立体几何综合应用
立体几何与空间向量小题分类练习(四)综合应用-北京市2021-2022学年高二上学期期中数学备考

高二专题分类-立体几何与空间向量(四)空间向量与立体几何的综合应用一.选择题1.(2021·北京八中高二期末)正方体1111ABCD A B C D -中,AC 和1A D 所成角的大小是( ) A .30B .45C .60D .752.(2021·北京市朝阳区北京教育学院朝阳分院高二期中)已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ 的值为( )A .2aB .212aC .214aD 2 3.(2021·北京昌平区·昌平一中高二月考)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,点E 是SB 的中点,则直线AE ,SD 所成角的余弦值为( )A .3B C D .134.(2021·北京西城·)如图,在正方体1111ABCD A B C D -中,E 为CD 的中点,则直线1A E 与BC 所成角的余弦值为( )A .25B .35C .13D .235.(2020·北京和平街第一中学高二月考)已知向量()2,0,1n =为平面α的法向量,点()1,2,1A -在α内,点()1,2,2P -在α外,则点P 到平面α的距离为( )A B C .D6.(2021·北京八中高二期末)如图,正方体1111ABCD A B C D -的棱长为1,点E 为1DD 的中点,点P 为BDE 内部一动点,P 点到平面1111D C B A 的正射影为点Q ,则Q 到点A 的距离的最小值为( )AB C D .17.(2021·北京师范大学昌平附属学校)正方体1111ABCD A B C D -中,点E 为1BB 中点,平面1A EC 与平面ABCD 所成二面角的余弦值为( )A B C D 8.(2021·北京高二期末)在空间直角坐标系Oxyz 中,已知点(1,0,0),(0,2,0),(0,0,2),(0,0,1)A B C D ,则直线AD 与BC 所成角的大小是___.二.填空题9.(2020·北京市广渠门中学)已知平面α的一个法向量()2,2,1n =--,点()1,3,0A --在平面α内,则点()2,1,4P -到平面α的距离为_________.10.(2021·北京朝阳·高二期末)如图,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1.则A 1C 与平面C 1BD _______(填“垂直”或“不垂直”);A 1C 的长为_______.11.(2021·北京昌平区·昌平一中高二月考)如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足BC 1⃗⃗⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =1,则BC 1⃗⃗⃗⃗⃗⃗⃗ 与BM ⃗⃗⃗⃗⃗⃗ 的夹角最大值为___________.12.(2021·北京昌平区·昌平一中高二月考)如图,正方体1111ABCD A B C D -的棱长为2,E 为1BB 的中点,则异面直线1BC 与1D E 所成的角为___________.13.(2021·北京人大附中高二期末)如图,若正三棱柱111ABC A B C -的底面边长为8,对角线1B C 的长为10,点D 为AC 的中点,则点1B 到平面1C BD 的距离为_____,直线1AB 与直线BD 所成角的余弦值为________.14.(2021·北京高二期末)如图,在四面体ABCD 中,其棱长均为1,M ,N 分别为BC ,AD 的中点.若MN ⃗⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ +zAD ⃗⃗⃗⃗⃗ ,则x y z ++=________;直线MN 和CD 的夹角为________.15.(2020·北京市第十二中学高二期中)在长方体1111ABCD A B C D -中,4AB AD ==,11AA =,点P 在底面1111D C B A 上.(1)若点P 与点1A 重合,则点P 到平面11BDD B 的距离是__________. (2)若点P 到直线AD 和11C D 的距离相等,则1PC 的最小值是__________.参考答案1.C 【分析】连接1B C ,即可得到11//A D B C ,则1B CA ∠(或补角)即为异面直线AC 和1A D 所成角,再根据正方体的性质计算可得; 【详解】解:如图连接1B C ,在正方体1111ABCD A B C D -中,因为11//A B CD ,且11=A B CD ,所以四边形11A B CD 为平行四边形,所以11//A D B C , 所以1B CA ∠(或补角)即为异面直线AC 和1A D 所成角, 显然1AB C 为等边三角形,所以160B CA ∠=. 故选:C.2.C 【分析】由题意可知,空间四边形ABCD 相邻两边的夹角都为60︒,所以把,,AB AC AD 看成空间向量的基底,将,AE AF 用基底表示化简可得答案 【详解】11()22AB AC AE AF AD ⋅=+⋅1()4AB AD AC AD =⋅+⋅ 22211(cos60cos60)44a a a ︒︒=+= 故选:C3.C 【分析】由题意画出图形,连接AC ,BD ,交于O ,连接,EO SO ,可得//EO SD ,则AEO ∠为直线AE 与直线SD 所成的角,证明AC ⊥平面SBD ,AC OE ⊥,则求解直角三角形得答案.【详解】解:如图,连接AC ,BD ,交于O ,连接,EO SO ,则SO ⊥平面ABCD ,又AC ⊂平面ABCD ,所以SO AC ⊥, 因为正四棱锥S ABCD -的侧棱长与底面边长都相等,则AC BD ⊥, 又BD SO O ⋂=,所以AC ⊥平面SBD , 又OE ⊂平面SBD ,所以AC OE ⊥,在SBD 中,O 为BD 的中点,点E 是SB 的中点,所以//EO SD ,则直线AE 与直线SD 所成的角为AEO ∠或其补角, 设正四棱锥S ABCD -的棱长为2,则AO =AE =在Rt AOE 中,1EO .cosEO AEO AE ∴∠==即直线AE ,SD 故选:C .4.D 【分析】设正方体的棱长为2,建立空间直角坐标系,利用向量法求解直线1A E 与BC 所成的角即可. 【详解】解:设正方体的棱长为2,如图所示建立空间直角坐标系, 则1(2A ,0,2),(0E ,1,0),(0C ,2,0),(2B ,2,0), 则1(2,1,2),(2,0,0)A E BC =--=- 所以111cos ,||||A E BC A EBC A E BC ⋅<>=42323==⨯, 所以异面直线1A E 与直线BC 所成角的余弦值为23,故选:D .5.A 【分析】利用点到平面距离公式的向量求法即可求解. 【详解】因为()1,2,1A -,()1,2,2P -, 所以()2,0,3PA =-,因为平面α的法向量为()2,0,1n =,所以点P 到平面α的距离为242PA n d n⋅-==, 故选:A.6.B 【分析】建立空间直角坐标系,用向量法求AQ 的距离,再由表达式研究最小值即可 【详解】由题可知,Q 点在线段11B D 上运动,且Q 不与11,B D 重合,如图以D 为原点,1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系, 则易知(1,0,0)A ,又11B D 为1111D C B A 的对角线,故可设(,,1),(01)Q a a a <<,则AQ =令2222t a a =-+,则易知12a =时,2222t a a =-+所以AQ 故选:B 7.C 【分析】设正方体1111ABCD A B C D -的棱长为2,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得平面1A EC 与平面ABCD 所成二面角的余弦值. 【详解】设正方体1111ABCD A B C D -的棱长为2,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()12,0,2A 、()2,2,1E 、()0,2,0C ,所以,()10,2,1EA =-,()2,0,1CE =, 设平面1A CE 的法向量为(),,m x y z =,则12020m EA y z m CE x z ⎧⋅=-+=⎨⋅=+=⎩,取1x =,可得()1,1,2m =--,易知平面ABCD 的一个法向量为()0,0,1n =,所以,cos ,6m n m n m n⋅<>===⨯⋅,易知,平面1A EC 与平面ABCD 故选:C. 8.60︒ 【分析】利用空间向量求夹角公式直接求解. 【详解】(1,0,0),(0,2,0),(0,0,2),(0,0,1)A B C D(0,2,2),(1,0,1)BC AD ∴=-=-21cos ,20AD BC AD BC AD BC⋅∴===⋅又空间中两直线夹角范围为(0,90⎤⎦,故,60AD BC = 所以直线AD 与BC 所成角的大小是60︒ 故答案为:60︒9.23【分析】由题意算出()1,4,4AP =-,根据向量()2,2,1n =--是平面α的一个法向量,算出向量AP 在n 上的投影的绝对值,即可得到P 到α的距离.【详解】解:根据题意,可得()()1,3,0,1,4,2A P ---,()1,4,4AP =-, 又平面α的一个法向量()2,2,1n =--,点A 在α内,()2,1,4P ∴-到α的距离等于向量AP 在n 上的投影的绝对值,()()1242412P n A -⨯-+⨯-∴⨯=-=+ 即(232AP n d n===- 故答案为:23【点睛】本题给出平面的法向量和平面上的一点,求平面外一点到平面的距离;着重考查了向量的数量积公式和点到平面的距离计算等知识,属于中档题.10.垂直【分析】设CB a =,CD b =,1CC c =,可得出1CA a b c =++,计算得出1110CA BD CA BC ⋅=⋅=,可得出1CA BD ⊥,11CA BC ⊥,利用线面垂直的判定定理可证得结论成立,求1CA 的平方即可求A 1C 的长.【详解】设CB a =,CD b =,1CC c =,由题意可得1CA a b c =++,则()()()2211CA BD CA CD CB a b c b a b a c b c a ⋅=⋅-=++⋅-=-+⋅-⋅cos60cos600c b c a =⋅-⋅=,1CA BD ∴⊥,同理可证11CA BC ⊥,1BD BC B ⋂=,故1CA ⊥平面1C BD .∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1,11CD CB CC ∴===,222221111()2()1112()6222CA a b c a b c a b b c a c ∴=++=+++⋅+⋅+⋅=+++++=1CA →∴=即A 1C .11.60【分析】以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,设点M (x ,0,z ),其中01,1)0(x z ≤≤≤≤,根据空间向量的数量积运算得x z =,再根据空间向量的夹角运算和二次函数的性质可得答案.【详解】解:以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,如图所示:∠M 是左侧面ADD 1A 上的一个动点,设点M (x ,0,z ),其中01,1)0(x z ≤≤≤≤, 1(1,1,0),(0,1,1),B C =,1(1,0,1),(1,1,)BC BM x z ∴=-=--,111BC BM x z ∴⋅=-+=,即x z =,又1||2,||(BC BM x ===设1BC 与BM 的夹角为θ,1cos 2θ∴== 设2()1f x x x =-+,()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以13(0)1,()24f f ==,3()14f x ≤≤,所以1cos 2θ≤≤1BC 与BM 的夹角最大值为60.故答案为:60.12.4π. 【分析】连接1BC ,证明11//BC AD ,则1AD E ∠或其补角即为异面直线1BC 与1D E 所成的角,从而可的答案.【详解】解:连接1BC ,由正方体的性质可知,11//AB C D ,且11AB C D =,所以11ABC D 是平行四边形,所以11//BC AD ,所以1AD E ∠或其补角即为异面直线1BC 与1D E 所成的角,在1AD E △中,113,D E AD AE ==则22211111cos 2AD D E AE AD E AD D E +-∠===⋅ 即异面直线1BC 与1D E又因异面直线1BC 与1D E 所成的角的范围为0,2π⎛⎤ ⎥⎝⎦, 所以异面直线1BC 与1D E 所成的角为4π. 故答案为:4π.13 【分析】设1B C 与1BC 交于点O ,连接1AC ,可证得1//AB 平面1C BD ,求点1B 到平面1C BD 的距离可以转化为求点A 到平面1C BD 的距离,然后利用11A BC D C ABD V V --=进行计算求解;由于1//AB DO ,直线1AB 与直线BD 所成的角为ODB ∠,利用余弦定理进行计算求解即可.【详解】设1B C 与1BC 交于点O ,连接1AC ,在正三棱柱111ABC A B C -中,显然点O 为1B C 的中点,又点D 为AC 的中点, 所以1//AB DO ,又DO ⊂平面1C BD ,1AB ⊄平面1C BD ,所以1//AB 平面1C BD ,所以求点1B 到平面1C BD 的距离可以转化为求点A 到平面1C BD 的距离,因为8BD =,16CC ==,1C D所以有22211BD C D BC +=,所以1BD C D ⊥,所以112BC D S =⨯△易得BD AC ⊥,所以142ABD S =⨯=△ 设点A 到平面1C BD 的距离为h ,由11A BC D C ABD V V --=,即111133BC D ABD S h S C C ⨯⨯=⨯⨯△△,所以有11633h ⨯=⨯,解得:h = 因为1//AB DO ,所以直线1AB 与直线BD 所成的角为ODB ∠,因为1BD C D ⊥,O 为1B C 的中点,所以1152DO BC ==,而BD =所以22222255cos2OD BD OB ODB OD BD+-+-∠===⨯..【点睛】关键点点睛:求线面距离通常可以转化为求三棱锥的高,而求三棱锥的高通常利用等体积法进行求解.14.12-. 4π 【分析】利用空间向量的线性运算把MN 用,,AB AC AD 表示即可得,,x y z ,再由向量的数量积得向量夹角,从而得异面直线所成的角.【详解】由已知得MN 1122MB BA AN CB AB AD =++=-+11111()22222AB AC AB AD AB AC AD =--+=--+,又MN xAB y AC z AD =++且,,AB AC AD 不共面,∠12x y ==-,12z =,∠12x y z ++=-, ABCD 是棱长为1的正四面体,∠111cos602AB AC ⋅=⨯⨯︒=,同理12AB AD AC AD ⋅=⋅=,2222111111444222MN MN AB AC ADAB AC AB AD AC AD ==+++⋅-⋅-⋅44444== CD AD AC =-,111()()222MN CD AB AC AD AD AC ⋅=--+⋅-22111111222222AB AD AB AC AC AD AC AD AD AC =-⋅+⋅-⋅++-⋅11111114442242=-+-++-=, ∠12cos ,2MN CD MN CD MN CD ⋅<>===,∠,4MN CD π<>=, ∠异面直线MN 和CD 所成的角为4π. 【点睛】 关键点点睛:本题考查空间向量基本定理,考查用向量法求异面直线所成的角.在空间任意不共面的三个向量可作为空间的一个基底,空间所有向量都可用基底表示,且表示方法唯一,因此在用同一个基底用两种不同方法表示出同一向量时,两种表示法中对应的系数相等.由此结合向量的运算法则可表示得结论.同样用向量法求异面直线所成的角,可以直接计算,不需要作图与证明.15. 3【分析】(1)若点P 与点1A 重合,在平面1111D C B A 内,过P 作11PE B D ⊥,证明PE ⊥平面11BDD B ,则PE 为点P 到平面11BDD B 的距离,利用等面积法求解; (2)以1D 为坐标原点建立空间直角坐标系,设()(),,00,0P x y x y >≤,得()2210,0x y x y +=>≤,再由两点间的距离公式写出1PC ,利用配方法求最小值.【详解】解:(1)如图,若点P 与点1A 重合,在平面1111D C B A 内,过1A 作111A E B D ⊥, ∠平面1111A B C D ⊥平面11BB D D ,平面1111A B C D 平面1111BB D D B D =,∠1A E ⊥平面11BDD B ,则1A E 为点P 到平面11BDD B = (2)以1D 为坐标原点建立如图所示空间直角坐标系.设()(),,00,0P x y x y >≤y ,即()2210,0x y x y +=>≤,P 的轨迹为双曲线的部分, ()14,0,0C ,则1PC = ∠当2x =时,1PC 的最小值是3.故答案为:3.。
空间向量与立体几何(2)——向量法在立体几何中的综合应用

空间向量与立体几何(2)——向量法在立体几何中的综合应用【学习目标】1、能够建立空间直角坐标系;2、掌握平面的法向量的求解方法;4、掌握向量法在一些平行、垂直证明中的应用;3、掌握向量法在线面角和二面角的应用(重难点).【重点】空间直角坐标系的建立和法向量的求解【难点】掌握法向量...在线面角和二面角的应用. 【基础内容】1、法向量:和平面垂直的向量叫做法向量.如果法向量的模长为1,则称为单位法向量.2、平行:①线线平行:a b a b ⇒②线面平行:m 是平面α的法向量,若a m a ⊥⇒平面α③面面平行:m 是平面α的法向量,n 是平面β的法向量,若mn ⇒平面α || 平面β3、垂直:①线线垂直:a b a b ⊥⇒⊥②线面垂直:m 是平面α的法向量,若a m a ⇒⊥平面α③面面垂直:m 是平面α的法向量,n 是平面β的法向量,若m n ⊥⇒平面α ⊥平面β4、线面夹角:θ是OP 和平面α的夹角 sin cos ,OP m OP m OP m θ⋅=<>=⋅(根据θ的大小,考虑正负号)思考:为什么sin cos ,OP m θ=<>?5、二面角:θ是平面α和平面β的夹角cos cos ,m n m n m n θ⋅=<>=⋅(根据θ的大小,考虑正负号)思考:为什么cos cos ,m n θ=<>?【前置作业】1、如图,三棱锥O-ABC,OA、OB、OC两两垂直,且OA=OB=OC=1,求平面ABC的法向量坐标.(提示:利用线面垂直的判定定理,若法向量m⊥平面ABC,则m⊥AB,m⊥AC)【研讨探究】向量法基本方法:①建立坐标系(寻找两两垂直的三条线,特别是找到底面的垂直关系);②求出点坐标(不知道长度的用字母代替或设单位“1”)③求解题目(法向量的应用)探究一:平行、垂直的证明1、如图,P A⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点,P A=AD=1,AB=2.(1)求证:MN || 平面P AD;(2)求证:MN⊥平面PCD;探究二:线面角、二面角的求解(3)求MN和平面PBC的夹角的正弦值;(4)求二面角A-PB-C的余弦值.【当堂检测】1、已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,AD⊥DC,AB || DC,AB=AD=DE=4,DC=8.(1)证明:BD⊥平面BCF;(2)M为AD的中点,在DE上是否存在一点P,使得MP //平面BCE?若存在,求出DP 的长;若不存在,请说明理由.(3)求CE与平面BEF夹角的正弦值Array(4)求二面角F-EB-C的平面角的余弦值;【课后作业】1、(14浙江·文)如图,在四棱锥ABCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:AC⊥平面BCDE;(2)求直线AE与平面ABC所成的角的正切值.2、(14浙江·理)如图,在四棱锥A -BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B -AD -E的大小。
立体几何在城市规划中有哪些应用

立体几何在城市规划中有哪些应用在当今的城市化进程中,城市规划扮演着至关重要的角色。
它不仅仅是对土地和空间的简单划分,更是一门融合了多学科知识的综合性艺术与科学。
其中,立体几何作为数学的一个重要分支,在城市规划中有着广泛而深入的应用,为创造更高效、美观和可持续的城市空间提供了有力的支持。
一、立体几何在城市建筑布局中的应用城市中的建筑布局是城市规划的核心内容之一。
通过立体几何的原理,规划师可以更好地确定建筑物的位置、高度和形状,以实现最佳的空间利用和视觉效果。
首先,在考虑建筑物的位置时,立体几何可以帮助分析建筑物之间的相互关系和空间距离。
例如,通过计算不同建筑物之间的角度和距离,可以确保建筑物之间有足够的采光和通风,同时避免相互遮挡和视线干扰。
其次,建筑物的高度规划也离不开立体几何。
在有限的土地上,为了容纳更多的人口和功能,高层建筑成为了城市发展的必然选择。
然而,过高的建筑可能会对周边环境产生不利影响,如阴影遮挡、风洞效应等。
利用立体几何知识,可以精确计算建筑物的高度和阴影范围,从而合理安排建筑高度,保障周边区域的日照时间和舒适度。
此外,建筑的形状设计也可以运用立体几何。
例如,圆形、方形、三角形等不同的几何形状在空间中的占据和视觉感受是不同的。
通过对这些形状的组合和变化,可以创造出独特而富有魅力的建筑外观,同时实现内部空间的优化布局。
二、立体几何在交通规划中的应用交通是城市的动脉,顺畅的交通系统对于城市的运转至关重要。
立体几何在交通规划中发挥着关键作用。
在道路设计方面,立体几何可以帮助确定道路的坡度、弯道半径和交叉口的形状。
合适的坡度可以保证车辆行驶的安全和顺畅,过大或过小的坡度都会增加行驶的难度和风险。
弯道半径的合理设计则能够确保车辆在转弯时的稳定性和舒适性。
而交叉口的形状和尺寸,也需要根据交通流量和车辆转向的需求,运用立体几何原理进行精确计算和设计。
高架桥和地下通道的建设是解决交通拥堵的重要手段。
高中数学的归纳立体几何与微积分的综合应用

高中数学的归纳立体几何与微积分的综合应用在高中数学的学习中,归纳、立体几何和微积分是非常重要的内容。
本文将探讨这三个部分是如何相互应用的。
一、归纳的作用归纳是数学中一种非常重要的推理方法,通过观察和总结一系列例子的共同特征,从而提炼出普遍规律。
在立体几何和微积分的学习中,归纳的作用不可小觑。
在立体几何中,归纳可以帮助我们发现不同几何体的性质和特征。
通过观察一系列立体的例子,我们可以总结出它们的面数、棱数、顶点数等基本特征,从而建立起对各种几何体的认识。
例如,通过归纳,我们可以发现所有正方体的六个面都是正方形,边长相等,这是一种普遍规律。
在微积分中,归纳可以帮助我们总结出数列和级数的通项公式。
通过观察数列或级数的前几项,我们可以猜测它们的通项公式,然后利用归纳法证明。
例如,通过归纳,我们可以总结出等差数列的通项公式为an=a1+(n-1)d,其中a1是首项,d是公差。
二、立体几何与微积分的应用在高中数学中,立体几何和微积分是两个独立的学科,但在实际问题中,它们常常需要相互应用。
立体几何中的体积和表面积公式,可以通过微积分的方法来证明。
例如,对于球体的体积公式V=4/3πr^3,我们可以通过用微积分方法计算球体的曲面旋转体积来证明。
同样地,对于圆柱体的侧面积公式S=2πrh,我们可以利用微积分方法计算柱体的曲面积分来证明。
微积分中的求导和积分也可以在立体几何问题中得到应用。
当我们需要求一个曲面的切平面或者切线时,可以利用函数的导数来解决。
当我们需要求一个曲面的面积或者体积时,可以通过函数的积分来解决。
例如,在求解旋转曲面的表面积或者体积时,我们可以利用旋转体的计算公式并运用积分方法。
三、实际问题的综合应用在真实生活中,数学的应用往往是综合性的,需要综合运用归纳、立体几何和微积分的知识来解决问题。
例如,对于一个汽车制造商来说,他们需要设计一个容量为V的汽车油箱。
通过观察一系列汽车的油箱,我们可以发现它们的形状大多是长方体或者圆柱体。
数学立体几何的应用

数学立体几何的应用一、引言立体几何是数学的一个重要分支,其应用广泛而深入。
通过研究立体几何,我们可以更好地理解空间关系,并将其运用于日常生活和实际问题中。
本教案将着重介绍数学立体几何的应用领域以及教学方法。
二、数学立体几何的应用领域1. 建筑设计:建筑师需要运用立体几何的知识来设计房屋的形状、结构和空间布局。
例如,在设计一个拱形屋顶时,需要通过计算角度和弧线来确定屋顶的形状和尺寸。
2. 工程测量:在工程领域,立体几何可应用于测量和标记建筑物的尺寸、面积和容积。
例如,在测量一个建筑物的体积时,可以通过分解为不同形状的立体体积来计算。
3. 三维模型设计:在电脑图形学和游戏开发领域,立体几何被广泛应用于三维模型的设计与开发。
通过了解和运用立体几何的原理,设计师可以创建逼真的虚拟场景和角色模型。
4. 包装设计:立体几何的知识对于包装设计师而言非常重要。
他们需要考虑产品的形状、尺寸和包装材料,以确保产品在运输和存储过程中的安全和便捷。
5. 地图制作:制作地图也需要立体几何的应用。
制图师通过使用立体几何的原理,将三维地理信息转化为平面地图,使之具有地理空间的准确性和美观性。
三、数学立体几何的教学方法1. 观察与实践:教师可以引导学生观察日常生活中的立体图形,如建筑物、家具、玩具等,并鼓励学生对其形状和特征进行实地测量和观察。
2. 规律总结与归纳:通过引导学生进行讨论和探究,帮助他们总结出立体图形的特征和性质,如面、边、顶点的数量,以及各种形状的特点等。
3. 建模与求解:教师可以使用模型或图形展示工具,引导学生进行建模思维,将实际问题转化为数学问题,并通过计算和解决问题来巩固立体几何的应用技能。
4. 探究与发现:激发学生的学习兴趣和思维能力,引导他们进行立体几何的探究和发现,培养他们的分析和解决问题的能力。
5. 综合与拓展:将数学立体几何与其他学科进行综合,如物理、化学和计算机科学等,引导学生将所学立体几何的知识应用到实际问题中。
人教A版高中数学必修教案:立体几何全部教案

人教A版高中数学必修教案:立体几何全部教案第一章:绪论1.1 立体几何的概念教学目标:1. 理解立体几何的概念,掌握立体几何的研究对象和基本元素。
2. 掌握空间点、线、面的位置关系,培养空间想象能力。
教学重点:立体几何的概念,空间点、线、面的位置关系。
教学难点:立体几何的概念的理解,空间点、线、面的位置关系的应用。
教学过程:一、导入:引导学生回顾平面几何的基本概念,引出立体几何的概念。
二、新课:讲解立体几何的研究对象和基本元素,通过实物展示和图形绘制,介绍空间点、线、面的位置关系。
三、练习:学生自主完成练习题,巩固所学知识。
四、小结:总结本节课的主要内容,强调立体几何的概念和空间点、线、面的位置关系的重要性。
第二章:直线与平面2.1 直线与平面的位置关系教学目标:1. 理解直线与平面的位置关系,掌握直线与平面平行和直线与平面垂直的判定方法。
2. 培养空间想象能力和逻辑思维能力。
教学重点:直线与平面的位置关系,直线与平面平行和直线与平面垂直的判定方法。
教学难点:直线与平面平行和直线与平面垂直的判定方法的运用。
教学过程:一、导入:通过实例引入直线与平面的位置关系。
二、新课:讲解直线与平面的位置关系,介绍直线与平面平行和直线与平面垂直的判定方法。
三、练习:学生自主完成练习题,巩固所学知识。
四、小结:总结本节课的主要内容,强调直线与平面的位置关系和判定方法的重要性。
第三章:平面与平面3.1 平面与平面的位置关系教学目标:1. 理解平面与平面的位置关系,掌握平面与平面平行和平面与平面垂直的判定方法。
2. 培养空间想象能力和逻辑思维能力。
教学重点:平面与平面的位置关系,平面与平面平行和平面与平面垂直的判定方法。
教学难点:平面与平面平行和平面与平面垂直的判定方法的运用。
教学过程:一、导入:通过实例引入平面与平面的位置关系。
二、新课:讲解平面与平面的位置关系,介绍平面与平面平行和平面与平面垂直的判定方法。
三、练习:学生自主完成练习题,巩固所学知识。
立体几何与三角函数综合应用

立体几何与三角函数综合应用立体几何与三角函数是数学中重要的两个分支,它们在现实生活中有着广泛的应用。
本文将介绍立体几何与三角函数的基本概念,并结合实际案例,探讨它们在实际问题中的综合应用。
一、立体几何基础知识在立体几何中,有许多重要的概念,比如点、线、面、体积等。
其中,立体的体积计算是立体几何的核心内容之一。
对于不规则形状的立体,可以通过划分为若干个更简单的几何体,再计算其体积。
而三角函数则是描述角度关系的一组函数,包括正弦、余弦、正切等。
在三角函数中,有着许多常用的三角恒等式和性质。
二、综合应用案例一:建筑设计在建筑设计中,立体几何和三角函数的应用十分重要。
比如,设计师需要计算一个建筑物的体积,可以将其拆解为若干个几何体,如长方体、圆柱体等,再分别计算它们的体积,并求和得到总体积。
此外,设计师还需要使用三角函数计算出建筑物的倾斜度、角度等参数,以便在设计过程中进行合理的调整。
三、综合应用案例二:地理测量在地理测量领域,立体几何和三角函数的应用也非常广泛。
例如,测量一座山峰的高度时,可以利用三角函数的正切函数来计算山顶与视线的夹角,进而通过三角函数的性质,得到山峰的高度。
另外,在地理测量中,也经常需要计算一些不规则地形的面积,这时可以利用立体几何的概念将其划分为更简单的几何体,再进行计算。
四、综合应用案例三:机械设计在机械设计领域,立体几何与三角函数同样发挥着重要作用。
例如,设计师需要计算一台机器的体积时,可以将其划分为若干个几何体,并计算它们的体积。
此外,在机械运动的设计过程中,三角函数常用于计算角度、转速等参数,以确保机器的正常运行。
综上所述,立体几何与三角函数是数学中非常重要的分支,它们在各个领域的实际应用中发挥着重要的作用。
通过对立体几何的体积计算和三角函数的角度计算的综合运用,可以解决许多实际问题,如建筑设计、地理测量和机械设计等。
对于学习者而言,深入理解立体几何和三角函数的概念和性质,能够帮助他们更好地应用于实际问题中,提高解决实际问题的能力。
立体几何综合与应用1

2. 解应用题时,一定要注意审题,找出问题后面的图 形模型,将其转化为熟悉的几何体求解.
图1
图2
【解题回顾】本题是2002年高考题,是一道集开放、 探索、动手于一体的优秀考题,正三角形剪拼正三棱 柱除参考答案的那种剪法外,还可以用如图 4 的剪法, 当然参考答案的剪法是其本质解,因为它为( 3 )的 解答提供了帮助.
图3
图4
误解分析
1. 解探索性题目时,有些同学心浮气躁,没有根据 地胡乱猜测,最终导致错解.
3.四面体的一条棱长是x,其他 各条棱长为1.(1)把四面体的 体积V表示为x的函数f(x); (2)求f(x)的值域; (3)求f(x)的单调区间.
【解题回顾】本题(1)也可以用V=VB-SAD+VC-SAD求体积, (2)也可以对根号里的x2·(3-x2)求导得最大值, (3)
4.如图,在直三棱柱ABC-A1B1C1中, 底面是等腰直角三角形,∠ACB=90° 侧棱AA1=2,D、E分别是CC1与A1B的 中点,点E在平面ABD上的射影是 △ABD的重心G.(1)求A1B与平面ABD 所成角的大小 (结果用反三角函数 值表示): (2)求点A1到平面AED的距离.
延伸·拓展
5.(1)给出两块相同的正三角形纸片(如图1,图2), 要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼 成一个正三棱柱模型,使它们的全面积都与原三角形的 面积相等,请设计一种剪拼方法,分别用虚线标示在图 1、图2中,并作简要说明; (2)试比较你剪拼的正三棱锥与正三棱柱的体积的大小; (3)(本小题为附加题) 如果给出的是一块任意三角形的纸片(如图3),要求 剪拼成一个直三棱柱模型,使它们的全面积与给出的三 角形的面积相等,请设计一种剪拼方法,用虚线标示在 图3中,并作简要说明.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何综合应用(教案)
一. 复习目标
1. 初步掌握“立几”中“探索性” “发散性”等命题的解法.
2.能正确地分析出几何中基本元素及其相互关系.能对图形进行分解、组合和变形.
进一步提高空间想象能力和逻辑思维能力.
二. 课前预习
1. 棱长为1的正方体容器ABCD-A1B1C1D1 , 在A1B、A1B1、
B1C1的中点E、F、G处各开有一个小孔. 若此容器可以
任意放置, 则装水最多的容积是 ( )
(小孔面积对容积的影响忽略不计)
A. B. C. D.
2.如图,是一个无盖的正方体盒子展开后的平面图, A、B、C是展开图上的三点, 则正方体盒子中∠ABC的值为 ( )
A.180°
B. 120°
C.60°
D. 45°
3.图中多面体是过正四棱柱的底面正方形ABCD的点A作截面AB1C1D1而截得的, 且BB1=DD1已知截面AB1C1D1与底面ABCD成30°
的二面角, 则这个多面体的体积 ( )
A. B.
C. D.
4.在四棱锥P-ABCD中, O为CD上的动点, 四边形ABCD满足条件时,
V P-AOB恒为定值 ( 写上你认为正确的一个条件即可 )
三. 典型例题
例1. 如图, 四棱锥S-ABC中,AB∥CD,CD⊥平面SAD,
且CD=SA=AD=SD=AB=1.
(1) 当H为SD中点时, 求证: AH∥平面SBC,
平面SBC⊥平面SCD;
(2) 求点D到平面SBC的距离;
(3) 求面SBC和面SAD所成的的二面角的大小.
备课说明:(1)本题的四棱锥是非常规放置的,要注意分辨图形.(2)可以用常规方法解决点面距离及二面角大小, 也可以用面积或体
积去解决.
例2. 如图, 已知距形ABCD中, AB=1, BC=a (a>0), PA⊥平面AC, 且PA =1,
(1)问BC边上是否存在Q, 使得PQ⊥QD,说明理由.
(2)若BC边上有且只有一个点Q,使得PQ⊥QD,求这时二面角Q-PD-A的大小.
备课说明:本题是一条探索性命题, 解决这类问题一般可以有以下两条思路:
(1) 找到满足条件的一点, 再进行证明. (2)把结论PQ⊥QD当作条
件用, 去找Q点,
把空间问题平面化.
提高题:如图:在直三棱锥ABC-A1B1C1中, 底面是等腰直角三角形,∠ACB=90°,
侧棱AA1=2, D、E分别是CC1与A1B的中点, 点E在平面ABD上射影是△ABD
的重心.
(1)求A1B与平面ABD所成角的大小;(2)求A1点到平面AED的距离.备课说明:本题主要是考查学生的空间想象能力, 如图形较复杂, 用传统的立体几何知
识解决难度较大, 可以尝试用向量的知识去解决.
四. 反馈练习
1. 正方形ABCD, 沿对角线AC对折, 使D点在面ABC外, 这时DB与面ABC 所成
的角一定不等于( )
A. 30°
B. 45°
C. 60°
D. 90°
2. 在直三棱柱ABC-A1B1C1中, A A1=AB=AC,AB⊥AC, M是CC1的中点, Q是BC
的中点, P在A1B1上, 则直线PQ与直线AM所成的角为 ( )
A.30°
B.60°
C.90°
D.与点P的位置有关
3. 如图: 将边长为a的正方形剪去图中的阴影部分, 沿图
中所画虚线折成一个正三棱锥, 这个正三棱锥与底面
所成角的余弦值是 .
4. 用一块长3cm, 宽2cm的距形木块, 在二面角为90°的
墙角处, 围出一个直三棱柱形谷仓, 在下面的四种设计
中容积最大的是 ( )
5.在棱长为a的正方体ABCD-A1B1C1D1中, E、F分别是棱AB与BC中点.
(1) 求二面角B-FB1-E的大小;
(2) 求点D到平面B1EF的距离;
(3) 在棱DD1上能否找到一点M, 使BM⊥平面EFB1, 若能, 试确定M的
位置, 若不
能, 请说明理由.
答案:
一. 课前预习
1.B2.C 3.D 4.CD∥AB
二. 典型例题
例1 (1) 略 (2) (3) arccos
例2 (1) 略 (2 ) arctan
提高题:(1) arcsin (2)
三. 反馈练习
1.D 2. C 3.4.A
5.(1)arctan (2)a (3) 能找到一点满足条。