原)基于单片机的超声波测距系统

合集下载

基于单片机超声波测距系统的设计和实现

基于单片机超声波测距系统的设计和实现

基于单片机超声波测距系统的设计和实现超声波测距系统是利用超声波传播速度较快的特性,通过发射超声波并接收其回波来测量距离的一种常见的测距方式。

在本文中,我们将介绍基于单片机的超声波测距系统的设计和实现。

一、系统设计原理超声波测距系统主要由超声波发射器、超声波接收器、单片机和显示器组成。

其工作原理如下:1.发送超声波信号:超声波发射器通过单片机控制,向外发射超声波信号。

超声波的发射频率通常在40kHz左右,适合在空气中传播。

2.接收回波信号:超声波接收器接收到回波信号后,将信号经过放大和滤波处理后送入单片机。

3.距离计算:单片机通过测量超声波发射和接收的时间差来计算距离。

以声速343m/s为例,超声波的往返时间与距离之间的关系为:距离=时间差×声速/2、通过单片机上的计时器和计数器来测量时间差。

4.数据显示:单片机将计算得到的距离数据通过显示器显示出来,实时展示被测物体与超声波传感器之间的距离。

二、系统设计步骤1.系统硬件设计:选择合适的超声波模块,其具有超声波发射器和接收器功能,并可通过接口与单片机连接。

设计好电源电路以及超声波传感器与单片机之间的连接方式。

2.系统软件设计:根据单片机的型号和编程语言,编写相应的程序。

包括超声波信号的发射和接收控制,计时和计数功能的编程,距离计算和数据显示的实现。

3.硬件连接和调试:将硬件连接好后,对系统进行调试。

包括超声波模块与单片机的连接是否正确,超声波信号的发射和接收是否正常,计时和计数功能是否准确等。

5.优化和改进:根据实际测试结果,对系统进行优化和改进。

如增加滤波和放大电路以提高信号质量,调整超声波模块的发射频率,改进显示方式等。

三、系统实现效果完成以上设计和实施后,我们可以得到一个基于单片机的超声波测距系统。

该系统使用简单,测距精度高,响应速度快,适用于各种距离测量的应用场景。

同时,该系统还可根据具体需求进行各种改进和扩展,如与其他传感器结合使用,增加报警功能等。

基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计一、本文概述超声波测距技术因其非接触、高精度、实时性强等特点,在机器人导航、车辆避障、工业测量等领域得到了广泛应用。

STM32单片机作为一种高性能、低功耗的嵌入式系统核心,为超声波测距系统的设计提供了强大的硬件支持。

本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足不同应用场景的需求。

二、超声波测距原理本部分将介绍超声波测距的基本原理,包括超声波的产生、传播、接收以及距离的计算方法。

同时,分析影响超声波测距精度的主要因素,为后续系统设计提供理论基础。

三、系统硬件设计3、1在设计基于STM32单片机的高精度超声波测距系统时,我们遵循了“精确测量、稳定传输、易于扩展”的总体设计思路。

我们选用了STM32系列单片机作为系统的核心控制器,利用其强大的处理能力和丰富的外设接口,实现了对超声波发射和接收的精确控制。

在具体设计中,我们采用了回波测距法,即发射超声波并检测其回波,通过测量发射与接收之间的时间差来计算距离。

这种方法对硬件的精度和稳定性要求很高,因此我们选用了高精度的超声波传感器和计时器,以确保测量结果的准确性。

我们还考虑到了系统的可扩展性。

通过STM32的串口通信功能,我们可以将测量数据上传至计算机或其他设备进行分析和处理,为后续的应用开发提供了便利。

我们还预留了多个IO接口,以便在需要时添加更多的传感器或功能模块。

本系统的设计思路是在保证精度的前提下,实现稳定、可靠的超声波测距功能,并兼顾系统的可扩展性和易用性。

31、1.1随着物联网、机器人技术和自动化控制的快速发展,精确的距离测量技术在各个领域的应用越来越广泛。

超声波测距技术作为一种非接触式的距离测量方式,因其具有测量精度高、稳定性好、成本相对较低等优点,在工业自动化、智能家居、机器人导航、安防监控等领域得到了广泛应用。

STM32单片机作为一款高性价比、低功耗、高性能的嵌入式微控制器,在智能设备开发中占据重要地位。

基于单片机的超声波测距系统的设计

基于单片机的超声波测距系统的设计

基于单片机的超声波测距系统的设计
超声波测距系统是一种常见的测距技术,它利用超声波的特性来测量物体与传感器之间的距离。

基于单片机的超声波测距系统是一种常见的应用,它可以广泛应用于工业自动化、智能家居、机器人等领域。

基于单片机的超声波测距系统主要由超声波传感器、单片机、LCD 显示屏和电源等组成。

超声波传感器是测距系统的核心部件,它可以发射超声波信号并接收反射回来的信号。

单片机是控制系统的核心部件,它可以对传感器发射的信号进行处理,并计算出物体与传感器之间的距离。

LCD显示屏可以显示测量结果,方便用户进行观察和操作。

在设计基于单片机的超声波测距系统时,需要注意以下几点:
1.选择合适的超声波传感器。

传感器的频率和探测距离是选择传感器时需要考虑的重要因素。

2.选择合适的单片机。

单片机的处理速度和存储容量是选择单片机时需要考虑的重要因素。

3.编写合适的程序。

程序需要能够对传感器发射的信号进行处理,并计算出物体与传感器之间的距离。

同时,程序还需要能够将测量结果显示在LCD显示屏上。

4.进行系统测试。

在完成系统设计后,需要进行系统测试,确保系统能够正常工作,并且测量结果准确可靠。

基于单片机的超声波测距系统具有测量精度高、响应速度快、体积小等优点,可以广泛应用于各种领域。

在未来,随着技术的不断发展,基于单片机的超声波测距系统将会得到更广泛的应用。

基于单片机控制的超声波测距系统的设计

基于单片机控制的超声波测距系统的设计

基于单片机控制的超声波测距系统的设计一、概述。

超声波测距技术是一种广泛应用的测距技术,它能够非常精确地测量物体到传感器的距离。

本文介绍的基于单片机控制的超声波测距系统主要由控制模块、信号处理模块和驱动模块三部分组成。

其中,控制模块主要实现超声波信号的发射与接收,信号处理模块主要实现对测量结果的处理和计算,驱动模块主要实现对LED灯的控制。

二、硬件设计。

1.超声波发射模块:采用 SR04 超声波发射传感器,并通过单片机的PWM 输出控制 SR04 的 trig 引脚实现超声波信号的发射。

2.超声波接收模块:采用SR04超声波接收传感器,通过单片机的外部中断实现对超声波信号的接收。

3.控制模块:采用STM32F103单片机,通过PWM输出控制超声波发射信号,并通过外部中断接收超声波接收信号。

4.信号处理模块:采用MAX232接口芯片,将单片机的串口输出转换成RS232信号,通过串口与上位机进行通信实现测量结果的处理和计算。

5.驱动模块:采用LED灯,通过单片机的GPIO输出控制LED灯的亮灭。

三、软件设计。

1.控制模块:编写程序实现超声波信号的发射与接收。

其中,超声波发射信号的周期为 10us,超声波接收信号的周期为 25ms。

超声波接收信号的处理过程如下:(1)当 trig 引脚置高时,等待 10us。

(2)当 trig 引脚置低时,等待 echo 引脚为高电平,即等待超声波信号的回波。

(3)当 echo 引脚为高电平时,开始计时,直到 echo 引脚为低电平时,停止计时。

(4)根据计时结果计算物体到传感器的距离,将结果通过串口输出。

2.信号处理模块:编写程序实现接收计算结果,并将结果通过串口与上位机进行通信。

具体步骤如下:(1)等待串口接收数据。

(2)当接收到数据时,将数据转换成浮点数格式。

(3)根据测量结果控制LED灯的亮灭。

以上就是基于单片机控制的超声波测距系统的设计。

该系统能够通过精确测量物体到传感器的距离并对测量结果进行处理和计算,能够广泛应用于各种实际场合。

基于单片机的超声波测距系统实验报告

基于单片机的超声波测距系统实验报告

基于单片机的超声波测距系统实验报告一、引言超声波测距系统是一种基于超声波工作原理的测距技术,主要通过发送超声波信号并检测回波信号来测量目标物体与传感器之间的距离。

本实验旨在通过使用单片机搭建一个基于超声波的测距系统,通过实际测量和数据分析来验证其测距的准确性和可靠性。

二、原理超声波测距系统主要包括超声波发射器、超声波接收器和单片机控制系统三部分。

其中,超声波发射器产生超声波信号,通过空气传播到目标物体上并被反射回来;超声波接收器接收到反射回来的超声波信号,并将其转化为电信号输出;单片机控制系统通过控制超声波发射器的发射与接收的时间来计算距离。

三、实验步骤1.搭建硬件连接:将超声波发射器和接收器分别连接到单片机的GPIO引脚,并通过电阻和电容进行滤波处理。

2.编写控制程序:通过单片机控制程序,设置超声波发射器引脚为输出模式,将其输出高电平信号一段时间后再拉低;设置超声波接收器引脚为输入模式,并通过中断方式检测接收到的超声波信号,计算时间差并转换为距离值。

3.进行实际测量:将超声波发射器和接收器对准目标物体,启动测量程序并记录距离值。

4.多次实验并计算平均值:为了提高测距的准确性,进行多次实验并计算多次测量结果的平均值。

四、实验结果和讨论通过多次实验测量,我们得到了如下结果:测量1距离为30cm,测量2距离为31cm,测量3距离为29cm。

将这些结果进行平均,得到最终距离结果为30cm。

通过与实际测量的距离进行对比,我们发现测量结果基本与实际距离相符,误差控制在可接受范围内。

这表明我们搭建的基于超声波的测距系统具有较好的测距准确性和可靠性。

然而,我们也发现在一些特殊情况下,例如目标物体表面有较强的吸收或反射能力时,测量结果可能会出现误差。

这是因为超声波在传播过程中会受到传播介质和目标物体的影响,从而引发信号衰减或多次反射等现象。

在实际应用中,我们需要根据具体情况进行系统的优化和调整,以提高测距的精确度。

基于51单片机的超声波测距系统的毕业设计

基于51单片机的超声波测距系统的毕业设计

基于51单片机的超声波测距系统的毕业设计超声波测距系统是一种常见的非接触式测距技术,通过发送超声波信号并测量信号的回波时间来计算距离。

本文将介绍基于51单片机的超声波测距系统的毕业设计。

首先,我们需要明确设计的目标。

本设计旨在通过51单片机实现一个精确、稳定的超声波测距系统。

具体而言,我们需要实现以下功能:1.发送超声波信号:通过51单片机的IO口控制超声波发射器,发送一定频率和波形的超声波信号。

2.接收回波信号:通过51单片机的IO口连接超声波接收器,接收并放大返回的超声波信号。

3.信号处理:根据回波信号的时间延迟计算出距离,并在显示器上显示出来。

4.稳定性和精确性:设计系统时需考虑测量过程中误差的影响,并通过合适的算法和校准方法提高系统的稳定性和精确性。

接下来,我们需要选择合适的硬件和软件配合51单片机实现上述功能。

硬件方面:1.51单片机:选择一款性能稳定、易于编程的51单片机,如STC89C522.超声波模块:选择一款合适的超声波传感器模块,常见的有HC-SR04、JSN-SR04T等。

模块一般包括发射器和接收器,具有较好的测距性能。

3.显示设备:选择合适的显示设备,如7段LED数码管或LCD显示屏,用于显示测距结果。

软件方面:1.C语言编程:使用C语言编写51单片机的程序,实现超声波测距系统的各项功能。

2.串口通信:通过串口与上位机进行通信,可以对系统进行监控和远程控制。

3.算法设计:选择合适的算法计算超声波回波时间延迟,并根据时间延迟计算距离值。

在设计过程中,我们需要进行以下步骤:1.硬件连接:按照超声波模块的说明书,将模块的发射器和接收器通过杜邦线与51单片机的IO口连接。

2.软件编程:使用C语言编写51单片机的程序,实现超声波模块的控制、信号接收和处理、距离计算等功能。

3.系统测试:进行系统的功能测试和性能测试,验证系统的可靠性和准确性,同时调试系统中出现的问题。

4.系统优化:根据测试结果,对系统进行优化,提高系统的稳定性和精确性。

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言在现代电子技术的迅猛发展中,精确测量距离的设备扮演着重要的角色。

随着人类对于生活环境安全性的关注提升,对于各种设备的精度要求也在逐渐加强。

超声波测距技术以其非接触性、高精度、低成本等优点,在众多领域得到了广泛的应用。

本文将详细介绍基于STM32单片机的高精度超声波测距系统的设计。

二、系统概述本系统以STM32单片机为核心控制器,结合超声波测距模块,实现对目标物体的精确测距。

系统主要由STM32单片机、超声波测距模块、电源模块、信号处理模块和显示模块等组成。

通过单片机对超声波模块的控制,实现对目标的精确测距,并通过显示模块实时显示测距结果。

三、硬件设计1. STM32单片机:作为系统的核心控制器,负责整个系统的控制与数据处理。

STM32系列单片机具有高性能、低功耗的特点,能够满足系统对于精确度和稳定性的要求。

2. 超声波测距模块:采用高精度的超声波测距传感器,实现对目标物体的距离测量。

通过超声波的发送与接收,实现对目标的距离计算。

3. 电源模块:为系统提供稳定的电源支持,确保系统的正常工作。

电源模块需考虑到功耗问题,以实现系统的长时间运行。

4. 信号处理模块:对超声波测距模块的信号进行滤波、放大等处理,以提高测距的准确性。

5. 显示模块:实时显示测距结果,方便用户观察与操作。

四、软件设计1. 主程序:负责整个系统的控制与数据处理。

主程序通过控制超声波测距模块的发送与接收,获取目标物体的距离信息,并通过显示模块实时显示。

2. 超声波测距模块控制程序:控制超声波的发送与接收,实现对目标物体的距离测量。

通过计算超声波的发送与接收时间差,计算出目标物体的距离。

3. 数据处理程序:对获取的测距数据进行处理,包括滤波、计算等操作,以提高测距的准确性。

4. 显示程序:将处理后的测距结果显示在显示模块上,方便用户观察与操作。

五、系统实现1. 通过STM32单片机的GPIO口控制超声波测距模块的发送与接收,实现超声波的发送与接收功能。

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言随着科技的不断发展,高精度测距技术被广泛应用于各个领域,如机器人导航、环境监测、智能家居等。

本文将介绍一种基于STM32单片机的高精度超声波测距系统的设计。

该系统采用先进的超声波测距原理,结合STM32单片机的强大处理能力,实现了高精度、快速响应的测距功能。

二、系统概述本系统主要由超声波发射模块、接收模块、STM32单片机以及相关电路组成。

通过STM32单片机控制超声波发射模块发射超声波,然后接收模块接收反射回来的超声波信号,根据超声波的传播时间和速度计算距离。

系统具有高精度、抗干扰能力强、测量范围广等特点。

三、硬件设计1. STM32单片机本系统采用STM32系列单片机作为主控制器,具有高性能、低功耗、丰富的外设接口等特点。

通过编程控制单片机的GPIO 口,实现超声波发射和接收的控制。

2. 超声波发射模块超声波发射模块采用40kHz的超声波传感器,具有体积小、功耗低、测距范围广等优点。

通过单片机控制发射模块的触发引脚,产生触发信号,使传感器发射超声波。

3. 超声波接收模块超声波接收模块同样采用40kHz的超声波传感器。

当传感器接收到反射回来的超声波信号时,会产生一个回响信号,该信号被接收模块的回响引脚捕获并传递给单片机。

4. 相关电路相关电路包括电源电路、滤波电路、电平转换电路等。

电源电路为系统提供稳定的电源;滤波电路用于去除干扰信号;电平转换电路用于匹配单片机与传感器之间的电平标准。

四、软件设计1. 主程序设计主程序采用C语言编写,通过STM32单片机的标准库函数实现各功能模块的初始化、参数设置以及控制逻辑。

主程序首先进行系统初始化,然后进入循环等待状态,等待触发信号的到来。

当接收到触发信号时,开始测距流程。

2. 测距流程设计测距流程主要包括发射超声波、等待回响信号、计算距离等步骤。

当接收到触发信号时,单片机控制超声波发射模块发射超声波;然后等待接收模块的回响信号。

基于单片机的超声波测距系统的设计与实现毕业论文

基于单片机的超声波测距系统的设计与实现毕业论文目录第一章绪论 (1)1.1 研究的背景和意义 (1)1.2 国外研究现状 (1)1.3 课题研究容和意义 (2)第二章超声波测距的原理 (5)2.1 超声波介绍 (5)2.2 超声波传感器的介绍 (5)2.2.1 传感器的选择 (6)2.2.2 超声波测距的原理 (7)2.2.3 温度补偿 (8)2.2.4 测量盲区 (9)2.3 本章小结 (10)第三章系统硬件设计 (10)3.1 系统硬件设计 (10)3.2 单片机概述 (11)3.2.1 STC89C51主要性能特点 (12)3.2.2 STC89C51结构组成 (13)3.2.3 STC89C51部组成 (14)3.3 超声波发射电路设计 (15)3.3.1 发射电路设计方案 (16)3.3.2 超声波发射器的注意事项 (17)3.4 超声波接收电路设计 (18)3.5 LCD显示部分 (19)3.6 报警部分 (21)3.7 DS18B20部分 (22)3.8 本章小结 (23)第四章系统软件设计 (23)4.1 系统软件设计 (23)4.2 外部中断子程序 (26)4.3 定时器中断子程序 (27)4.4 重要功能实现 (28)4.4.1 实现温度读取功能 (28)4.4.2 实现温度转换声速 (29)4.4.3 实现距离计算 (29)4.5 实验测量数据 (30)4.6 本章小结 (30)结论 (31)参考文献 (32)谢辞 (33)附录一(实物图) (34)附录二(Proteus仿真图) (36)第一章绪论1.1 研究的背景和意义随着科技的发展,超声波已经可以对实物做出精确测量。

伴随着社会经济的蓬勃发展,电子测量技术也逐渐被应用到各个领域,而超声波测距技术因拥有测量精确度高、成本消耗低、性能稳定度高等优点则成为其中的佼佼者。

频率在20KHz以上的声波是超声波。

也正是因为这些特性超声波才会被应用到测量距离中。

基于单片机的超声波测距仪设计毕业设计(论文)

本科毕业设计(论文) 题目基于单片机的超声波测距仪设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的超声波测距报警系统姓名:专业:学校:指导教师:摘要STC89C51是STC系列单片机里应用比较广泛的一款,在自动控制领域里享有很高的价值,以其易用性和多功能性受到了广大电子设计爱好者的好评。

本次设计主要是利用STC89C51单片机、超声波传感器完成测距报警系统的制作,以STC89C51为主控芯片,利用超声波对距离的检测,将前方物体的距离探测出来,然后单片机处理运算,与设定的报警距离值进行比较判断,当测得距离小于设定值时,STC89C51发出指令控制蜂鸣器报警。

关键词:超声波传感器 STC89C521 绪论1.1 项目研究背景及意义由于超声测距是一种非接触检测技术,不受光线、被测对象颜色等的影响,较其它仪器更卫生,更耐潮湿、粉尘、高温、腐蚀气体等恶劣环境,具有少维护、不污染、高可靠、长寿命等特点。

因此可广泛应用于纸业、矿业、电厂、化工业、水处理厂、污水处理厂、农业用水、环保检测、食品(酒业、饮料业、添加剂、食用油、奶制品)、防汛、水文、明渠、空间定位、公路限高等行业中。

可在不同环境中进行距离准确度在线标定,可直接用于水、酒、糖、饮料等液位控制,可进行差值设定,直接显示各种液位罐的液位、料位高度。

因此,超声在空气中测距在特殊环境下有较广泛的应用。

利用超声波检测往往比较迅速、方便、计算简单、易于实现实时控制,并且在测量精度方面能达到工业实用的指标要求,因此为了使移动机器人能够自动躲避障碍物行走,就必须装备测距系统,以使其及时获取距障碍物的位置信息(距离和方向)。

因此超声波测距在移动机器人的研究上得到了广泛的应用。

同时由于超声波测距系统具有以上的这些优点,因此在汽车倒车雷达的研制方面也得到了广泛的应用。

2 总体设计方案及论证2.1 总体方案设计本设计包括硬件和软件设计两个部分。

模块划分为数据采集、按键控制、四位数码管显示、报警等子模块。

电路结构可划分为:超声波传感器、蜂鸣器、单片机控制电路。

就此设计的核心模块来说,单片机就是设计的中心单元,所以此系统也是单片机应用系统的一种应用。

单片机应用系统也是有硬件和软件组成。

硬件包括单片机、输入/输出设备、以及外围应用电路等组成的系统,软件是各种工作程序的总称。

单片机应用系统的研制过程包括总体设计、硬件设计、软件设计等几个阶段。

系统采用STC89C51单片机作为核心控制单元,当测得的距离小于设定距离时,主控芯片将测得的数值与设定值进行比较处理。

然后控制蜂鸣器报警。

系统总体的设计方框图如图1所示。

图1 系统方框图 3 硬件实现及单元电路设计3.1 主控制模块 主控制最小系统电路如图2所示。

图2 最小系统 硬件电路总设计见图3,从以上的分析可知在本设计中要用到如下器件: STC89C52、超声波传感器、按键、四位数码管、蜂鸣器等一些单片机外围应用电路。

其中D1为电源工作指示灯。

电路中用到3个按键,一个是设定键, 一电源 超声波传感器模块 STC89C51主控制器模块 按键控制个加键,一个减键。

图3 总设计电路图3.2 电源设计电源部分的设计采用3节5号干电池4.5V供电。

3.3 超声波测试模块超声波模块采用现成的HC-SR04超声波模块,该模块可提供2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm。

模块包括超声波发射器、接收器与控制电路。

基本工作原理:采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。

测试距离=(高电平时间*声速(340M/S))/2。

实物如下图4。

其中VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线。

图4 超声波模块实物图超声波探测模块HC-SR04的使用方法如下:IO口触发,给Trig口至少10us 的高电平,启动测量;模块自动发送8个40Khz的方波,自动检测是否有信号返回;有信号返回,通过IO口Echo输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间,测试距离=(高电平时间*340)/ 2,单位为m。

程序中测试功能主要由两个函数完成。

实现中采用定时器0进行定时测量,8分频,TCNTT0预设值0XCE,当timer0溢出中断发生2500次时为125ms,计算公式为(单位:ms):T = (定时器0溢出次数 * (0XFF - 0XCE))/ 1000其中定时器0初值计算依据分频不同而有差异。

3.3.1 超声波的特性声音是与人类生活紧密相关的一种自然现象。

当声的频率高到超过人耳听觉的频率极限(根据大量实验数据统计,取整数为20000赫兹)时,人们就会觉察不出周围声的存在,因而称这种高频率的声为“超”声。

人的听觉范围如图5所示。

图5 人的听觉范围超声波的特性有:(1)束射特性由于超声波的波长短,超声波射线可以和光线一样,能够反射、折射,也能聚焦,而且遵守几何光学上的所有定律。

即超声波射线从一种物质表面反射时,入射角等于反射角,当射线透过一种物质进入另一种密度不同的物质时就会产生折射现象,也就是要改变它的传播方向,两种物质的密度差别愈大,则折射率也愈大。

(2)吸收特性声波在各种介质中传播时,随着传播距离的增加,其强度会逐渐减弱,这是因为介质要吸收掉它的部分能量。

对于同一介质,声波的频率越高,介质吸收就越强。

对于一个频率一定的声波,在气体中传播时吸收尤为历害,在液体中传播时吸收就比较弱,在固体中传播时吸收是最小的。

(3)超声波的能量传递特性超声波之所以能在各个工业部门中得到广泛的应用,主要原因还在于比声波具有强大得多的功率。

为什么有这么强大的功率呢?因为当声波进入某一介质中时,由于声波的作用使物质中的分子也随之振动,振动的频率和声波频率—样,分子振动的频率决定了分子振动的速度。

频率愈高速度愈大。

物资分子由于振动所获得的能量除了与分子本身的质量有关外,主要是由分子的振动速度的平方决定的,所以如果声波的频率愈高,也就是物质分子愈能得到更高的能量。

超声波的频率比普通声波要高出很多,所以它可以使物质分子获得很大的能量;换句话来说,超声波本身就可以供给物质分子足够大的功率。

(4)超声波的声压特性当声波进入某物体时,由于声波振动使物质分子相互之间产生压缩和稀疏的作用,将使物质所受的压力产生变化。

由于声波振动引起附加压力现象叫声压作用。

3.3.2 超声波换能器完成产生超声波和接收超声波这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声波探头。

超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。

小功率超声探头多用作探测方面。

它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。

超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。

构成晶片的材料可以有许多种。

由于晶片的大小,如直径和厚度也各不相同,因此每个探头的性能都是不同的,我们使用前必须预先了解清楚该探头的性能参数。

超声波传感器的主要性能指标包括:(1)工作频率。

工作频率就是压电晶片的共振频率。

当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。

(2)工作温度。

由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不失效。

医疗用的超声探头的温度比较高,需要单独的制冷设备。

(3)灵敏度。

主要取决于制造晶片本身。

机电耦合系数大,灵敏度高。

人类能听到的声音频率范围为:20Hz~20kHz,即为可听声波,超出此频率范围的声音,即20Hz以下频率的声音称为低频声波,20kHz以上频率的声音称为超声波。

超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强。

为此,利用超声波的这种性能就可制成超声波传感器。

另外,超声波在空气中的传播速度较慢,为340m/s,这就使得超声波传感器使用变得非常简便。

我们选用压电式超声波传感器。

它的探头常用材料是压电晶体和压电陶瓷,是利用压电材料的压电效应来进行工作的。

逆压电效应将高频电振动转换成高频机械振动,从而产生超声波,可作为发射探头;而利用正压电效应,将超声振动波转换成电信号,可作为接收探头。

为了研究和利用超声波,人们已经设计和制成了许多种超声波发生器。

总体上讲,超声波发生器大体可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。

电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。

它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。

目前较为常用的是压电式超声波发生器。

图6 超声波传感器结构压电式超声波发生器实际上是利用压电晶体的谐振来工作的。

超声波发生器内部结构如图所示,它有两个压电晶片和一个共振板。

当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。

反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。

如图6所示。

3.4 超声波传感器原理市面上常见的超声波传感器多为开放型,其内部结构如图7所示,一个复合式振动器被灵活地固定在底座上。

该复合式振动器是由谐振器以及一个金属片和一个压电陶瓷片组成的双压电晶片元件振动器。

谐振器呈喇叭形,目的是能有效地辐射由于振动而产生的超声波,并且可以有效地使超声波聚集在振动器的中央部位。

当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形。

另一方面,当振动压电陶瓷时,则会产生一个电荷。

利用这一原理,当给由两片压电陶瓷或一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。

相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。

基于以上作用,便可以将压电陶瓷用作超声波传感器。

图7 超声波内部结构超声波是一种在弹性介质中的机械振荡,其频率超过20KHz,分横向振荡和纵向振荡两种,超声波可以在气体、液体及固体中传播,其传播速度不同。

它有折射和反射现象,且在传播过程中有衰减。

超声波的基本特性如下所述:1.波长波的传播速度是用频率乘以波长来表示。

电磁波的传播速度是3×108m/s,而声波在空气中的传播速度很慢,约为344m/s (20℃时)。

在这种比较低的传播速度下,波长很短,这就意味着可以获得较高的距离和方向分辨率。

正是由于这种较高的分辨率特性,才使我们有可能在进行测量时获得很高的精确度。

相关文档
最新文档