第5章 统计假设检验练习题及答案

合集下载

生物医学研究统计方法 第5章 假设检验思考与练习参考答案

生物医学研究统计方法 第5章 假设检验思考与练习参考答案

第5章 假设检验思考与练习参考答案一、最佳选择题1. 样本均数比较作t 检验时,分别取以下检验水准,以( E )所取Ⅱ类错误最小。

A.0.01α=B. 0.05α=C. 0.10α=D. 0.20α=E. 0.30α=2. 在单组样本均数与一个已知的总体均数比较的假设检验中,结果t =3.24,t 0.05,v =2.086, t 0.01,v =2.845。

正确的结论是( E )。

A. 此样本均数与该已知总体均数不同B. 此样本均数与该已知总体均数差异很大C. 此样本均数所对应的总体均数与该已知总体均数差异很大D. 此样本均数所对应的总体均数与该已知总体均数相同E. 此样本均数所对应的总体均数与该已知总体均数不同3. 假设检验的步骤是( A )。

A. 建立假设,选择和计算统计量,确定P 值和判断结果B. 建立无效假设,建立备择假设,确定检验水准C. 确定单侧检验或双侧检验,选择t 检验或Z 检验,估计Ⅰ类错误和Ⅱ类错误D. 计算统计量,确定P 值,作出推断结论E. 以上都不对4. 作单组样本均数与一个已知的总体均数比较的t 检验时,正确的理解是( C )。

A. 统计量t 越大,说明两总体均数差别越大B. 统计量t 越大,说明两总体均数差别越小C. 统计量t 越大,越有理由认为两总体均数不相等D. P 值就是αE. P 值不是α,且总是比α小5. 下列( E )不是检验功效的影响因素的是:A. 总体标准差σB. 容许误差δC. 样本含量nD. Ⅰ类错误αE. Ⅱ类错误β二、思考题1.试述假设检验中α与P 的联系与区别。

答:α值是决策者事先确定的一个小的概率值。

P 值是在0H 成立的条件下,出现当前检验统计量以及更极端状况的概率。

P ≤α时,拒绝0H 假设。

2. 试述假设检验与置信区间的联系与区别。

答:区间估计与假设检验是由样本数据对总体参数作出统计学推断的两种主要方法。

置信区间用于说明量的大小,即推断总体参数的置信范围;而假设检验用于推断质的不同,即判断两总体参数是否不等。

统计学第五章课后题及答案解析

统计学第五章课后题及答案解析

第五章一、单项选择题1.抽样推断的目的在于()A.对样本进行全面调查B.了解样本的基本情况C.了解总体的基本情况D.推断总体指标2.在重复抽样条件下纯随机抽样的平均误差取决于()A.样本单位数B.总体方差C.抽样比例D.样本单位数和总体方差3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差()A.一年级较大B.二年级较大C.误差相同D.无法判断4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将()A.高估误差B.低估误差C.恰好相等D.高估或低估5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()A.扩大到原来的2倍B.扩大到原来的4倍C.缩小到原来的1/4D.缩小到原来的1/26.当总体单位不很多且差异较小时宜采用()A.整群抽样B.纯随机抽样C.分层抽样D.等距抽样7.在分层抽样中影响抽样平均误差的方差是()A.层间方差B.层内方差C.总方差D.允许误差二、多项选择题1.抽样推断的特点有()A.建立在随机抽样原则基础上 B.深入研究复杂的专门问题C.用样本指标来推断总体指标 D.抽样误差可以事先计算E.抽样误差可以事先控制2.影响抽样误差的因素有()A.样本容量的大小 B.是有限总体还是无限总体C.总体单位的标志变动度 D.抽样方法E.抽样组织方式3.抽样方法根据取样的方式不同分为()A.重复抽样 B.等距抽样 C.整群抽样D.分层抽样 E.不重复抽样4.抽样推断的优良标准是()A.无偏性 B.同质性 C.一致性D.随机性 E.有效性5.影响必要样本容量的主要因素有()A.总体方差的大小 B.抽样方法C.抽样组织方式 D.允许误差范围大小E.要求的概率保证程度6.参数估计的三项基本要素有()A.估计值 B.极限误差C.估计的优良标准 D.概率保证程度E.显著性水平7.分层抽样中分层的原则是()A.尽量缩小层内方差 B.尽量扩大层内方差C.层量扩大层间方差 D.尽量缩小层间方差E.便于样本单位的抽取三、填空题1.抽样推断和全面调查结合运用,既实现了调查资料的_______性,又保证于调查资料的_______性。

假设检验例题和习题

假设检验例题和习题

(第二版) (原假设与备择假设旳拟定)
1. 属于决策中旳假设检验
2. 不论是拒绝H0还是不拒绝H0,都必需采用 相应旳行动措施
3. 例如,某种零件旳尺寸,要求其平均长度为 10cm,不小于或不不小于10cm均属于不合 格
我们想要证明(检验)不小于或不不小于这两种 可能性中旳任何一种是否成立
4. 建立旳原假设与备择假设应为
H0: = 5
H1: 5
= 0.05
df = 10 - 1 = 9 临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-2.262 0 2.262 t
8 - 20
检验统计量:
t = x 0 = 5.3 5 = 3.16
s n 0.6 10
决策:
在 = 0.05旳水平上拒绝H0
结论:
阐明该机器旳性能不好
符?( = 0.05)
统计学
(第二版)
均值旳单尾 t 检验
(计算成果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域
.05
-1.7291 0
t
8 - 23
检验统计量:
t = x 0
sn
= 41000 40000 = 0.894 5000 20
8 - 12
双侧检验
统计学
(第二版)
H0: = 0.081
H1: 0.081
= 0.05
n = 200
临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
8 - 13
检验统计量:

(完整版)统计学假设检验习题答案

(完整版)统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量nx t /0σμ-=。

查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=t 。

因为t <2.131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=。

查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

统计学假设检验习题答案

统计学假设检验习题答案

1。

假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量n x t /0σμ-=。

查出α=0。

05和0。

01两个水平下的临界值(d f=n-1=15)为2.131和2。

947。

667.116/60800820=-=t .因为t 〈2。

131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=.查出α=0.01水平下的反查正态概率表得到临界值2。

32到2。

34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z =3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3。

设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600。

《统计学》第5章 假设检验

《统计学》第5章 假设检验
假设。原假设通常用H0 表示,也称为“零假设”;备择假设指的是当原
假设不成立时,即拒绝原假设时备以选择的假设,通常用H1 表示。备择
假设和原假设互斥,如在例5.1中,原假设是“2022 年全国城市平均
PM2.5 浓度与2018 年相比没有显著差异”,那么备择假设就是“2022
年全国城市平均PM2.5 浓度与2018 年相比存在显著差异”。相应的统计
小越好。但是,在一定的样本容量下,减少犯第I类错误的概率,就会
使犯第II类错误的概率增大;减少犯第II类错误的概率,会使犯第I类
错误的概率增大。增加样本容量可以使犯第I类错误的概率和犯第II类
错误的概率同时减小,然而现实中资源总是有限的,样本量不可能没有
限制。因此,在给定的样本容量下,必须考虑两类可能的错误之间的权
易被否定,若检验结果否定了原假设,则说明否定的理由是充分的。
第四章 参数估计
《统计学》
16
5.1 假设检验的基本原理
(四) P值法
假设检验的另一种常用方法是利用P值(P-value) 来确定检验决策。P值
指在原假设0 为真时,得到等于样本观测结果或更极端结果的检验统计
量的概率,也被称为实测显著性水平。P值法的决策规则为:如果P值大
1.96) 中。这里−1.96和1.96 称为临界值,区间(−1.96, 1.96) 两侧的
区域则被称为拒绝域。基于样本信息,可以计算得到相应的z检验统计量
值,已知ҧ = 46,0 = 53, = 14 , n = 100 = −5
14/10
第四章 参数估计
《统计学》
14
5.1 假设检验的基本原理
犯第I 类(弃真) 错误的概率 也称为显著性水平(Significance level),

(完整版)统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量nx t /0σμ-=。

查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=t 。

因为t <2.131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=。

查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

统计学假设检验作业答案

假设检验作业答案一、单项选择题1.在假设检验中,第一类错误是指(A )A.当原假设正确时拒绝原假设B.当原假设错误时拒绝原假设C.当备择假设正确时拒绝备择假设D.当备择假设不正确时拒绝备择假设2.对于给定的显著性水平α,根据P 值拒绝原假设的准则是(B )A.P=αB.P<αC.P>αD.P=α=03.在大样本情况下,当总体方差已知时,检验总体均值所使用的统计量是(B )A.0/x z n µσ−=B.x z =C.x t =D.x z =4.检验一个正态总体的方差时所使用的分布是(D )A.正态分布B.t 分布C.F 分布D.2χ分布二、简答题简述:假设检验依据的基本原理是什么?三、计算题1.已知某炼铁厂的产品含碳量服从正态分布N(4.55,0.108),现在测定了9炉铁水,其平均含碳量为4.484。

如果估计方差没有变化,可否认为现在生产的铁水平均含碳量为4.55(α=0.05)。

解:正态分布总体,方差已知,因此用Z 检验。

α=0.05时,临界值为±1.9601: 4.55, : 4.55H H µµ=≠0.602x z ===−1.96 1.96z −<<所以不拒绝原假设。

结论:样本提供的信息不足以推翻“铁水平均含碳量为4.55”的说法。

2.某地区小麦的一般生产水平为亩产250公斤,其标准差为30公斤。

现用一种化肥进行试验,从35个小区抽样结果,平均产量为270公斤。

问这种化肥是否使小麦明显增产?(α=0.05)解:大样本,方差已知,用Z 检验。

0.05 1.645z =01:250, :250H H µµ≤>0.053.94x z z ===>所以拒绝原假设。

结论:这种化肥使小麦明显增产3.某种大量生产的袋装食品,按规定不得少于250克。

今从一批该食品中任意抽取50袋,发现有6袋低于250克。

若规定不符合标准的比例超过5%就不得出厂。

精编生物医学研究的统计方法统计课后题答案

第1章绪论1. 生物统计学与其他统计学有什么区别和联系?答:统计学可细分为数理统计学、经济统计学、生物统计学、卫生统计学、医学统计学等,都是关于数据的学问,是从数据中提取信息、知识的一门科学与艺术。

而生物统计学是统计学原理与方法应用于生物学、医学的一门科学,与医学统计学和卫生统计学很相似,其不同之处在于医学统计学侧重于介绍医学研究中的统计学原理与方法,而卫生统计学更侧重于介绍社会、人群健康研究中的统计学原理与方法。

2. 某年级甲班、乙班各有男生50人。

从两个班各抽取10人测量身高,并求其平均身高。

如果甲班的平均身高大于乙班,能否推论甲班所有同学的平均身高大于乙班?为什么?答:不能。

因为,从甲、乙两班分别抽取的10人,测量其身高,得到的分别是甲、乙两班的一个样本。

样本的平均身高只是甲、乙两班所有同学平均身高的一个点估计值。

即使是按随机化原则进行抽样,由于存在抽样误差,样本均数与总体均数一般很难恰好相等。

因此,不能仅凭两个样本均数高低就作出两总体均数熟高熟低的判断,而应通过统计分析,进行统计推断,才能作出判断。

3. 某地区有10万个7岁发育正常的男孩,为了研究这些7岁发育正常男孩的身高和体重,在该人群中随机抽取200个7岁发育正常的男孩,测量他们的身高和体重,请回答下列问题。

(1) 该研究中的总体是什么?答:某地区10万个7岁发育正常的男孩。

(2) 该研究中的身高总体均数的意义是什么?答:身高总体均数的意义是: 10万个7岁发育正常的男孩的平均身高。

(3) 该研究中的体重总体均数的意义是什么?答:体重总体均数的意义是: 10万个7岁发育正常的男孩的平均体重(4) 该研究中的总体均数与总体是什么关系?答:总体均数是反映总体的统计学特征的指标。

(5)该研究中的样本是什么?答:该研究中的样本是:随机抽取的200个7岁发育正常的男孩。

第2章统计描述1. 对定量资料进行统计描述时,如何选择适宜的指标?答:详见教材表2-18。

解决概率与统计的假设检验的推断练习题

解决概率与统计的假设检验的推断练习题假设检验是概率与统计学中一种常见的推断方法,用于判断样本数据是否提供了对总体参数的有力证据。

在解决概率与统计的假设检验问题时,我们需要进行一系列推断性练习题,通过实际操作来加深对假设检验的理解。

以下是一些假设检验的推断练习题,通过解答这些题目,可以更好地掌握假设检验的思考方式和应用技巧。

1. 某汽车制造公司声称其生产的轿车平均寿命超过5年。

现随机抽取30辆轿车,得到样本的平均寿命为5.2年,标准差为0.8年。

可以使用一个总体均值的单样本t检验来判断该声称是否正确。

请计算t统计量,给出相应的假设检验过程,并得出结论。

2. 一项研究声称,男性和女性在记忆力方面的得分没有显著差异。

为了验证这一假设,我们进行了一项实验,随机抽取了50名男性和50名女性,并给予他们记忆力测试。

男性组的平均得分为65分,标准差为10分;女性组的平均得分为68分,标准差为9分。

请进行一个总体均值的双样本t检验,判断男性和女性的记忆力是否存在显著差异。

3. 一家电商公司声称其网站的点击率达到了10%以上。

为了验证这一声称,我们随机抽取了1000次点击记录,其中有110次点击。

请使用一个二项分布的单样本比例检验,判断该声称是否正确。

4. 一项调查研究声称,在某大城市中,80%的居民认为旅游业是当地经济的重要支柱。

为了验证这一声称,我们进行了一项抽样调查。

在500份调查问卷中,有420份回答认同该观点。

请使用一个比例的单样本z检验,判断该声称是否正确。

5. 某项研究声称,接受特定训练的员工较未接受训练的员工在工作效率方面有显著差异。

为了验证该声称,我们从公司员工中随机抽取了两组员工,一组接受了训练,另一组未接受训练。

接受训练组的平均工作效率为80%,标准差为5%;未接受训练组的平均工作效率为75%,标准差为4%。

请进行一个总体均值的双样本z检验,判断是否存在显著差异。

通过以上的推断练习题,我们可以加深对假设检验的理解和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告——第5章统计假设检验
姓名杨秀娟班级人力10001 学号10120700121 【实验1】
某外企对员工英语水平进行调查,开发部门总结该部门员工英语水平很高,如果按照英语六级考试标准考核,一般平均分为75分。

现从开发部门雇员中随机选出11人参加考试,得分如下:80,81,72,60,78,65,56,79,77,87,76
请问该开发部门的英语水平是否真的很高(即高于75分,且差异显著)?
【解】
(1)数据和变量说明
本题所用数据是:外企英语六级考试成绩样本
该文件为11个样本,1个变量,如变量视图
(2)操作方法
(3)结果报告
上图为单样本t检验表,第一行注明了用于比较的已知的总体均数为75,下面从左到右依次为t值(t)、自由度(df)、P值(Sig)、两均数的差值、差值的95%可信区间。

由上表可知,t= -0.442 , P=0.668, P>0.05,接受Ho,与平均成绩75相等,无显著差异,因此,该开发部门的英语水平不是真的很高。

【实验2】
以下是对某产品促销团队进行培训前后的销售业绩数据,试分析该培训是否产生了显著效果。

表5-20 培训前后销售业绩数据
序号 1 2 3 4 5 6 7 8 9
培训前67 70 74 97 74 88 82 71 85
培训后78 67 78 98 76 87 86 78 95 【解】
(1)数据和变量说明
本文件有2个变量,9个数据
(2)操作方法
(3)结果报告
由上表可知,P=0.04, P<0.05,不接受无效假设,有显著差异,所以该培训产生了显著效果。

【实验3】
饲养队制定了两种喂养方案喂猪,希望通过试验了解一下不同喂养方案的喂养效果。

方案一:用一只猪喂不同的饲料所测得的体内钙留存量数据如下:
表5-21 方案一喂养数据
序号 1 2 3 4 5 6 7 8 9 饲料1 33.1 33.1 26.8 36.2 39.4 30.8 33.2 31.4 28.7 饲料2
36.7
29.0
35.2
35.2
43.8
25.8
36.4
37.9
28.7
方案二:甲队有11只猪喂饲料1,乙队有9只猪喂饲料2,所得的钙留存量数据如下:
表5-22方案二喂养数据
序号 1 2 3 4 5 6 7 8 9 10
11 甲队饲料1 29.7 26.7 28.9 31.1 31.1 26.8 26.3 39.5 33.4 33.1 28.6 乙队饲料2
28.7
28.3
29.3
32.2
31.1
30.1
36.2
36.8
30.0
请选用恰当方法对上述两种方案所获得的数据进行分析,研究不同饲料是否使小猪体内钙留存量有显著不同。

【解】 方案一
(1)数据和变量说明 答:9个数据,2个变量 (2)操作方法
(3)结果报告
因为P=0.28 >0.05,所以接受无效假设,差异不显著,小猪体内钙存留量无显著差异。

方案二
(1)数据和变量说明
答:本题运用的数据是方案二喂养数据样本
该文件为20个样本,两个变量
(2)操作方法
(3)结果报告
因为0.652>0.05,所以假设方差相等,又因为0.564>0.05,所以两组无差异。

【实验4】
运用“减肥健身.sav”数据,本数据是35名会员经过减肥健身训练前后的体重。

应用SPSS软件,使用配对样本的t检验判断这种减肥健身训练对会员的体重有没有显著的影响。

【解】
答:(1)数据和变量说明
35个数据,2个变量
(2)操作方法
(3)结果报告
因为P=0<0.05,拒绝无效假设,所以有差异,又因为健身前后体重比较:89.2571>70.0286,
所以健身前后差异显著。

【实验5】
运用“克矽平病.sav”数据,本数据是10例矽肺病患者经过克矽平治疗前后血液中的血红蛋白量,数据中有10个样本观测值,代表了10个接受治疗的患者:有两个属性变量X1和X2,分别代表是患者治疗前后的血红蛋白量。

应用SPSS软件,使用配对样本的t检验判断这种治疗对患者的血红蛋白量有没有显著的影响。

【解】
(1)数据和变量说明
答:10个数据,2个变量
(2)操作方法
(3)结果报告
显著的影响。

相关文档
最新文档