求周期方波(见图1-4)的傅里叶级数(复指数函数形

求周期方波(见图1-4)的傅里叶级数(复指数函数形
求周期方波(见图1-4)的傅里叶级数(复指数函数形

1-1 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n |–ω和φn –ω图,并与表1-1对比。

解答:在一个周期的表达式为

00 (0)2() (0)2

T A t x t T A t ?

--≤

?≤

积分区间取(-T/2,T/2)

0000000

220

2

00

2

111()d =

d +

d =(cos -1) (=0, 1, 2, 3, )

T T jn t

jn t

jn t T T n c x t e

t Ae

t Ae t

T T T A

j

n n n ωωωππ

-----=

-±±±?

?

?

所以复指数函数形式的傅里叶级数为

001

()(1cos )jn t

jn t n n n A

x t c e

j

n e n

=-∞

=-∞=

=--∑∑ωωππ,=0, 1, 2, 3, n ±±±。

(1cos ) (=0, 1, 2, 3, )0nI

nR A c n n n c ?

=--?±±±?

?=?ππ

21,3,,(1cos )00,2,4,6,

n A

n A c n n n n ?=±±±?

==-=??=±±±

?

πππ

1,3,5,2arctan 1,3,5,

2

00,2,4,6,nI n nR π

n c π

φn c n ?-=+++???===---??=±±±??

?

没有偶次谐波。其频谱图如下图所示。

图1-4 周期方波信号波形图

1-2 求正弦信号0()sin x t x ωt =的绝对均值x μ和均方根值rms x 。

000

2200000

224211()d sin d sin d cos T

T

T T

x x x x x μx t t x ωt t ωt t ωt T T T

T ωT ωπ

====-==???

2

222

00rms

000

111cos 2()d sin d d 22

T T T

x x ωt

x x t t x ωt t t T T T

-====???

1-3 求指数函数()(0,0)at

x t Ae a t -=>≥的频谱。

解答:

(2)220

2

2

(2)

()()(2)

2(2)a j f t

j f t

at j f t

e A A a j

f X f x t e

dt Ae e

dt A

a j f a j f a f -+∞

---∞-∞

-====

=-+++??πππππππ

2

2

()(2)

k X f a f π=

+

Im ()2()arctan

arctan Re ()X f f

f X f a

==-π?

1-5 求被截断的余弦函数0cos ωt (见图1-26)的傅里叶变换。

|c n | φn

π/2 -π/2 ω

ω

ω0

ω0 3ω0

5ω0

3ω0 5ω0

2A/π

2A/3π 2A/5π 幅频图

相频图

周期方波复指数函数形式频谱图

2A/5π 2A/3π 2A/π -ω0

-3ω0

-5ω0

-ω0 -3ω0

-5ω0 单边指数衰减信号频谱图

f

|X (f )|

A /a

φ(f )

f

π/2

-π/2

0cos ()0

ωt t T x t t T

?

≥??

解:0()()cos(2)x t w t f t =π w (t )为矩形脉冲信号

()2sinc(2)W f T Tf =π

()

002201cos(2)2j f t j f t

f t e e

πππ-=

+ 所以002211()()()22

j f t

j f t x t w t e w t e -=+ππ

根据频移特性和叠加性得:

000011

()()()

22

sinc[2()]sinc[2()]

X f W f f W f f T T f f T T f f =-++=-++ππ 可见被截断余弦函数的频谱等于将矩形脉冲的频谱一分为二,各向左右移动f 0,同时谱线高度减小一半。也说明,单一频率的简谐信号由于截断导致频谱变得无限宽。

1-6 求指数衰减信号0()sin at

x t e

ωt -=的频谱

解答:

指数衰减信号

x (t )

f X (f )

T

f 0 -f 0

被截断的余弦函数频谱

图1-26 被截断的余弦函数

t

t

T

-T

T -T

x (t )

w (t )

1

1

-1

()

0001sin()2j t j t

t e e j

-=

-ωωω 所以()

001()2j t j t

at

x t e

e e j

--=-ωω

单边指数衰减信号1()(0,0)at

x t e

a t -=>≥的频谱密度函数为

1122

1()()j t at j t a j X f x t e dt e e dt a j a ∞

----∞

-===

=++??ωωω

ωω

根据频移特性和叠加性得:

[]001010222200222

000222222220000()()11()()()22()()[()]2[()][()][()][()]

a j a j X X X j j a a a a j a a a a ??

---+=--+=-??

+-++??

--=-+-+++-++ωωωωωωωωωωωωωωωωωω

ωωωωωωωω

1-7 设有一时间函数f (t )及其频谱如图1-27所示。现乘以余弦型振荡00cos ()m ωt ωω>。

在这个关系中,函数f (t )叫做调制信号,余弦振荡0cos ωt 叫做载波。试求调幅信号

0()cos f t ωt 的傅里叶变换,示意画出调幅信号及其频谱。又问:若0m ωω<时将会出现什

么情况?

指数衰减信号的频谱图

解:0()()cos()x t f t t =ω

()[()]F f t =ωF

()

0001cos(

)2j t j t

t e e

-=

+ωωω 所以0011()()()22

j t j t

x t f t e f t e -=+ωω

根据频移特性和叠加性得:

0011

()()()22

X f F F =

-++ωωωω 可见调幅信号的频谱等于将调制信号的频谱一分为二,各向左右移动载频ω0,同时谱

线高度减小一半。

若0m ωω<将发生混叠。

f

X (f )

ω0

-ω0

矩形调幅信号频谱

图1-27 题1-7图

ω

F (ω)

f (t )

0 t

-ωm

ωm

方波信号展开为傅里叶级数

【例4.2-1】将下图所示方波信号展开为傅里叶级数。 解:按题意方波信号在一个周期内的解析式为 ()?????? ?≤≤<≤--=2 02 2 2 T t E t T E t f 分别求得傅里叶系数: cos 22cos 22200020??? ? ??+???? ??-=-T T n tdt n E T tdt n E T a ωω ()()[]0 sin sin n E 2 000 =+-= -T T t n t n T ωωω ???? ??+???? ??-=-200020sin 22sin 22T T n tdt n E T tdt n E T b ωω ()()[] 2 0020 cos cos n E T T t n t n T ωωω-+= - ()[]ππn n E cos 222-= 即: ??? ??=为偶数 为奇数n n n E b n 0 2π 故得信号的傅里叶级数展开式为 ()?? ? ??+++++=ΛΛt n n t t t E t f 0000sin 15sin 513sin 31sin 2ωωωωπ 它只含有一、三、五、……等奇次谐波分量。

【例 解: 首先将图示信号分解为奇、偶函数,如下图(a)、(b)所示。 (a) 从图(a)可见为一个半波反对称偶函数。在这种情况下,其傅里级数展开式 中将只含有余弦项,且只含奇次谐波分量而不含偶次谐波分量,即有: 06420321========ΛΛb b b b a a a ()?? ? ??+++++= ΛΛt n n t t t t f ev 02 0002cos 15cos 2513cos 91cos 8ωωωωπ

将下列各周期函数展开成傅里叶级数(下面给出函数在一个...

习题11-8 1. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式): (1))2 12 1(1)(2<≤--=x x x f ; 解 因为f (x )=1-x 2为偶函数, 所以b n =0(n =1, 2, ? ? ?), 而 611)1(4)1(2/1221 0221 020=-=-=??dx x dx x a , ?-=21022/1c o s )1(2/12dx x n x a n π 2 2 121 2 )1(2c o s )1(4π πn x d x n x n +-= -=? (n =1, 2, ? ? ?), 由于f (x )在(-∞, +∞)内连续, 所以 ∑ ∞ =+-+=1 2 1 2 2c o s )1(1 1211)(n n x n n x f ππ , x ∈(-∞, +∞). (2)?? ? ???? <≤-<≤<≤-=1 21 12 1 0 101 )(x x x x x f ; 解 2 1)(1 2 121 1 11 -=-+==????--dx dx xdx dx x f a n , ?? ??-+==--1 2 121 1 11 c o s c o s c o s c o s )(x d x n x d x n x d x n x x d x n x f a n ππππ 2 s i n 2])1(1[122πππ n n n n +--= (n =1, 2, ? ? ?), dx x n xdx n xdx n x xdx n x f b n ?? ??-+==--1 2 1210 1 1 1 sin sin sin sin )(ππππ π ππ n n n 12 c o s 2+-= (n =1, 2, ? ? ?).

傅里叶级数展开matlab实现

傅里叶级数展开matlab 实现给个例子说明下:将函数 y=x*(x-pi)*(x-2*pi),在(0,2*pi)的范围内傅里叶级数展开syms x fx=x*(x-pi)*(x-2*pi); [an,bn,f]=fseries(fx,x,12,0,2*pi)%前12 项展开latex(f)%将f 转换成latex 代码an = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] bn = [ -12, 3/2, -4/9, 3/16, -12/125, 1/18, -12/343, 3/128, -4/ 243, 3/250, -12/1331, 1/144] f = 12*sin(x)+3/2*sin(2*x)+4/9*sin(3*x)+3/16*sin(4*x)+12/ 125*sin(5*x)+1/18*sin(6 *x)+12/343*sin(7*x)+3/128*sin(8*x)+4/243*sin(9*x)+3/ 250*sin(10*x)+12/1331* sin(11*x)+1/144*sin(12*x) ans = 12\,\sin \left( x \right) +3/2\,\sin \left( 2\,x \right) +4/9\,\sin \left( 3\,x \right) +3/16\,\sin \left( 4\,x \right) +{\frac {12}{125}}\,\sin \left( 5\,x \right) +1/18\,\sin \left( 6\,x \right) +{\frac {12}{343}}\,\sin \left( 7\,x \right) +{\frac {3}{128}}\,\sin \left( 8\,x \right) +{\frac {4}{243}}\,\sin \left( 9\,x \right) +{\frac {3}{250}}\,\sin \left( 10\,x \right) +{\frac {12}{1331}}\,\sin \left( 11\,x \right) +{\frac {1}{144}}\,\sin \left( 12\,x \right) function [an,bn,f]=fseries(fx,x,n,a,b) %傅里叶级数展开% %an 为fourier 余弦项系数%bn 为fourier 正弦项系数%f 为展开表达式%f 为给定函数%x 为自变量%n 为展开系

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

周期性函数分解的傅里叶级数

周期性函数分解的傅里叶级数 周期电压、电流等都可以用一个周期函数表示,即 210),()(、、 =+=k kt t f t f 式中T 是周期函数的周期,且 210、、 =k 如果给定的周期函数在有限的区间内,只有有限个第一类间断点和有限个极大值和极小值,那么就可以展开成一个收敛的级数(三角级数) 设给定的周期函数)(t f ,则)(t f 可展开成 ) ()(1)sin cos (sin cos )2sin 2cos ()sin cos ()(1022110 ∑∞ =++=+++++++=k k k k k t k b t k a a t k b t k a t b t a t b t a a t f ωωωωωωωω 上式中的系数,可按下列公式计算: ????? ?? ? - - -= ====== = π ππ π ππωωπ ωωπωωωπ ωωπω) (sin )(1 ) (sin )(1sin )(2)(cos )(1 ) (cos )(1cos )(2)(1 )(1 20 020 00 22 0t td k t f t td k t f tdt k t f T b t td k t f t td k t f tdt k t f T a dt t f T dt t f T a T k T k T T T )(2 这些公式的对导,主要的依据是利用三角函数的定积分的特点。 设m.n 是任意整数,则下列定积分成立: ?=π 200 sin mxdx ? =π 20 cos mxdx ?=π 200cos sin nxdx mx , n m ≠ ?=π 200 sin sin nxdx mx , n m ≠ ? =π 200cos cos nxdx mx , n m ≠ ? =π π 20 2)(sin dx mx ,

典型信号的地傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

图9.3 方波信号 图9.4 三角波信号 例9.2 试求图9.4所示三角波信号的傅里叶级教。 解 视察一下所给的波形可以知道,它既是原点对称又是半波横轴对称。因此,其傅里叶级数仅由正弦奇次谐波分量组成。由于 ()404 4242 A T t t T f t A T T t A t T ???=??-+??≤≤≤≤ 故有 2044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω??= -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 22 81,5,9,83,7,11km A k k B A k k ππ?=??=??-=??L L 于是所欲求的傅里叶级数 ()2222 8111sin sin 3sin 5sin 7357A f t t t t t ωωωωπ?? = -+-+ ??? L 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图

傅里叶变换

傅里叶变换 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复 杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先 由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数 形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。连续傅里 叶变换的逆变换 (inverse Fourier transform)为: 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里

叶变换对(transform pair)。除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对: 或者是因系数重分配而得到新的变换对: 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。 分数傅里叶变换的物理意义即做傅里叶变换 a 次,其中 a 不一定要为整数; 而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。 当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform)或正弦变换(sine transform). 另一个值得注意的性质是,当f(t)为纯实函数时,F(?ω) = F*(ω)成立. 傅 里叶级数 连续形式的傅里叶变换其实是傅里叶级数 (Fourier series)的推广,因为积 分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:

周期信的傅里叶级数

计算机与信息工程学院实验报告 一、 实验目的 1、 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 3、 掌握用傅里叶级数进行谐波分析的方法。 4、 观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉 冲信号。 专业:通信工程 2013— 2014学年第二学期 年级/班级:2012级通信工程

实验仪器或设备 一台装有MATLAB勺计算机一台 三、设计原理 1.信号的时间特性与频率特性 信号可以表示为随时间变化的物理量,比如电压u(t )和电流i (t )等, 其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。 信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。无论是信号的时间特性还是频率特性都包含了信号的全部信息量。2?信号的频谱 信号的时间特性和频率特性是对信号的两种不同的描述方式。根据傅里叶级数原理,任意一个时域的周期信号f(t),只要满足狄利克莱 (Dirichlet) 条件,就可以将其展幵成三角形式或指数形式的傅里叶级数。例如,对于一个周期为T的时域周期信号f(t),可以用三角形式的傅里叶级数求出它的各次分量,在区间(t1,t1+T )内表示为

3?信号的时间特性与频率特性关系 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图 4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在 幅度--频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为

周期方形信号的傅里叶级数展开

周期方形信号的傅里叶级数展开 提出问题: 用有限项傅里叶级数展开逼近周期方波信号。 设周期为1的方波信号由以下函数给出 ?? ???<=>=-<>=<->=+=)2且1(1)1且0()0且1(1)x (x x x x x x x x x f 。 利用Matlab 软件符号运算及绘图功能,观察方形信号由有限项傅里叶级数展开式的合成情况。 问题背景: 在信号分析与处理,特别是工程中,对于周期信号的处理通常采用傅里叶级数展开来进行分析,即频率分析法。在实际信号处理过程中,可以借助Matlab 软件来模拟傅里叶级数对于信号的逼近情况。 知识基础: 周期函数的傅里叶级数展开,Matlab 软件 实验过程: 对于周期为2π函数()f t , 满足Dirichlet 条件,则可展为傅里叶级数 经过傅里叶变换得到: ?????????--- +- =∑∑∑∞∞∞111)) 1(2sin(21)2sin(2 1))1(2sin(2 1)(x k x k x k x f πππ 将级数展开式截断到有限项可用来逼近周期函数。利用Matlab 软件,编写程序如下: clear;clc;x=linspace(-1,2,3000); y=(x+1).*(x<0)+x.*(x>=0&x<1)+(x-1).*(x>=1&x<=2); y1=0; 01()(cos sin ).2n n n a f t a nt b nt ∞==++∑1()cos n a f t ntdt πππ -=?1()sin n b f t ntdt πππ-=? 0,1,2n =L 1,2,3n =L

for k=1:10; y1=y1+1/(k*pi)*sin(2*k*pi*(x+1)).*(x<0); end y1=1/2-y1; y2=0; for k=1:50; y2=y2+1/(k*pi)*sin(2*k*pi*x).*(x>=0 & x<1); end y2=1/2-y2;y3=0; for k=1:100; y3=y3+1/(k*pi)*sin(2*k*pi*(x-1)).*(x>=1&x<=2); end y3=1/2-y3;plot(x,y1)hold on plot(x,y2) plot(x,y3)plot(x,y,'r') axis equal 此图当x 属于(-1,0)时,傅里叶级数取了前10项 此图当x 属于(0,1)时,傅里叶级数取了前50项 此图当x 属于(1,2)时,傅里叶级数取了前100项 红线代表实际函数,蓝线代表傅里叶级数展开函数 拓展练习: 1. 可将周期2π扩展为任意周期T ,则此时方波信号的角频率2/T ωπ=,当方波信号 ()f t 满足Dirichlet 条件时,则可展为傅里叶级数: 01()(cos sin ).2n n n a f t a n t b n t ωω∞==++∑ 0 02()d T a f t t T =?

傅里叶变换常用公式

(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 简介 Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。 傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。 傅里叶变换定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,

②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做 F(ω)的象原函数。F(ω)是f(t)的象。f(t)是F(ω)原象。 ①傅立叶变换 ②傅立叶逆变换 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。傅里叶变换相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

傅里叶级数课程及习题讲解范文

第15章 傅里叶级数 § 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1()n n n f x a x ∞ ==∑,可视为()f x 经函数系 线性表出而得.不妨称 2{1,,,,,}n x x x L L 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx L L 称为三角函数系.其有下面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:L ,定义两个函数的内积为 (),()()()d b n m n m a x u x u x u x x =??, 如果 0 (),() 0 n m l m n x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:L 为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; cos , cos cos cos d 0 m n mx nx mx nx x m n π π π-=?=?=?≠??; sin , cos sin cos d 0 mx nx mx nx x π π -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 称为三角级数,其中011,,,,,,n n a a b a b L L 为常数 2 以2π为周期的傅里叶级数 定义1 设函数()f x 在[],ππ-上可积, 1 1 (),cos ()cos d k a f x kx f x kx x π π π π -= = ? 0,1,2,k =L ;

用方波代替正弦波作傅里叶变换的一种算法研究

龙源期刊网 https://www.360docs.net/doc/1818788889.html, 用方波代替正弦波作傅里叶变换的一种算法研究 作者:包开云 来源:《无线互联科技》2014年第10期 摘要:用方波替代正弦波进行离散傅里叶变换(DFT)的一种算法,以便能在一些计算能力不是很强的嵌入式系统内作傅里叶变换。此算法本身不存在变换误差。对方波的离散总是存在误差,但是随着奇次频项数的增加,误差逐渐减小。总体运算效率还是明显提高。 关键词:正交方波;正弦波;DFT;奇次倍谐波;误差 The calculation method of using square wave being an alternative to sine wave to practice DFT Bao Kai Yun(Johnson Electric Group,SHENZHEN 518100) Abstract:The calculation method of using square wave being an alternative to sine wave to practice DFT. So, we can do the Fourier transformation in a weak calculation ability embedding style system. In theory, there is no existence of errors in inverter. In actual practice, there are errors in square wave disintegration though. As the odd number multiples frequency item numbers has an increasing sequence, there will be fewer and fewer errors. All in all, the operation efficiency has enhanced significantly. Key words:Middle cross square wave;sine wave;DFT;odd number multiples frequency item numbers;error 1 引言 传统离散傅里叶变换(DFT)或线性调频z变换(CZT)是以正弦波sin(x)作为核进行傅里叶变换,当计算时如果点数不确定,将无法预先计算并保存好固定点数的sin(x)值,所以在实时计算sin(x)时计算量都很大,这在一些嵌入式系统如8051,ARM内,由于没有sin 指令,计算sin值时需做多次乘法才能得出,几乎无法实现稍长点数的DFT运算。为此,本文专门提出用方波替代正弦波进行离散傅里叶变换(DFT)的一种算法,以便能在一些计算能力不是很强的嵌入式系统内作傅里叶变换,并对算法进行编程以及验证。 2 用方波代替正弦波作离散傅里叶变换(DFT)的算法分析 2.1 算法的理论推导

相关文档
最新文档