4.在曲线y =x 2上切线的倾斜角为
π
4
的点是( ) A .(0,0) B .(2,4) C.⎝ ⎛⎭
⎪⎫
14,116
D.⎝ ⎛⎭
⎪⎫12,14 5.设f (x )为可导函数,且满足lim x →0 f (1)-f (1-2x )
2x
=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( ) A .2 B .-1 C .1
D .-2
6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在
B .与x 轴平行或重合
C .与x 轴垂直
D .与x
轴斜交
7.函数在点处的导数的几何意义是__________________________________________________;
曲线在点P处的切线方程为是_____________________________________________.
8.已知函数f(x)=x2+3,则f(x)在(2,f(2))处的切线方程为_________________________
9.求过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程
10.若曲线f(x)=ax3+3x2+2在x=-1处的切线斜率为4,求a的值。
11.已知曲线C:y=x3在点P(1,1)处的切线为直线l,问:l和曲线C 有几个交点?求出交点坐标。
12.当常数k为何值时,直线y=x与曲线y=x2+k相切?并求出切点坐标。