2谷氨酸发酵机制

合集下载

谷氨酸发酵机制

谷氨酸发酵机制

• (3)谷氨酸合成酶(Gs)催化的反应
α-酮戊二酸 + 谷氨酰胺
NADPH2 NADP GS
2谷氨酸
二、谷氨酸生物合成的理想途径
• 由葡萄糖发酵谷氨酸的理想途径
※第二节 谷氨酸生物合成的调节机制
一、优先合成与反馈调节
1、优先合成 2、反馈调节
二、糖代谢的调节 三、氮代谢的调节 四、其它调节
一、优先合成与反馈调节
④ -酮戊二酸脱氢酶在谷氨酸产生菌中 先天性地丧失或微弱。
⑤磷酸烯醇式丙酮酸羧化酶的调节。磷酸
烯醇式丙酮酸羧化酶受天冬氨酸的反馈抑制, 受谷氨酸和天冬氨酸的反馈阻遏。
磷酸烯醇式丙酮酸 ④ 丙酮酸
葡萄糖
①柠檬酸合成酶 ②磷酸烯醇式
丙酮酸羧化酶 ③丙酮酸羧化酶 ④丙酮酸激酶CO2来自③ ②草酰乙酸 Asp
苹果酸
乙酰CoA

柠檬酸
乙酰CoA

乙醛酸
异柠檬酸
延胡索酸
α-酮戊二酸
琥珀酸
谷氨酸
谷氨酸生产菌的育种思路
在菌体的代谢中,谷氨酸比天冬氨酸优先合成。 谷氨酸合成过量后,谷氨酸抑制谷氨酸脱氢酶的活 力和阻遏柠檬合成酶的合成。使代谢转向天冬氨酸 的合成;天冬氨酸合成过量后,反馈抑制磷酸烯醇 式丙酮酸羧化酶的活力,停止草酰乙酸的合成。所 以在正常情况下,谷氨酸并不积累。
(1) 、优先合成
在菌体的代谢中,谷氨酸比天冬 氨酸优先合成。谷氨酸合成过量后, 谷氨酸抑制谷氨酸脱氢酶的活力和阻 遏柠檬合成酶的合成。使代谢转向天 冬氨酸的合成;天冬氨酸合成过量后, 反馈抑制磷酸烯醇式丙酮酸羧化酶的 活力,停止草酰乙酸的合成。所以在 正常情况下,谷氨酸并不积累。
黄色短杆菌中,谷氨酸、天冬氨酸生物合 成的调节机制

氨基酸发酵机制及过程概述

氨基酸发酵机制及过程概述

葡萄糖和琥珀酸等对异柠檬酸裂解酶起着阻遏作用。
(1)以糖质为原料的谷氨酸发酵中生物素对 DCA循环的影响
在生物素亚适量条件下,琥珀酸氧化力降低, 积累的琥珀酸会反馈抑制异柠檬酸裂解酶活性,并 阻遏该酶的生成,DCA循环基本处于封闭状态, 异柠檬酸高效率地转化为α–酮戊二酸,再生成谷 氨酸。 在生物素充足的条件下,异柠檬酸裂解酶活性 增大,通过DCA循环提供能量,进行蛋白质的合 成,不仅异柠檬酸转化生成谷氨酸的反应减弱使得 谷氨酸减少,而且生成的谷氨酸在转氨酶的催化作 用下又转成其它氨基酸,也不利于谷氨酸积累。
7.醋酸或正石蜡原料发酵谷氨酸的推测途径 在醋酸发酵谷氨酸或石油发酵谷氨酸时,却只能 经乙醛酸循环供给四碳二羧酸,四碳二羧酸经草酰 乙酸又转化为柠檬酸。
二、谷氨酸生物合成的代谢调节机制
分解代谢: 从环境中摄取营养物质,把它们转 微生物 的代谢
化为自身物质,以此来提供能源和 小分子中间体;
合成代谢:合成代谢将分解代谢产生的能量和
6乙酰CoA +2NH3+3O 2谷氨酸 +2CO2+6H2O 2
ቤተ መጻሕፍቲ ባይዱ
3mol葡萄糖可以生成2mol的谷氨酸,谷氨 酸对葡萄糖的质量理论转化率为:
(3)实际转化率:处于二者之间,即54.4%~ 81.7%。 CO2固定反应、乙醛酸循环的比率等对转化率影 响较大。 乙醛酸循环活性越高,谷氨酸越不易生成与积累。
α -酮戊二酸脱氢酶 NH4 异柠檬酸脱氢酶 乙醛酸循环中的两个关键 酶——异柠檬酸裂解酶和 苹果酸合成酶。
谷氨酸 (胞内)
转移到胞外
(二)谷氨酸合成的理想途径
生物素充足菌EMP所占比例约为62%; 在发酵产酸期,EMP所占比例更大,约为74%。

论述谷氨酸发酵的原理

论述谷氨酸发酵的原理

论述谷氨酸发酵的原理
谷氨酸发酵是一种利用微生物如大肠杆菌(Escherichia coli)进行合成谷氨酸的生物工艺过程。

原理如下:
1. 微生物选择:在谷氨酸发酵中,经常选择大肠杆菌作为发酵菌。

大肠杆菌具有高产谷氨酸的能力,并且生长速度较快,适应性强。

2. 培养基准备:谷氨酸发酵的培养基需提供适合微生物生长和发酵所需的营养物质,如碳源、氮源、矿物盐和辅助因子等。

常用的碳源包括葡萄糖、淀粉等,氮源则可以是氨基酸、蛋白质等。

此外,还可添加特定的辅助因子如磷酸、镁离子等。

3. 发酵过程:将所选的微生物接种到预先准备好的培养基中,进行发酵过程。

在发酵过程中,微生物利用碳源和氮源进行生长和代谢,并分泌出所需的酶以转化底物产生目标产物谷氨酸。

4. 发酵控制:为了提高谷氨酸的产量和质量,发酵过程需要进行严格的控制。

这包括控制发酵温度、pH值、氧气供给和搅拌速度等。

适当调节这些因素可以提高微生物的生长速度和代谢产物的积累。

5. 谷氨酸提取和纯化:发酵结束后,需将谷氨酸从发酵液中提取出来,并进行纯化。

一般通过离心、过滤和浓缩等步骤,将目标产物分离提取。

接下来,通过
晶体化、离子交换层析等方法,进行纯化和分离,得到高纯度的谷氨酸。

总之,谷氨酸发酵的原理是利用适宜的菌种和培养基,通过微生物的生长和代谢过程,合成谷氨酸。

发酵过程需要进行严格的控制,以提高产量和质量,最终通过提取和纯化得到高纯度的谷氨酸。

2谷氨酸发酵机制总结

2谷氨酸发酵机制总结

(1) 葡萄糖首先经EMP及HMP两个途径 生成丙酮酸。其中以EMP途径为主,生物 素充足时HMP所占比例是38%;控制生物 素亚适量(2~5μg/L),在发酵产酸期, EMP所占的比例更大,HMP所占比例约为 26%。
(2) 生成的丙酮酸,一部分在丙酮酸脱 氢酶系的作用下氧化脱羧生成乙酰CoA,另 一部分经CO2固定反应生成草酰乙酸或苹果 酸,催化CO2固定反应的酶有丙酮酸羧化酶、 苹果酸酶和磷酸烯醇式丙酮酸羧化酶。
细胞所处的能量状态用ATP、ADP和AMP之 间的关系来表示,称为能荷(energy charge)。能 荷计算公式为:
从上式可以看出,能荷是细胞所处能量状态 的一个指标。当细胞内的ATP全部转化为 AMP时, 能荷值为0;当AMP全部转化为ATP时,能荷值 为1。可见能荷值在0和1之间变动。已知大多数 细胞的能荷处于0~0.95之间,处于一种动态平 衡。
(一)谷氨酸发酵的代谢途径
谷氨酸的合成主要途径是α-酮戊二酸的 还原性氨基化,是通过谷氨酸脱氢酶完成的。 α-酮戊二酸是谷氨酸合成的直接前体,它来 源于三羧酸循环,是三羧酸循环的一个中间 代谢产物。由葡萄糖生物合成谷氨酸的代谢 途径如图2-2所示,至少有16步酶促反应。
图2-1 由葡萄糖生物合成谷氨酸的代谢途径
(5)α-酮戊二酸脱氢酶的调节 在谷氨酸产生菌中,α-酮戊二酸脱氢酶 活性微弱。
(6)谷氨酸脱氢酶的调节 谷氨酸对谷氨酸脱氢酶存在着反馈抑 制和反馈阻遏。
在谷氨酸产生菌正常代谢中,谷氨酸 比天冬氨酸优先合成,谷氨酸合成过量时, 谷氨酸抑制谷氨酸脱氢酶的活力和阻遏柠 檬酸合成酶催化柠檬酸的合成,使代谢转 向天冬氨酸的合成。天冬氨酸合成过量后, 天冬氨酸反馈抑制和反馈阻遏磷酸烯醇式 丙酮酸羧化酶的活力,停止草酰乙酸的合 成。所以,在正常情况下,谷氨酸并不积 累。

氨基酸类药物的发酵生产—谷氨酸的发酵生产

氨基酸类药物的发酵生产—谷氨酸的发酵生产

生物素的来源:氨基酸生产上可以作为生物素来源的原料 有玉米浆、麸皮水解液、糖蜜及酵母水解液等,通常选取 几种混合使用。例如,许多工厂选择纯生物素、玉米浆、 糖蜜这三种物质来配制培养基。各种原料来源及加工工艺 不同,所含生物素的量不同。玉米浆含生物素500μg/kg, 麸皮含生物素300μg/kg,甘蔗糖蜜含生物素1500μg/kg。
操作简单 周期长,占地面积大。
直接常温等电点法工艺流程
发酵液
起晶中和点(pH4-4.5) 育晶(2h)
盐酸
菌体及细小的 谷氨酸晶体
等电点搅拌pH3-3.22 静置沉降4-6h 离心分离
成品
母液
干燥
湿谷氨酸晶体
2、离子交换法
可用阳离子交换树脂来提取吸附在树脂上的谷氨 酸阳离子,并可用热碱液洗脱下来,收集谷氨酸 洗脱流分,经冷却、加盐酸调pH 3.0~3.2进行结 晶,之后再用离心机分离即可得谷呈棒形或短杆形; 革兰氏阳性菌,无鞭毛,无芽孢;不能运动; 需氧性的微生物; 生物素缺陷型; 脲酶强阳性; 不分解淀粉、纤维素、油脂、酪蛋白、明胶等;
发酵中菌体发生明显形态变化,同时细胞膜渗透性改变; 二氧化碳固定反应酶系强; 异柠檬酸裂解酶活力欠缺或微弱,乙醛酸循环弱; α-酮戊二酸氧化能力微弱; 柠檬酸合成酶、乌头酸酶、异柠檬酸脱氢酶、谷氨酸脱氢酶活
有机氮丰富有利于长菌,因此谷氨酸发酵前期要 求一定量的有机氮,通常在基础培养基中加入适 量的有机氮,在发酵过程中流加尿素、液氨或氨 水来补充无机氮。
(3)无机盐
磷酸盐 :工业生产上可用K2HPO4·3H2O、KH2PO4、 Na2HPO4·12H2O、NaH2PO4·2H2O等磷酸盐,也可用磷酸。 过高:代谢转向合成缬氨酸。 过低:菌体生长缓慢。

第二章-谷氨酸发酵机制

第二章-谷氨酸发酵机制
(1)菌体生长期 由于三羧酸循环的缺陷——α-酮戊二酸氧化能 力微弱,为了获得能量和产生生物合成反应所需的中间产物, 需走乙醛酸循环途径。乙醛酸循环中关键酶是异柠檬酸裂解 酶和苹果酸合成酶。 乙醛酸循环产生的琥珀酸、苹果酸仍可返回三羧酸循环, 可看作TCA的支路和中间产物的补给途径。 (2) 谷氨酸生成期 封闭乙醛酸循环。 这就说明在谷氨酸发酵中,菌体生长期的最适条件和谷氨酸 生成积累期的最适条件是不一样的。
第三节 谷氨酸发酵中细胞膜渗透性的控制
一、细胞膜的结构
谷氨酸发酵的关键在于发酵培养期间谷氨酸产生菌细胞 膜结构和功能上的特异性变化。
二、控制细胞膜渗透性的方法
根据细胞膜的结构特征,控制细胞膜通透性的 方法主要有两种类型: 一类是通过控制磷脂的合成来控制细胞膜通透性; 一类是通过控制细胞壁的合成间接控制细胞膜通 透性。
三、氮代谢的调节
• 控制谷氨酸发酵的关键之一就是降低蛋白质的合 成能力,使合成的谷氨酸不去转化成其他氨基酸 和合成蛋白质。生物素亚适量时,几乎没有异柠 檬酸裂解酶活力,琥珀酸氧化力弱,苹果酸和草 酰乙酸脱羧反应停止,完全氧化降低,ATP量减 少,蛋白质合成停滞,在铵离子适量存在时,菌 体积累谷氨酸。 • 生物素充足时,蛋白质合成增强,谷氨酸减少, 谷氨酸通过转氨作用生成其他蛋白质。
生物素对糖代谢的调节与能荷的调节是不同的,能 荷是对糖代谢流的调节,而生物素能够促进糖的 EMP途径、HMP途径、TCA循环。 在糖代谢中,生物素能催化脱羧和羧化反应。糖代 谢中依赖生物素的特异反应有:丙酮酸转化成草酰乙 酸;苹果酸转化为丙酮酸;琥珀酸与丙酮酸的互变; 草酰琥珀酸转化为a-酮戊二酸。
第二章
谷氨酸发酵机制
第一节 谷氨酸的生物合成途径
第二节 谷氨酸生物合成的调节机制

谷氨酸的生产


•调节机制
• 谷氨酸发酵中代,糖谢代控谢除制受发到生酵物素控制
外,也受到NH4+的影响。
• 使用生物素缺乏菌,在NH4+存在时,葡萄
糖以很快的消耗速度和高的收文生率095生-1 成谷氨
酸。
董晓蒙 2
• 当NH4+不存在时,糖的消耗耿速春霞度2很慢,生 成物是α-酮戊二酸、丙酮酸、陈聪醋聪 酸2 和琥珀
Ⅰ.谷氨酸的生代物合谢成控途径制主发要包酵括:
EMP途径 HMP途径 TCA循环 乙醛酸循环
CO2固定反应
文生095-1 董晓蒙 2 耿春霞 2 陈聪聪 2
总反应途径
糖经过EMP途径代和H谢MP控生成制丙发酮酸酵。
一方面丙酮酸氧化脱羧生成乙酰-CoA;
另一方面,经CO2固定作用生成草酰乙酸;两者
合成柠檬酸进入TCA循环,由三羧酸循环的中间
入分解途
浓度增加

防止
过剩
羧激 化活 酶
PEP
果与 糖二 共磷 同酸
草酰乙酸
文董生晓转0蒙95向-21 CO2固定
耿春霞 2
乙酰-CoA氧化 陈聪聪抑制2 丙酮
ATP水平提高
酸激酶
•氨的导入
氨的导入方式代:谢控制发酵
• 糖代谢中间体α-酮戊二酸还原氨基化生成 谷氨酸
• 天冬氨酸或丙氨酸通过氨基文生转095移-1 作用将氨 基转给α-酮戊二酸而生成 董晓蒙 2
丙丙酮酮酸酸
乙酰CoA
丙糖-3-磷酸CO2固定 草酰乙酸
柠檬酸
TCA
2.DCA循环 乙酰CoA
柠檬酸 合成酶 柠檬酸
异柠檬酸 裂解酶 异柠文檬生0酸95-1
琥珀酸
草酰乙酸
董晓蒙 2

第三篇第三章谷氨酸发酵机制

§第六章谷氨酸的发酵机制GA发酵作为重点:(1)是代谢控制发酵的重点(2)是目前代谢控制发酵中,在理论与实践上最成熟的……第一节 GA的生物合成途径一、GA 的生物合成途径主要有:Glucose的酵解,EMPGlucose的有氧氧化,HMP丙酮酸的有氧氧化,TCA循环乙醛酸循环途径,DCA循环CO2固定反应α-酮戊二酸的还原氨基化这6条途径之间是相互联系和相互制约的,如图所示:主导反应: GHDα-KGA+NH4++NADPH2 GA+H2O+NADPC6H12O6HMP 3-磷酸甘油醛乳酸丙酮酸乙酰辅酶ACO2CO2草酰乙酸柠檬酸苹果酸异柠檬酸延胡索酸NADPCO2琥珀酸 NADPHα—KGANADPHNH4+ NADP谷氨酸第二节 GA生物合成的调节机制一、优先合成与反馈调节1、优先合成1)优先合成(perference synthesis)a D→EC a酶活性远大于b酶活性GA 比Asp优先合成,GA过量后,阻遏和抑制自身的合成途径,使代谢转向Asp2、CO2固定反应的酶类受Asp的反馈抑制,GA 和Asp的反馈阻遏3、α—KGA脱氢酶在GA生产菌中先天丧失或微弱4、柠檬酸合成酶(TCA关键酶):受能荷调节和GA的反馈阻遏和乌头酸的反馈抑制5、GDH(谷氨酸脱氢酶)受GA的反馈抑制和阻遏6、异柠檬酸脱氢酶:受α—KGA的反馈抑制。

异柠檬酸脱氢酶催化的异柠檬酸脱羧生成α—KGA和谷氨酸脱氢酶催化的α—KGA 还原氨基话生成的GA的反应是一对氧化还原共轭反应,细胞内α—KGA和异柠檬酸的量需维持平衡,当α—KGA过量时对异柠檬酸脱氢酶发生抑制作用,停止合成α—KGA由菌体的代谢可知,在正常情况下,GA并不积累。

二、GA生物合成的内在因素从上图可以看出,菌体要在葡萄糖含量10%以上的培养基上,合成5%以上的谷氨酸,是一种不正常的现象,显然GA产生菌必须具备以下条件:1.α—KGA脱氢酶酶活性微弱或丧失这是菌体生成并积累α—KGA的关键,从上图可以看出,α—KGA是菌体进行TCA循环的中间性产物,很快在α—KGA脱氢酶的作用下氧化脱羧生成琥珀酸辅酶A,在正常的微生物体内他的浓度很低,也就是说,由α—KGA进行还原氨基化生成GA的可能性很少。

谷氨酸发酵机制

1 谷氨酸发酵的主要生化特点 2 环境条件的调节(外在因素) 2 生物素对CO2暗固定途径的影响 第四章 谷氨酸发酵机制
5 青霉素对细胞膜透性的影响 1 谷氨酸的生物合成方式 异柠檬酸脱氢酶和谷氨酸脱氢酶的偶联反应
2 生物素对CO2暗固定途径的影响 异柠檬酸脱氢酶和谷氨酸脱氢酶的偶联反应
利用温度敏感型突变株进行谷氨酸发酵的机膜透性的影响 2 生物素对CO2暗固定途径的影响 3 油酸对细胞膜透性的影响 1 生物素对糖酵解途径的影响 利用温度敏感型突变株进行谷氨酸发酵的机 制
1 生物素对糖酵解途径的影响 1 谷氨酸发酵的主要生化特点 1 谷氨酸发酵的主要生化特点
①EMP途径 ②HMP途径 ③TCA ④ CO2暗固定 ⑤乙醛酸循环
5.利用温度敏感型突变株进行谷氨酸 发酵的机制
• 温度敏感型突变株(temperature sensitive mutant,
用Ts表示) 。
第四章 谷氨酸发酵机制
4细胞膜透性调节 5.利用温度敏感型突变株进行谷氨酸发酵的机 制
• 1.1 谷氨酸的生物合成方式
• 异柠檬酸脱氢酶和谷氨酸脱氢酶的偶联反应
2 生物素对CO2暗固定途径的影响 3 生物素对乙醛酸途径的影响 2 生物素对CO2暗固定途径的影响 3 生物素对乙醛酸途径的影响 3 生物素对乙醛酸途径的影响 3 生物素对乙醛酸途径的影响 3 油酸对细胞膜透性的影响 2 生物素对CO2暗固定途径的影响 2 生物素对CO2暗固定途径的影响 2 生物素对CO2暗固定途径的影响 异柠檬酸脱氢酶和谷氨酸脱氢酶的偶联反应
2.1 谷氨酸发酵的主要生化特点 2.2 环境条件的调节(外在因素)
3.1 生物素对糖酵解途径的影响 3.2 生物素对CO2暗固定途径的影响 3.3 生物素对乙醛酸途径的影响

谷氨酸发酵实验报告

一、实验目的1. 了解谷氨酸发酵的基本原理和过程。

2. 掌握谷氨酸发酵实验的操作方法。

3. 通过实验验证谷氨酸发酵过程中还原糖的消耗和谷氨酸的生成情况。

4. 分析发酵条件对谷氨酸发酵的影响。

二、实验原理谷氨酸发酵是一种典型的微生物发酵过程,主要利用谷氨酸棒杆菌在适宜的培养基和条件下,将糖类物质转化为谷氨酸。

发酵过程中,还原糖的消耗和谷氨酸的生成是衡量发酵是否正常的重要指标。

三、实验材料与仪器1. 实验材料:- 谷氨酸棒杆菌菌种- 葡萄糖- 酵母提取物- 牛肉膏- 磷酸氢二钠- 氯化钠- 琼脂- pH试纸- 还原糖检测试剂盒- 谷氨酸检测试剂盒- 恒温摇床- 恒温水浴锅- 721分光光度计2. 实验仪器:- 烧杯- 玻璃棒- 移液管- 试管- 离心机- 电子天平四、实验步骤1. 培养基制备:- 称取酵母提取物10g、牛肉膏5g、葡萄糖20g、磷酸氢二钠2g、氯化钠1g,加入100mL蒸馏水溶解,定容至1000mL。

- 将培养基分装至锥形瓶中,121℃高压灭菌15分钟。

2. 菌种活化:- 将谷氨酸棒杆菌菌种接种于装有适量培养基的锥形瓶中,37℃恒温培养24小时。

3. 发酵实验:- 将活化后的菌液以1%的接种量接种于装有100mL培养基的锥形瓶中,置于恒温摇床中,37℃、150r/min振荡培养。

- 每隔2小时取样,测定还原糖和谷氨酸的含量。

4. 数据处理:- 根据还原糖和谷氨酸的测定结果,绘制糖耗曲线和谷氨酸生成曲线。

- 分析发酵条件对谷氨酸发酵的影响。

五、实验结果与分析1. 糖耗曲线:实验过程中,还原糖含量随时间逐渐降低,说明谷氨酸棒杆菌在发酵过程中不断消耗葡萄糖。

2. 谷氨酸生成曲线:实验过程中,谷氨酸含量随时间逐渐增加,说明谷氨酸棒杆菌在发酵过程中不断合成谷氨酸。

3. 发酵条件对谷氨酸发酵的影响:- 温度:37℃时,谷氨酸发酵效果较好。

- pH值:pH值在6.5-7.0时,谷氨酸发酵效果较好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反馈阻遏(feedback repression):是指终产物(或终产
物的结构类似物)阻止催化该途径的一个或几个反应中的 一个或几个酶的合成,其实质是调节基因的作用,与此相 反有酶合成的诱导。
• 优先合成:对于分支途径而言,由于催化某一分支反应的酶
活性远远大于催化另一分支反应的酶活性,结果先合成酶活 性大的那2一、分优先支合的成终与平产衡物合。成当该终产物浓度达到一定浓度时, 就会抑制(该1酶)优,先使合代成(谢P转ref向eren合ce成d sy另nth一esi分s)支的终产物。
第二章 谷氨酸发酵机制
【教学目的与要求】理解并掌握谷氨酸的生物合成途
径及其调节机制、掌握谷氨酸产生菌细胞膜渗透性
控制
【教学重点与难点】掌握谷氨酸的生物合成途径及其
调节机制、发酵过程中谷氨酸产生菌细胞膜渗透性
控制
• 【教学内容】 2.1 谷氨酸的生物合成途径

2.2 谷氨酸生物合成的调节机制

2.3 谷氨酸发酵中细胞膜渗透性控制
2.1 谷氨酸的生物合成途径
2.1.1 谷氨酸生物合成的主要酶反应 • (1)谷氨酸脱氢酶(GDH)所催化的还原氨基化反应
α-酮戊二酸+NH4++NADPH2+→ 谷氨酸+H2O+NADP+
• (2) 转氨酶(AT)催化的转氨反应
α-酮戊二酸+氨基酸 → 谷氨酸+ α-酮酸
• (3) 谷氨酸合成酶(GS)催化的反应
2.1.3影响两条代谢途径比例的主要因素
• (1)内在因素:菌种特性
• 丙酮酸羧化酶 • 苹果酸酶 • 磷酸烯醇式丙酮酸羧化酶
• 二氧化碳固定反应酶系 看上述酶活决定是否该
途径
• DCA(乙醛酸) 循环关键酶--异柠檬酸裂解酶 • 增加CO2固定反应酶活力或削弱DCA循环关键酶
↓ 异柠檬酸
↓ 琥珀酸
α-酮戊二酸
+
L-谷氨酸
NH4
透过细胞膜 ←
↓ L-谷氨酸

图2-1 由葡萄糖生物合成谷氨酸的代谢途径
谷氨酸生物合成的理想途径
四碳二羧酸由CO2固定反应供应,如下反应进行:
C6H12O6+ NH3+1.5O2 → C5H9O4N+ CO2+ 3H2O
81.7%
180
147
倘若CO2固定反应完全不起作用,丙酮酸在丙酮酸脱氢酶系的


磷酸烯醇式丙酮酸
CO2
CO2

丙酮酸
↓ CO2 乙酰CoA

草酰乙酸
柠檬酸
↑ 苹果酸 ←
乙醛酸
↓ 顺乌头酸



②生成的丙反酮丁酸烯二,酸 一部分在丙酮异酸柠檬脱酸 氢酶系的作用下氧化脱
羧生成乙酰CoA,另琥一珀↓酸部分α经-酮戊C二O酸2固+ 定反应生成草酰乙酸或
苹果酸。
L-谷氨酸
NH4
透过细胞膜 ←
EMP途径为主。
草酰乙酸
柠檬酸
↑ 苹果酸 ←
乙醛酸
↓ 顺乌头酸

↑ 反丁烯二酸
↓ 异柠檬酸
↓ 琥珀酸
α-酮戊二酸
+
L-谷氨酸
NH4
透过细胞膜 ←
↓ L-谷氨酸

图2-1 由葡萄糖生物合成谷氨酸的代谢途径
葡萄糖

EMP途径
6-磷酸葡萄糖
↓ 3-磷酸甘油醛
→ 6-磷酸葡萄糖酸

HMP途径
← 5-磷酸核糖
α-酮戊二酸+谷氨酰胺+NADPH2+→2谷氨酸+NADP+ 以上三个反应中,还原氨基化反应是主导反应。
2.1.2 谷氨酸生物合成的代谢途径
葡萄糖

EMP途径
6-磷酸葡萄糖
↓ 3-磷酸甘油醛
→ 6-磷酸葡萄糖酸

HMP途径
← 5-磷酸核糖


磷酸烯醇式丙酮酸
CO2
CO2

丙酮酸
① 葡萄糖首先经EMP及HM乙P酰↓两CoA个CO途2 径生成丙酮酸。其中②以
↓ L-谷氨酸

图2-1 由葡萄糖生物合成谷氨酸的代谢途径
葡萄糖

③草酰乙酸与乙酰EMCP途o径A在63--磷 磷柠酸 酸↓↓檬葡 甘萄 油酸糖 醛 合→←成6-酶磷5酸-催磷葡↓酸萄化核糖糖酸作H用MP下途径,缩①合
成柠檬酸,进C入O2 三羧C酸O2循磷酸环烯醇↓,式丙柠酮檬酸 酸在顺乌头酸酶的作用下
NH4
透过细胞膜 ←
↓ L-谷氨酸

图2-1 由葡萄糖生物合成谷氨酸的代谢途径
葡萄糖

EMP途径
6-磷酸葡萄糖
↓ 3-磷酸甘油醛
→ 6-磷酸葡萄糖酸

HMP途径
← 5-磷酸核糖

↓磷酸烯醇式丙酮酸 NhomakorabeaCO2CO2

丙酮酸
↓ CO2 乙酰CoA

草酰乙酸
柠檬酸
↑ 苹果酸 ←
乙醛酸
↓ 顺乌头酸

↑ 反丁烯二酸
几个概念:
反馈(feedback ):代谢反应产物使代谢过程速度加快者称
为正反馈;反之为负反馈。
反馈抑制(feedback inhibition):是指代谢途径的终产物
对催化该途径中的一个反应(通常是第一个反应)的酶活 力的抑制,其实质是终产物结合到酶的变构部位,从而干 扰酶和底物的结合,当然与此相反为酶活性的激活。
生成异柠檬酸,异柠檬酸再丙在酮酸异柠檬酸脱氢酶的作用下生成
α-酮戊二酸
↓ CO2 乙酰CoA

草酰乙酸
柠檬酸
↑ 苹果酸 ←
乙醛酸
↓ 顺乌头酸

↑ 反丁烯二酸
↓ 异柠檬酸
↓ 琥珀酸
α-酮戊二酸
+
L-谷氨酸
NH4
透过细胞膜 ←
↓ L-谷氨酸

图2-1 由葡萄糖生物合成谷氨酸的代谢途径
葡萄糖

EMP途径
6-磷酸葡萄糖
↓ 3-磷酸甘油醛
→ 6-磷酸葡萄糖酸

HMP途径
← 5-磷酸核糖


磷酸烯醇式丙酮酸
CO2
CO2

丙酮酸
↓ CO2 乙酰CoA

④氨酸α-酮。戊二酸在苹草谷果酰↑↑酸乙氨酸←酸脱乙氢醛酶酸 作用顺柠乌下檬↓↓头酸经酸 还原氨基化反应生③成谷
反丁烯二酸
异柠檬酸
↓ 琥珀酸
α-酮戊二酸
+
L-谷氨酸
酶1
酶2
A
BCDE
酶3 F
G
• 亚适量:能够满足菌体最大生长量的次适量浓度。
生物合成有分支途径时,在分支点后,其中一个终产物优先合成。
• 营养缺陷E型.co:li 指K-1通2 中过的诱A变sp 族产氨生基的酸,的合在成某途些径 营养物质(如氨基
酸、维生素和碱基等)的合成能力上出现缺陷,必须在基本 培养基中A加sp入相应As的p-○P有机营As养p-半成醛分才能高生丝氨长酸的变异菌株。Thr
催化作用下脱氢脱羧全部氧化成乙酰CoA,通过乙醛酸循环供
给四碳二羧酸,反应如下:
1.5 C6H12O6 + NH3+4.5O2 → C5H9O4N+4CO2+6H2O 54.4%
[3C6H12O6 →6丙酮酸→6CO2+6乙酸 6乙酸+2NH3+3O2 →2C6H9O4N+2CO2+6H2O ]
实际谷氨酸发酵时,实际收率处于中间值。
相关文档
最新文档