重庆巴蜀中学初2019届第一次定时作业 数学试题卷(图版版,无答案)
2019年重庆市巴蜀中学、育才中学、南开中学三校联考中考数学一诊试卷及参考答案

2019年重庆市巴蜀中学、育才中学、南开中学三校联考中考数学一诊试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)实数2019的相反数是()A.2019B.C.D.﹣20192.(4分)下列图形是中心对称图形的是()A.B.C.D.3.(4分)为调查某中学学生对社会主义核心价值观的了解程度,某课外活动小组进行了抽样调查,以下样本最具有代表性的是()A.初三年级的学生B.全校女生C.每班学号尾号为5的学生D.在篮球场打篮球的学生4.(4分)如图,用菱形纸片按规律依次拼成如图图案.第1个图案有5个菱形纸片,第2个图案有9个菱形纸片,第3个图案有13个菱形纸片,按此规律,第7个图案中菱形纸片数量为()A.17B.21C.25D.295.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,15cm 和18cm,另一个三角形的最长边长为9cm,则它的最短边为()A.2cm B.2.5cm C.4cm D.7.5cm6.(4分)下列命题中真命题是()A.互补的角一定是邻补角B.三角形的一个外角大于任何一个内角C.内错角一定相等D.同一平面内,垂直于同一直线的两直线平行7.(4分)估计(﹣)÷的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.(4分)按图所示的运算程序,若输入x=1,输出的y值为()A.﹣1B.1C.0D.﹣79.(4分)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,AD=3,BC=,则四边形ABCD的周长为()A.B.C.D.10.(4分)缙云山是国家级自然风景名胜区,上周周末,小明和妈妈到缙云山游玩,登上了香炉峰观景塔,从观景塔底中心D处水平向前走14米到点A处,再沿着坡度为0.75的斜坡A走一段距离到达B点,此时回望观景塔,更显气势宏伟,在B点观察到观景塔顶端的仰角为45°再往前沿水平方向走27米到C处,观察到观景塔顶端的仰角是22°,则观景塔的高度DE为()(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.4)A.21米B.24米C.36米D.45米11.(4分)如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC,则k的值为()A.﹣12B.12C.16D.1812.(4分)若数a使关于x的不等式组的解为x<2,且使关于x的分式方程+=﹣4有正整数解,则满足条件的a的值之和为()A.12B.11C.10D.9二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算(π﹣3)0+=.14.(4分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=4,以边AC为直径的半圆交AB于点D,则图中阴影部分的面积是(结果保留π)15.(4分)如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,若∠C=15°,AE=EG=2厘米,则△ABC的边BC的长为厘米.16.(4分)有背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:y=、y =﹣x+2、y=x2、y=2x+1,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图象不过第四象限的卡片的概率是.17.(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙跑了米.18.(4分)一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2a,a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物,乙车共运270吨.现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为元.(按每吨运费20元计算)三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上. 19.(10分)证明命题“等腰三角形两腰上的高相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,在△ABC中,AB=AC,.求证:请补全已知和求证部分,并写出证明过程.20.(10分)在新的教学改革的推动下,某中学初三年级积极推进走班制教学.为了了解一段时间以来“至善班”的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取20名同学在某一次定时测试中的数学成绩,其结果记录如下:收集数据至善班”甲班的20名同学的数学成绩统计(满分为100分)(单位:分)86 90 60 76 92 83 56 76 85 7096 96 90 68 78 80 68 96 85 81“至善班”乙班的20名同学的数学成绩统计(满分为100分)(单位:分)78 96 75 76 82 87 60 54 87 72100 82 78 86 70 92 76 80 98 78整理数据:(成绩得分用x表示)分析数据,并回答下列问题:(1)完成下表:(2)在“至善班”甲班的扇形图中,成绩在70≤x<80的扇形中,所对的圆心角α的度数为,估计全部“至善班”的1600人中优秀人数为人.(成绩大于等于80分为优秀)(3)根据以上数据,你认为“至善班”班(填“甲”或“乙”)所选取做样本的同学的学习效果更好一些,你所做判断的理由是:①.②.21.(10分)计算(1)(x﹣y)(x+y)﹣(x+2y)(x﹣y)(2)()22.(10分)小明研究一函数的性质,下表是该函数的几组对应值:(1)在平面直角坐标系中,描出以上表格中的各点,根据描出的点,画出该函数图象(2)根据所画函数图象,写出该函数的一条性质:;(3)根据图象直接写出该函数的解析式及自变量的取值范围:;(4)若一次函数y=x+n与该函数图象有三个交点,则n的范围是.23.(10分)幸福水果店计划用12元/盒的进价购进一款水果礼盒以备销售.(1)据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?(2)在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了m%,月销量比(1)中最低月销量800盒增加了m%,结果该月水果店销售该水果礼盒的利润达到了4000元,求m的值.24.(10分)如图,平行四边形ABCD中,连接AC,AC=AB,过B作BE⊥AC于E,延长BE与CD交于F.(1)若AE=2,CE=1,求△ABC的面积;(2)若∠BAC=45°,过F作FG⊥AD于G,连接AF、BG,求证:AC=EG.25.(10分)数学不仅是一门科学,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大的一个要求大臣说:“就在这个棋盘上放一些米粒吧,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒……一直到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里有这么多米吗?题中问题就是求1+21+22+23+…+263是多少?请同学们阅读以下解答过程就知道答案了设S=1+21+22+23+...+263,则2S=2(1+21+22+23+24+...+263)=2+22+23+24+...+263+2642S ﹣S=2(1+22+23+24+...+263)﹣(1+2+22+23+24+ (263)即:S=264﹣1事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要1+21+22+23+…+263=(264﹣1)粒米.那么264﹣1到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744073709551615,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:(1)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增共灯三百八十一,请问尖头几盏灯?”意思是一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?(2)计算:1+3+9+27+…+3n.(3)某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,…,依此类推.求满足如下条件的所有正整数N:10<N<100,且这一列数前N项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N的值四、解答题:(本大题1个小题,共8分)26.(8分)如图1,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.将直线AC以点A为旋转中心,顺时针旋转90°,交y轴于点D,交拋物线于另一点E.直线AE的解析式为:y=﹣x﹣(1)点F是第一象限内抛物线上一点,当△F AD的面积最大时,在线段AE上找一点G (不与点A、E重合),使FG+GE的值最小,求出点G的坐标,并直接写出FG+GE 的最小值;(2)如图2,将△ACD沿射线AE方向以每秒个单位的速度平移,记平移后的△ACD 为△A′C′D′,平移时间为t秒,当△AC′E为等腰三角形时,求t的值.2019年重庆市巴蜀中学、育才中学、南开中学三校联考中考数学一诊试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)实数2019的相反数是()A.2019B.C.D.﹣2019【解答】解:因为a的相反数是﹣a,所以2019的相反数是﹣2019.故选:D.2.(4分)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.3.(4分)为调查某中学学生对社会主义核心价值观的了解程度,某课外活动小组进行了抽样调查,以下样本最具有代表性的是()A.初三年级的学生B.全校女生C.每班学号尾号为5的学生D.在篮球场打篮球的学生【解答】解:A、B、D中进行抽查,不具有代表性,对抽取的对象划定了范围,因而不具有代表性.C、每班学号尾号为5的学生进行调查具有代表性.故选:C.4.(4分)如图,用菱形纸片按规律依次拼成如图图案.第1个图案有5个菱形纸片,第2个图案有9个菱形纸片,第3个图案有13个菱形纸片,按此规律,第7个图案中菱形纸片数量为()A.17B.21C.25D.29【解答】解:观察图形发现:第1个图案中有5=4×1+1个菱形纸片;第2个图案中有9=4×2+1个菱形纸片;第3个图形中有13=4×3+1个菱形纸片,…第n个图形中有4n+1个菱形纸片,当n=7时,4×7+1=29个菱形纸片,故选:D.5.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,15cm 和18cm,另一个三角形的最长边长为9cm,则它的最短边为()A.2cm B.2.5cm C.4cm D.7.5cm【解答】解:设另一个三角形的最短边长为xcm,根据题意,得:,解得:x=2.5,即另一个三角形的最短边的长为2.5cm.故选:B.6.(4分)下列命题中真命题是()A.互补的角一定是邻补角B.三角形的一个外角大于任何一个内角C.内错角一定相等D.同一平面内,垂直于同一直线的两直线平行【解答】解:A、两直线平行时,一对同旁内角互补,此时这一对同旁内角不是邻补角,故选项错误;B、三角形的一个外角大于与它不相邻的任何一个内角,故选项错误;C、如图,直线AB、CD被直线EF所截,AB与CD不平行,此时内错角∠AEF≠∠EFD,故选项错误;D、如图,由AB⊥EF得∠AEF=90°,由CD⊥EF得∠EFD=90°,则∠AEF=∠EFD=90°,所以AB∥CD.故选项正确.故选:D.7.(4分)估计(﹣)÷的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:原式=,∵1<<2,∴3<3﹣1<4,故选:A.8.(4分)按图所示的运算程序,若输入x=1,输出的y值为()A.﹣1B.1C.0D.﹣7【解答】解:把x=1代入程序中得:y=0,故选:C.9.(4分)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,AD=3,BC=,则四边形ABCD的周长为()A.B.C.D.【解答】解:过D作DF⊥BC于F,则∠DFB=90°,∵AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,∴AD=DE,BC=CE,∠DAB=∠CBA=90°,∴四边形ADFB是矩形,∴AD=BF,AB=DF,∵AD=3,BC=,AD=DE,BC=CE,∴DE=3,CE=,∴DC=3+=,CF=BC﹣AD=﹣3=,在Rt△CFD中,由勾股定理得:DF===8,即AB=DF=8,即四边形ABCD的周长是AD+DC+BC+AB=3+++8=,故选:D.10.(4分)缙云山是国家级自然风景名胜区,上周周末,小明和妈妈到缙云山游玩,登上了香炉峰观景塔,从观景塔底中心D处水平向前走14米到点A处,再沿着坡度为0.75的斜坡A走一段距离到达B点,此时回望观景塔,更显气势宏伟,在B点观察到观景塔顶端的仰角为45°再往前沿水平方向走27米到C处,观察到观景塔顶端的仰角是22°,则观景塔的高度DE为()(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.4)A.21米B.24米C.36米D.45米【解答】解:作BG⊥DE于G,AF⊥BG于F,设AF=3x,∵AB坡的坡度为0.75,∴BF=4x,∴BG=4x+14,CG=4x+41,∵∠ABG=45°,∴GE=BG=4x+14,在Rt△EGC中,tan C=,即=0.4,解得,x=1,∴DE=3x+4x+14=21(米),故选:A.11.(4分)如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC,则k的值为()A.﹣12B.12C.16D.18【解答】解:∵PB∥OC(四边形OABC为正方形),∴△PBQ∽△COQ,∴==,∴PB=P A=OC=3.∵正方形OABC的边长为6,∴点C(0,6),点P(6,3),直线OB的解析式为y=x①,∴设直线CP的解析式为y=ax+6,∵点P(6,3)在直线CP上,∴3=6a+6,解得:a=﹣,故直线CP的解析式为y=﹣x+6②.联立①②得:,解得:,∴点Q的坐标为(4,4).将点Q(4,4)代入y=中,得:4=,解得:k=16.故选:C.12.(4分)若数a使关于x的不等式组的解为x<2,且使关于x的分式方程+=﹣4有正整数解,则满足条件的a的值之和为()A.12B.11C.10D.9【解答】解:不等式组整理得:,由已知解集为x<2,得到a+4≥2,解得:a≥﹣2,分式方程去分母得:1﹣x+a+5=﹣4x+16,解得:x=,当a=1时,x=3;a=4时,x=2;a=7时,x=1,则满足条件a的值之和为1+4+7=12,故选:A.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算(π﹣3)0+=﹣2.【解答】解:原式=1﹣3=﹣2.故答案为:﹣2.14.(4分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=4,以边AC为直径的半圆交AB于点D,则图中阴影部分的面积是6﹣π(结果保留π)【解答】解:连接OD、CD,∵AC为半圆的直径,∴CD⊥AB,∵CA=CB,∴AD=DB,又AO=OC,∴OD=BC=2,∠COD=∠ACB=90°,∴图中阴影部分的面积是=×(2+4)×2﹣=6﹣π,故答案为:6﹣π.15.(4分)如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,若∠C=15°,AE=EG=2厘米,则△ABC的边BC的长为4+2厘米.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∠GAC=∠C=15°,∴∠AGE=30°,AE=EG=2厘米,∴∠EAG=∠AGE=30°,∴∠AEB=60°,∴△ABE是等边三角形,∴∠BAE=60°,BE=AE=AB=2厘米,∴BG=4厘米,∠BAG=60°+30°=90°,∴GC=AG==2(厘米),∴BC=BG+GC=(4+2)厘米,故答案为:4+2.16.(4分)有背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:y=、y =﹣x+2、y=x2、y=2x+1,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图象不过第四象限的卡片的概率是.【解答】解:下列函数关系式:y=;y=﹣x+2;y=x2;y=2x+1中,函数y=,y=2x+1,y=x2的图象不经过第四象限,所以函数图象不经过第四象限的概率=.故答案为:.17.(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙跑了1450米.【解答】解:乙的速度为:1500÷600=2.5(米/秒),甲的速度为:2.5+200÷400=3(米/秒),甲、乙会合地离起点的距离为:400×3=1200(米),甲到达终点时,乙离起点的距离为:1200+(1500﹣1200)÷3×2.5=1450(米).故答案为:1450.18.(4分)一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2a,a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物,乙车共运270吨.现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为2160元.(按每吨运费20元计算)【解答】解:设甲一次运x吨,乙一次运y吨,丙一次运z吨,,解得,y=z=2x,∴这批货物一共有:(x+z)×=540,∴甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为:540××20=2160(元),故答案为:2160.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上. 19.(10分)证明命题“等腰三角形两腰上的高相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,在△ABC中,AB=AC,CE⊥AB,BD⊥AC.求证:CE=BD请补全已知和求证部分,并写出证明过程.【解答】解:已知:如图,在△ABC中,AB=AC,CE⊥AB,BD⊥AC.求证:CE=BD,证明:∵AB=AC,∴∠ABC=∠ACB,∵CE⊥AB,BD⊥AC,∴∠BEC=∠CDB,∵BC=BC,∴△BEC≌△CDB(ASA),∴CE=BD.故答案为:CE⊥AB,BD⊥AC;CE=BD20.(10分)在新的教学改革的推动下,某中学初三年级积极推进走班制教学.为了了解一段时间以来“至善班”的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取20名同学在某一次定时测试中的数学成绩,其结果记录如下:收集数据至善班”甲班的20名同学的数学成绩统计(满分为100分)(单位:分)86 90 60 76 92 83 56 76 85 7096 96 90 68 78 80 68 96 85 81“至善班”乙班的20名同学的数学成绩统计(满分为100分)(单位:分)78 96 75 76 82 87 60 54 87 72100 82 78 86 70 92 76 80 98 78整理数据:(成绩得分用x表示)分析数据,并回答下列问题:(1)完成下表:(2)在“至善班”甲班的扇形图中,成绩在70≤x<80的扇形中,所对的圆心角α的度数为72°,估计全部“至善班”的1600人中优秀人数为880人.(成绩大于等于80分为优秀)(3)根据以上数据,你认为“至善班”甲班(填“甲”或“乙”)所选取做样本的同学的学习效果更好一些,你所做判断的理由是:①甲的优秀率高.②甲的中位数比乙的中位数大.【解答】解:(1)将甲班成绩重新整理如下:56 60 68 68 70 76 76 78 80 81 83 85 85 86 90 90 92 96 96 96,其中96出现次数做多,∴众数a=96(分),将乙班成绩重新整理如下:54 60 70 72 75 76 76 78 78 78 80 82 82 86 87 87 92 96 98 100,其中中位数b==79(分),故答案为:96,79;(2)成绩在70≤x<80的扇形中,所对的圆心角α的度数为360°×=72°,估计全部“至善班”的1600人中优秀人数为1600×=880(人).(3)甲所选取做样本的同学的学习效果更好一些,你所做判断的理由是:甲的优秀率高,甲的中位数比乙的中位数大,故答案为:甲,甲的优秀率高,甲的中位数比乙的中位数大.21.(10分)计算(1)(x﹣y)(x+y)﹣(x+2y)(x﹣y)(2)()【解答】解:(1)原式=(x﹣y)(x+y﹣x﹣2y)=(x﹣y)(x+y﹣x﹣2y)=﹣y(x﹣y)=﹣xy+y2;(2)原式=[﹣]÷=•=﹣x(x﹣1)=﹣x2+x;22.(10分)小明研究一函数的性质,下表是该函数的几组对应值:(1)在平面直角坐标系中,描出以上表格中的各点,根据描出的点,画出该函数图象(2)根据所画函数图象,写出该函数的一条性质:x<﹣1时,y随x的增大而减小;(3)根据图象直接写出该函数的解析式及自变量的取值范围:;(4)若一次函数y=x+n与该函数图象有三个交点,则n的范围是.【解答】解:(1)根据表格的点所画的图象如图所示:(2)观察图象可得其中的一条性质为:x<﹣1时,y随x的增大而减小(3)当x<1时,函数经过点点(﹣3,3)(﹣2,0)(0,0)故设函数的解析式为y=a(x+2)(x﹣0),将点(﹣4,6)代入解得3=a(﹣3+2)×(﹣3),解得a=1,∴x<1时,函数解析式为:y=x2+2x,(x<1)当x≥1时,函数经过点(1,3)(2,0)故设函数解析式为:y=kx+b,解得∴x≥1时,函数解析式为:y=﹣3x+6故答案为:,(4)由图象可知,一次函数y=x+n与函数y=﹣3x+6交点在(1,3)时有3=+n得,n=一次函数y=x+n与y=x2+2x有且仅有一个交点时,有⇒∴△=,解得n=故一次函数y=x+n与该函数图象有三个交点时,n的范围是故答案为:23.(10分)幸福水果店计划用12元/盒的进价购进一款水果礼盒以备销售.(1)据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?(2)在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了m%,月销量比(1)中最低月销量800盒增加了m%,结果该月水果店销售该水果礼盒的利润达到了4000元,求m的值.【解答】解:(1)设每盒售价应为x元,依题意,得:980﹣30(x﹣14)≥800,解得:x≤20.答:每盒售价应不高于20元.(2)依题意,得:[20(1﹣m%)﹣12×(1+25%)]×800(1+m%)=4000,整理,得:m2﹣25m=0,解得:m1=25,m2=0(不合题意,舍去).答:m的值为25.24.(10分)如图,平行四边形ABCD中,连接AC,AC=AB,过B作BE⊥AC于E,延长BE与CD交于F.(1)若AE=2,CE=1,求△ABC的面积;(2)若∠BAC=45°,过F作FG⊥AD于G,连接AF、BG,求证:AC=EG.【解答】(1)解:∵AE=2,CE=1,∴AB=AC=3,∵BE⊥AC,∴BE===,∴△ABC的面积=AE×BE=×3×=;(2)证明:过G作GH⊥EG交CA延长线于H,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∵BF⊥AC,∴∠EBC=22.5°,∵AB∥DC,∴∠BAC=∠ACD=45°,∴△BAE、△CEF是等腰直角三角形,∴EA=EB,EF=EC,在△BEC和△AEF中,,∴△BEC≌△AEF(SAS),∴∠CBE=∠EAF=22.5°,∵AD∥BC,∴∠ACB=∠DAC=67.5°,∴∠DAF=45°,∵FG⊥AD,∴△AGF是等腰直角三角形,∴GA=GF,∵四边形ABCD是平行四边形,∴∠D=∠ABC=67.5°,∴∠GFD=22.5°,∴∠EFG=112.5°,∵∠HAG=180°﹣67.5°=112.5°,∴∠HAG=∠EFG,∵∠HGA+∠AGE=90°,∠EGF+∠AGE=90°,∴∠HGA=∠EGF,在△HGA和△EGF中,,∴△HGA≌△EGF(ASA),∴AH=EF,HG=EG,∴△HGE是等腰直角三角形,∴HE=GE,∵HE=HA+AE,EC=EF,∴HE=AC,∴AC=EG.25.(10分)数学不仅是一门科学,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大的一个要求大臣说:“就在这个棋盘上放一些米粒吧,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒……一直到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里有这么多米吗?题中问题就是求1+21+22+23+…+263是多少?请同学们阅读以下解答过程就知道答案了设S=1+21+22+23+...+263,则2S=2(1+21+22+23+24+...+263)=2+22+23+24+...+263+2642S ﹣S=2(1+22+23+24+...+263)﹣(1+2+22+23+24+ (263)即:S=264﹣1事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要1+21+22+23+…+263=(264﹣1)粒米.那么264﹣1到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744073709551615,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:(1)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增共灯三百八十一,请问尖头几盏灯?”意思是一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?(2)计算:1+3+9+27+…+3n.(3)某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,…,依此类推.求满足如下条件的所有正整数N:10<N<100,且这一列数前N项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N的值【解答】解:(1)设塔的顶层由x盏灯,依题意得:x+21x+22x+23x+24x+25x+26x=381解得:x=3,答:塔的顶层共有3盏灯.(2)设S=1+3+9+27+…+3n,则3S=3(1+3+9+27+…+3n)=3+9+27+…+3n+3n+1,∴3S﹣S=(3+9+27+…+3n+3n+1)﹣(1+3+9+27+…+3n),∴2S=3n+1﹣1,∴S=,即:1+3+9+27+…+3n=(3)由题意这列数分n+1组:前n组含有的项数分别为:1,2,3,…,n,最后一组x 项,根据材料可知每组和公式,求得前n组每组的和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,总前n组共有项数为N=1+2+3+…+n=,前n所有项数的和为S n=21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需最后一组x项将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总项数为N=+2=3,不满足10<N <100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总项数为N=+3=18,满足10<N <100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总项数为N=+4=95,满足10<N<100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总项数为N=+5=440,不满足10<N<100,∴所有满足条件的软件激活码正整数N的值为:18或95四、解答题:(本大题1个小题,共8分)26.(8分)如图1,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.将直线AC以点A为旋转中心,顺时针旋转90°,交y轴于点D,交拋物线于另一点E.直线AE的解析式为:y=﹣x﹣(1)点F是第一象限内抛物线上一点,当△F AD的面积最大时,在线段AE上找一点G (不与点A、E重合),使FG+GE的值最小,求出点G的坐标,并直接写出FG+GE 的最小值;(2)如图2,将△ACD沿射线AE方向以每秒个单位的速度平移,记平移后的△ACD 为△A′C′D′,平移时间为t秒,当△AC′E为等腰三角形时,求t的值.【解答】解:(1)过点F作FK⊥x轴于点H,交直线AE于点K(如下图),过点D作DM⊥FK于点M,令y=﹣x﹣=0,则点A(﹣1,0),设点F坐标为(x,﹣x2+x+),则点K(x,﹣x﹣),S△F AD=S△F AK﹣S△FDK=FK•AH﹣FK•DM=FK(AH﹣DM)=FK•AO=(﹣x2+x++x+)×1=﹣x2+x+,当x=﹣=时,S△F AD有最大值,此时点F(,),点G是线段AE上一点,作EQ⊥y轴于点Q,作GP⊥EQ于点P,则∠PEG=30°,∴GP=GE,∴FG+GE=FG+GP,过点F作EQ的垂线交AE于点G,此时FG+GE最小,当x=时,y=﹣x﹣=﹣,此时点G(,﹣),FG+GE最小值为:;(2)连接CC′,过点C′作C′F⊥y轴于点F,则C′C=,CF=CC′=t,FC′=CC′=t,∴点C′(t,﹣t),由(1)知点E(4,﹣),∴AE2=,AC′2=t2+4,EC′2=t2﹣t+,①当AC′=EC′时,t2+4=t2﹣t+,解得:t=;②当AC′=AE时,同理可得:t=(舍去负值);③当AE=EC′时,同理可得:t=5;故:t的值为或或5或5.。
【解析版】重庆市巴蜀中学2019届九年级上第一次月考数学试卷

重庆市巴蜀中学2019届九年级上学期第一次月考数学试卷一、选择题:(每小题4分,共48分)1.(4分)已知点A(2,a)在反比例函数y=的图象上,则a的值是()A.2B.﹣2 C.﹣4 D.2.(4分)已知a是锐角,若sina=,则锐角a是()A.30°B.45°C.60°D.90°3.(4分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.4.(4分)若△ABC的三个内角满足|tanA﹣1|+(cos B﹣)2=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.(4分)如图,AB是⊙O的直径,点C、D是⊙O上的点,若∠CAB=25°,则∠ADC的度数为()A.65°B.55°C.60°D.75°6.(4分)若锐角A满足tana=,则sina的值是()A.B.C.D.7.(4分)已知直线AB与反比例函数y=﹣和y=交于A、B两点与y轴交于C,若AC=BC,则S△AOB=()A.6B.7C.4D.38.(4分)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.9.(4分)一次函数y=kx+b,现分别从装有1,﹣2两张数字卡片的甲口袋和装有﹣1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作k,乙口袋的卡片上的数字作b,则该一次函数的图象经过一、二、四象限的概率是()A.B.C.D.10.(4分)如图所示,李鑫老师利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且顶端恰好与水面平齐(即PA=PC),水平线l与OC夹角a=8°(点A在OC上),则铅锤P处的水深h为()(参考数据:sin8°≈,cos8°≈,tan8°≈)A.150cm B.144cm C.111cm D.105cm11.(4分)如图△ABC是一个直三棱柱的俯视图,若该直三棱柱的高10cm,∠A=30°,∠C=45°,BC=2cm,则该直三棱柱的三种视图的面积之和为()A.(42+22)cm2B.(22+42)cm2C.(44+24)cm2D.(60+20+20)cm212.(4分)如图,直线y1=x与双曲线y2=(x>0)交于点A,将直线y1=x向下平移4个单位后称该直线为y3,若y3与双曲线交于B,与x轴交于C,与y轴交于D,AO=2BC,连接AB,则以下结论错误的有()①点C坐标为(3,0);②k=;③S四边形OCBA=;④当2<x<4时,有y1>y2>y3;⑤S四边形ABDO=2S△COD.A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)13.(4分)计算tan60°﹣sin60°+cos245°=.14.(4分)如图,过O的直线交反比例函数y=于A、B两点,分别过A、B两点作y 轴,x轴的平行线交于C,则S△ABC=.15.(4分)如图所示的几何体的三视图,这三种视图中画图不符合规定的是.16.(4分)如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为.17.(4分)如图,AB是⊙O的直径,AB=4cm,C、D是半圆的三等分点,连接AD、AC,则弦AC=.18.(4分)已知点A、B、C在⊙O上,若AB=AC,BC=24,⊙O半径为13,则△ABC的BC边上的高为.19.(4分)如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为秒.20.(4分)如图,矩形OABC,tan∠AOB=,OB=10,将矩形OABC沿对角线OB翻折,点A落在A′,若反比例函数y=的图象经过A′,则反比例函数的解析式为.三、解答题21.(18分)计算:(1)3tan30°﹣tan45°+2cos30°+4sin60°(2)|sin45°﹣1|﹣+cos45°﹣tan60°(3)已知△ABC中,∠ABC=135°,tanA=,BC=2,求△ABC的周长.22.(10分)在4张完全相同的卡片的上面分别写上数字3,2,4,4,再将它们的背面朝上洗均匀(1)随机抽出一张卡片,求抽到数字“4”的概率.(2)若随机抽出一张卡片记下数字后放回洗均匀,再随机抽出一张卡片,用树状图或列表法求两次都没有数字“4”的概率.(3)如果再增加若干张写有数字“4”的同样卡片放入前面的卡片中洗均匀后,使得随机抽出一张卡片是4的概率为,求增加了多少张卡片?23.(10分)如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75°方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.24.(10分)江北区为了了解该区常驻市民对跑步、篮球、足球、羽毛球、舞蹈等体育项目的喜爱情况,在该区范围内随机抽取了若干名常驻市民,对他们喜爱以上的体育项目(每人只选一项)进行了问卷调查,将数据进行统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整)(1)在这次问卷调查中,一共抽查名常驻市民,篮球项目所占圆心角的度数是;估计该区1200万常驻市民中有人喜爱足球运动、有人喜欢跑步;(2)补全频数分布直方图;(3)若这次问卷调查中喜欢跑步的人员中有1名男士,喜欢舞蹈的人员中有2名女士,现从喜欢跑步和喜欢舞蹈的人员中随机选取两名作区代表参加重庆市的竞技比赛,用列表法或树状图求所选的两名恰好是一位喜欢跑步的男士和一位喜欢舞蹈的女士的概率.25.(10分)如图,直线l1:y1=kx+b与反比例函数y2=相交于A(﹣1,4)和B(﹣4,a),直线l2:y3=﹣x+c与反比例函数y2=相交于B、C两点,交y轴于点D,连接OB、OC、OA.(1)求反比例函数的解析式和c的值.(2)求△BOC的面积(3)直接写出当kx+b≥时x的取值范围.(4)若过原点O的直线交反比列函数于P、Q两点(P在第二象限、Q在第四象限)当以P、A、C、Q为顶点的四边形的面积为30时,求点Q的坐标.26.(12分)如图,在平面直角坐标系中,已知矩形ABCD,E是BC上一点,∠AED=90°,AB=6,SIN∠AEB=,矩形ABCD的点B与O重合,BC在x轴上,现有一张硬纸片△MGN,∠MGN=90°,点M在x轴上,点G在ED上,NG=3,N与E重合.现将△MGN以每秒1个单位的速度沿EB方向在x轴上匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD方向向点D匀速移动,点Q为直线GN与线段AE的交点,连接QP,当点P到达终点D时,△MGN和点P同时停止运动,设运动时间x秒.(1)若反比例函数的图象经过点D,求该反比例函数的解析式.(2)在整个运动过程中,设△MGN与△ABE重叠部分的面积为y,求y与x的函数关系式,并写出x的取值范围.(3)在整个运动过程中,是否存在点P,使△APQ为等腰三角形,若存在,求出x的值,若不存在,说明理由.重庆市巴蜀中学2019届九年级上学期第一次月考数学试卷参考答案与试题解析一、选择题:(每小题4分,共48分)1.(4分)已知点A(2,a)在反比例函数y=的图象上,则a的值是()A.2B.﹣2 C.﹣4 D.考点:反比例函数图象上点的坐标特征.分析:直接将点(2,a)代入y=即可求出a的值.解答:解:由题意知,a=﹣,解得:a=﹣2.故选B.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.2.(4分)已知a是锐角,若sina=,则锐角a是()A.30°B.45°C.60°D.90°考点:特殊角的三角函数值.分析:根据特殊角的三角函数值求解.解答:解:∵sina=,∴∠α=60°.故选C.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.(4分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:俯视图为不规则四边形,只有C符合.故选C.点评:本题考查由三视图确定几何体的形状,可运用排除法来解答.4.(4分)若△ABC的三个内角满足|tanA﹣1|+(cosB﹣)2=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.分析:根据非负数的性质,求出∠A和∠B的度数,然后可判定△ABC的形状.解答:解:由题意得,tanA﹣1=0,cosB﹣=0,则tanA=1,cosB=,∠A=45°,∠B=45°,则∠C=180°﹣45°﹣45°=90°,故△ABC为等腰直角三角形.故选C.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.5.(4分)如图,AB是⊙O的直径,点C、D是⊙O上的点,若∠CAB=25°,则∠ADC的度数为()A.65°B.55°C.60°D.75°考点:圆心角、弧、弦的关系.分析:由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠CAB=25°,得出∠B的度数,根据同弧所对的圆周角相等继而求得∠ADC的度数.解答:解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=25°,∴∠ABC=90°﹣∠CAB=65°,∴∠ADC=∠ABC=65°.故选A.点评:本题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.6.(4分)若锐角A满足tana=,则sina的值是()A.B.C.D.考点:锐角三角函数的定义.分析:根据题意,由tana=,易得sina==.解答:解:∵tana=,∴sina==,故答案为:.点评:本题主要考查了同角三角函数的基本关系,解题的关键是结合三角函数的定义.7.(4分)已知直线AB与反比例函数y=﹣和y=交于A、B两点与y轴交于C,若AC=BC,则S△AOB=()A.6B.7C.4D.3考点:反比例函数与一次函数的交点问题.专题:计算题.分析:作AD⊥y轴于D,BE⊥y轴于E,如图,先证明△ACD≌△BCE得到S△ACD=S△BCE,再利用面积代换得到S△AOB=S△AOD+S△BOE,然后根据反比例函数比例系数k的几何意义进行计算.解答:解:作AD⊥y轴于D,BE⊥y轴于E,如图,在△ACD和△BCE中,,∴△ACD≌△BCE,∴S△ACD=S△BCE,∴S△AOB=S△AOC+S△BOC=S△AOD+S△ACD+S△BOC=S△AOD+S△BCE+S△BOC=S△AOD+S△BOE=•|﹣2|+•|4|=3.故选D.点评:本题考查了反比例函数与一次函数的交点问题:一次函数与反比例函数的交点坐标满足两个函数解析式.也考查了反比例函数比例系数k的几何意义.8.(4分)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.考点:列表法与树状图法;轴对称图形.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.解答:解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,∴抽到卡片上印有的图案都是轴对称图形的概率为:=.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.(4分)一次函数y=kx+b,现分别从装有1,﹣2两张数字卡片的甲口袋和装有﹣1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作k,乙口袋的卡片上的数字作b,则该一次函数的图象经过一、二、四象限的概率是()A.B.C.D.考点:列表法与树状图法;一次函数图象与系数的关系.分析:先根据题意列出树状图,再找出所有情况,看k<0,b>0的情况占总情况的多少即可求出答案.解答:解:画树状图共有6种情况,因为一次函数y=kx+b经过第一、二、四象限,则k<0,b>0,又因为k<0,b>0的情况有k=﹣1,b=2或k=﹣1,b=3两种情况,所以一次函数y=kx+b经过第一、二、四象限的概率为=;故选:D.点评:此题考查了列表法与树状图,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验;10.(4分)如图所示,李鑫老师利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且顶端恰好与水面平齐(即PA=PC),水平线l与OC夹角a=8°(点A在OC上),则铅锤P处的水深h为()(参考数据:sin8°≈,cos8°≈,tan8°≈)A.150cm B.144cm C.111cm D.105cm考点:解直角三角形的应用.分析:在Rt△ABC中,已知∠ACB=α=8°,AB=6,根据三角函数就可以求出BC的长;在直角△ABC中,根据已知条件,利用勾股定理就可以求出水深h.解答:解:∵l∥BC,∴∠ACB=α=8°,在Rt△ABC中,∵tanα=,∴BC===42(cm),根据题意,得h2+422=(h+6)2,∴h=144(cm).故选:B.点评:本题考查了学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用.11.(4分)如图△ABC是一个直三棱柱的俯视图,若该直三棱柱的高10cm,∠A=30°,∠C=45°,BC=2cm,则该直三棱柱的三种视图的面积之和为()A.(42+22)cm2B.(22+42)cm2C.(44+24)cm2D.(60+20+20)cm2考点:解直角三角形;简单几何体的三视图.分析:该直三棱柱的主视图与左视图都是矩形,俯视图是三角形,根据矩形与三角形的面积公式分别计算,再相加即可.解答:解:过B作BD⊥AC于D.在Rt△BCD中,∵∠BDC=90°,∠C=45°,BC=2cm,∴BD=CD=BC=2cm,在Rt△BAD中,∵∠BDA=90°,∠A=30°,∴AB=2BD=4cm,AD=BD=2cm,∴AC=AD+CD=(2+2)cm.主视图的面积是:10(2+2)=20+20(cm2),左视图的面积是:10×2=20(cm2),俯视图的面积是:×(2+2)×2=2+2(cm2),∴该直三棱柱的三种视图的面积之和为:20+20+20+2+2=42+22(cm2).故选A.点评:本题考查了解直角三角形,简单几何体的三视图,得出该直三棱柱的三种视图的形状是解题的关键.12.(4分)如图,直线y1=x与双曲线y2=(x>0)交于点A,将直线y1=x向下平移4个单位后称该直线为y3,若y3与双曲线交于B,与x轴交于C,与y轴交于D,AO=2BC,连接AB,则以下结论错误的有()①点C坐标为(3,0);②k=;③S四边形OCBA=;④当2<x<4时,有y1>y2>y3;⑤S四边形ABDO=2S△COD.A.1个B.2个C.3个D. 4个考点:反比例函数与一次函数的交点问题.专题:计算题.分析: 根据一次函数图象的平移规律,由y 1=x 向下平移4个单位得到直线BC 的解析式为y 3=x ﹣4,然后把y=0代入确定C 点坐标,即可判断①;作AE ⊥x 轴于E 点,BF ⊥x 轴于F 点,易证得Rt △OAE ∽△RtCBF ,则===2,若设A 点坐标为(a ,a ),则CF=a ,BF=a ,得到B 点坐标(3+a ,a ),然后根据反比例函数上点的坐标特征得a •a=(3+a )•a ,解得a=2,于是可确定点A 点坐标为(2,),再将A 点坐标代入y 2=,求出k 的值,即可判断②;根据S 四边形OCBA =S △OAE +S 梯形AEFB ﹣S △BCF ,求出S 四边形OCBA ,即可判断③;根据图象得出当2<x <4时,直线y 1在双曲线y 2的上方,双曲线y 2又在直线y 3的上方,即可判断④;先根据三角形面积公式求出S △COD =×3×4=6,再由S 四边形ABDO =S 四边形OCBA +S △OCD ,得出S 四边形ABDO =12,即可判断⑤.解答: 解:①∵将直线y 1=x 向下平移4个单位后称该直线为y 3,y 3与双曲线交于B ,与x 轴交于C ,∴直线BC 的解析式为y 3=x ﹣4,把y=0代入得x ﹣4=0,解得x=3,∴C 点坐标为(3,0),故本结论正确;②作AE ⊥x 轴于E 点,BF ⊥x 轴于F 点,如图,∵OA ∥BC ,∴∠AOC=∠BCF ,∴Rt △OAE ∽Rt △CBF , ∴===2,设A 点坐标为(a ,a ),则OE=a ,AE=a ,∴CF=a ,BF=a ,∴OF=OC+CF=3+a ,∴B 点坐标为(3+a ,a ),∵点A 与点B 都在y 2=(x >0)的图象上,∴a •a=(3+a )•a ,解得a=2,∴点A 的坐标为(2,),把A(2,)代入y=,得k=2×=,故本结论正确;③∵A(2,),B(4,),CF=a=1,∴S四边形OCBA=S△OAE+S梯形AEFB﹣S△BCF=×2×+×(+)×2﹣×1×=+4﹣=6,故本结论错误;④由图象可知,当2<x<4时,有y1>y2>y3,故本结论正确;⑤∵S△COD=×3×4=6,S四边形ABDO=S四边形OCBA+S△OCD=6+6=12,∴S四边形ABDO=2S△COD,故本结论正确.故选A.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了相似三角形的判定与性质,图形的面积以及一次函数图象的平移问题.二、填空题(每小题4分,共32分)13.(4分)计算tan60°﹣sin60°+cos245°=.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入求解.解答:解:原式=﹣+=.故答案为:.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.14.(4分)如图,过O的直线交反比例函数y=于A、B两点,分别过A、B两点作y轴,x轴的平行线交于C,则S△ABC=8.考点:反比例函数系数k的几何意义.分析:设点A(x,y),则xy=﹣4,根据交点关于原点对称可得出B(﹣x,﹣y),再根据三角形面积的公式进行计算即可.解答:解:设点A(x,y),则B(﹣x,﹣y),所以xy=﹣4,S△ABC=•(﹣x﹣x)(y+y)=﹣2xy=8,故答案为8.点评:本题考查了反比例函数系数k的几何意义,解题关键是确定点A、B坐标,三角形面积的计算.15.(4分)如图所示的几何体的三视图,这三种视图中画图不符合规定的是左视图和俯视图.考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.解答:解:根据几何体的摆放位置可知,主视图正确;左视图的高度不对;俯视图缺少两条看不到的虚线.故不符合规定的是左视图和俯视图.故答案为:左视图和俯视图.点评:本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.16.(4分)如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为.考点:几何概率.分析:计算出黑色区域的面积与整个图形面积的比,利用几何概率的计算方法解答即可.解答:解:∵由有图可看出圆面图案总面积S总=6S1+6S2,∴黑色区域的面积S黑=2S1+2S2=S总,∴飞镖落在黑色区域的概率为;故答案为:.点评:此题考查了几何概率,一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有P(A)=.17.(4分)如图,AB是⊙O的直径,AB=4cm,C、D是半圆的三等分点,连接AD、AC,则弦AC=2cm.考点:圆周角定理;含30度角的直角三角形.分析:连接OC、OD、BC,利用圆周角、弧、弦间的关系求得∠COB=60°,则由圆周角定理得到∠CAB=30°,∠ACB=90°.易求BC的长度,利用勾股定理来求AC的长度.解答:解:如图,连接OC、OD、BC.∵C、D是半圆的三等分点,∴∠COB=60°,∴∠CAB=30°.又AB是直径,∴∠ACB=90°.又AB=4cm,∴BC=AB=2cm.∴由勾股定理得到:AC==2cm.故答案是:2cm.点评:本题考查了圆周角定理、含30度的直角三角形.根据已知条件“C、D是半圆的三等分点”求得∠COB=60°是解题的关键.18.(4分)已知点A、B、C在⊙O上,若AB=AC,BC=24,⊙O半径为13,则△ABC的BC边上的高为8或18.考点:垂径定理;勾股定理.专题:分类讨论.分析:分点A在优弧和劣弧上两种情况,当A在优弧上时,过A作AD⊥BC于点D,则可知O在AD上,连接BD,在Rt△BOD中可求得OD=5,可知AD=5+13,当点A在劣弧上时可知AD=OA﹣AD=8.解答:解:如图1,当点A在优弧上时,过A作AD⊥BC于点D,∵AB=AC,∴BD=CD=12,且圆心O在AD上,连接OB,则OB=OA=13,在Rt△BOD中,由勾股定理可求得OD=5,∴AD=AO+OD=13+5=18;如图2,当点A在劣弧上时,过A作AD⊥BC于点D,∵AB=AC,∴BD=CD=12,且圆心O在AD上,连接OB,则OB=OA=13,在Rt△BOD中,由勾股定理可求得OD=5,∴AD=AO﹣OD=13﹣5=8;综上可知△ABC的BC边上的高为8或18,故答案为:8或18.点评:本题主要考查垂径定理和等腰三角形的性质、勾股定理等知识的应用,分点A在优弧和劣弧上两种情况求解是解题的关键.注意勾股定理的应用.19.(4分)如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为2.5秒.考点:视点、视角和盲区;相似三角形的应用.分析:如图,根据相似的判定可得出△ABC∽△ADE,从而得出DE的长,再根据小强骑车速度10米/秒,即可得出答案.解答:解:如图,∵BC∥DE,∴△ABC∽△ADE,∴BC:DE=5:25,∵BC=5米,∴DE=25米,∵小强骑车速度10米/秒,∴25÷10=2.5(秒),故答案为2.5米.点评:本题考查了视点、视角和盲区,以及相似三角形的应用,根据相似得出DE的长是解题的关键.20.(4分)如图,矩形OABC,tan∠AOB=,OB=10,将矩形OABC沿对角线OB翻折,点A落在A′,若反比例函数y=的图象经过A′,则反比例函数的解析式为y=﹣.考点:反比例函数综合题.分析:根据正切值,可得OA、AB的关系,根据勾股定理,可得OA的长,根据翻折的性质,可得OA′与OA的关系,根据倍角三角函数的关系,可得∠AOA′的正切,再根据补角正切间的关系,可得∠A′OE的正切,根据勾股定理,可得A′点的坐标,根据待定系数法,可得函数解析式.解答:解:如图:作A′E⊥x轴与E点.,由tan∠AOB==,得AB=4x,OA=3x.由勾股定理,得OA2+AB2=OB2,即(3x)2+(4x)2=102,解得x=2,3x=6.由翻折的性质,得OA′=OA=6,∠AOA′=2∠AOB.tan∠AOA′=tan2∠AOB===﹣.tan∠A′OE=tan(π﹣∠AOA′)=﹣tan∠AOA′=.由正切函数值,可设OE=7x,A′E=24x.由勾股定理,得A′E2+OE2=A′O2,即(7x)2+(24x)2=62.解得x=,OE=﹣,A′E=,即A′点的坐标是(﹣,).反比例函数y=的图象经过A′,得k=xy=﹣×=﹣.反比例函数的解析式为y=﹣,故答案为:y=﹣.点评:本题考查了反比例函数综合题,利用了翻折的性质,三角函数的倍角关系,勾股定理.三、解答题21.(18分)计算:(1)3tan30°﹣tan45°+2cos30°+4sin60°(2)|sin45°﹣1|﹣+cos45°﹣tan60°(3)已知△ABC中,∠ABC=135°,tanA=,BC=2,求△ABC的周长.考点:解直角三角形;特殊角的三角函数值.专题:计算题.分析:(1)原式利用特殊角的三角函数值计算即可得到结果;(2)原式利用特殊角的三角函数值计算即可得到结果;(3)过CD垂直于AB,交AB延长线于点D,由题意得到三角形BCD为等腰直角三角形,根据BC的长求出CD=BD=2,在直角三角形ACD中,由tanA的值,根据CD求出AD的长,进而确定出AB的长,利用勾股定理求出AC的长,即可确定出三角形ABC周长.解答:解:(1)原式=﹣1++2=4﹣1;(2)原式=1﹣﹣1++﹣=﹣;(3)作CD⊥AB,交AB延长线于点D,∵∠ABC=135°,BC=2,∴∠CBD=45°,在Rt△BCD中,BD=CD=BC=2,在Rt△ADC中,tanA==,∴AD=4,AB=2,根据勾股定理得:AC==2,则△ABC周长为2+2+2.点评:此题考查了解直角三角形,涉及的知识有:勾股定理,特殊角的三角函数值,二次根式的性质,锐角三角函数定义,以及等腰直角三角形的判定与性质,熟练掌握定理及法则是解本题的关键.22.(10分)在4张完全相同的卡片的上面分别写上数字3,2,4,4,再将它们的背面朝上洗均匀(1)随机抽出一张卡片,求抽到数字“4”的概率.(2)若随机抽出一张卡片记下数字后放回洗均匀,再随机抽出一张卡片,用树状图或列表法求两次都没有数字“4”的概率.(3)如果再增加若干张写有数字“4”的同样卡片放入前面的卡片中洗均匀后,使得随机抽出一张卡片是4的概率为,求增加了多少张卡片?考点:列表法与树状图法;概率公式.专题:计算题.分析:(1)根据概率公式求解;(2)利用树状图展示所有16种等可能的结果数,再找出两次都没有数字“4”所占的结果数,然后根据概率公式求解;(3)设增加了x张卡片,根据概率公式得到=,然后解方程即可.解答:.解:(1)抽到数字“4”的概率==;(2)画树状图为:共有16种等可能的结果数,其中两次都没有数字“4”占4种结果数,所有两次都没有数字“4”的概率==;(3)设增加了x张卡片,根据题意得=,解得x=4,即增加了4张卡片.点评:本题考查了列表法与树状图法:通过列表法或树状图法所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了概率公式.23.(10分)如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75°方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.分析:本题是将实际问题转化为直角三角形中的数学问题,可通过构造出与实际问题有关的直角三角形,利用题中已知角和边,借助于三角函数来求解.解答:解:连接AC、AD、BC、BD,延长AT,过B作BT⊥AT于T,AC与BT交于点E.过B作BP⊥AC于点P.由已知得∠BAD=90°,∠BAC=30°,AB=3×25=75(海里),在△BEP和△AET中,∠BPE=∠A TE=90°,∠AET=∠BEP,∴∠EBP=∠EAT=30度.∵∠BA T=60°,∴∠BAP=30°,从而BP=×75=37.5(海里).∵港口C在B处的南偏东75°方向上,∴∠CBP=45度.在等腰Rt△CBP中,BC=BP=(海里),∴BC<AB.∵△BAD是Rt△,∴BD>AB.综上,可得港口C离B点位置最近.∴此船应转向南偏东75°方向上直接驶向港口C.设由B驶向港口C船的速度为每小时x海里,则据题意应有(60÷5×4﹣8)≤75,解不等式,得:x≥20(海里).答:此船应转向沿南偏东75°的方向向港口C航行,且航行速度至少不低于每小时20海里,才能保证船在抵达港口前不会沉没.点评:根据题意准确画出示意图是解这类题的前提和保障.可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,使问题得以解决.24.(10分)江北区为了了解该区常驻市民对跑步、篮球、足球、羽毛球、舞蹈等体育项目的喜爱情况,在该区范围内随机抽取了若干名常驻市民,对他们喜爱以上的体育项目(每人只选一项)进行了问卷调查,将数据进行统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整)(1)在这次问卷调查中,一共抽查50名常驻市民,篮球项目所占圆心角的度数是144°;估计该区1200万常驻市民中有480万人喜爱足球运动、有48万人喜欢跑步;(2)补全频数分布直方图;(3)若这次问卷调查中喜欢跑步的人员中有1名男士,喜欢舞蹈的人员中有2名女士,现从喜欢跑步和喜欢舞蹈的人员中随机选取两名作区代表参加重庆市的竞技比赛,用列表法或树状图求所选的两名恰好是一位喜欢跑步的男士和一位喜欢舞蹈的女士的概率.考点:列表法与树状图法;频数(率)分布直方图;扇形统计图.。
重庆市巴蜀中学2019届高考适应性月考文科数学试卷及参考答案(11页)

重庆市巴蜀中学2019届高考适应性月考文科数学试卷文科数学注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3. 考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.4. 考试结束后,请在教师指导下扫描二维码观看名师讲解.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集U R =,{}|0A x x =>,{}|1B x x =>-,则()U C A B =I ( ) A. (]1,0- B. ()1,1- C. ()1,-+∞D. [)0,12. 复数()211i i-+的模等于( )A. 1B.C.D. 23. 已知l 为直线,α,β为平面,下列条件中一定能判断出l α⊥的是( ) A. a α⊂,b α⊂,l a ⊥,l b ⊥ B. l 垂直于α内的无数多条直线 C. //βα,l β⊥ D. βα⊥,//l β4. 函数()()2log 1f x ax =-在区间[]1,2上单调递增,则a 的取值范围是( ) A. 10,2⎛⎫ ⎪⎝⎭B. ()0,+∞C. 1,2⎛⎫+∞⎪⎝⎭D. ()1,+∞5. 已知实数x ,y 满足02304120y x y x y <⎧⎪--<⎨⎪++>⎩,则43z x y =-的取值范围是( )A. ()6,6-B. ()6,12-C. ()12,6-D. ()12,12-6. 已知直线1x x =,2x x =分别是曲线()2cos 33x f x π⎛⎫=-⎪⎝⎭与()sin3g x x =-的对称轴,则()12tan 33x x +=( )A. 3-B.3C. 3±D. 07. 现有大小、形状完全相同的三个小球,分别写有“游”、“记”、“西”三个字,随机地将这三个小球排成一排,恰好从左至右看是“西游记”的概率为( ) A.14B.15C.16D.178. 为了得到函数sin 216y x π⎛⎫=-+ ⎪⎝⎭的图象,只要将22sin y x =的图象上所有点( ) A. 向左平移3π个单位长度 B. 向右平移3π个单位长度C. 向左平移6π个单位长度D. 向右平移6π个单位长度9. 程序框图如图所示,则该程序运行后输出的S 的值是( )A.43B.74C.117D.151110. 已知在锐角ABC ∆中,sin2A =,BD 为AC 边上的高(D 为垂足),若以B ,D 为焦点的双曲线经过A 点,则双曲线的离心率e =( )A.32B.C. 3D. 211. 若A ,B 分别是直线20x y --=与x 轴,y 轴的交点,圆C :()()22448x y -++=上有任意一点M ,则AMB ∆的面积的最大值是( )A. 6B. 8C. 10D. 1212. 已知在R 上的偶函数()y f x =,当0x ≥时,()2f x x x =-,则关于x 的不等式()()2f f x ≤的解集为( ) A. []1,1-B. []2,2-C. []3,3-D. []4,4-二、填空题(本大题共4小题,每小题5分,共20分)13. 小明同学把高中6次数学考试的分数制作成茎叶图如图,则小明6次数学成绩的中位数为______.14. 在棱长为2的正方体1111ABCD A B C D -中,异面直线11B D 和1BC 所成的角为______.15. 已知在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,若222a b c bc -=-,3BC =,4B π∠=,则AC =______.16. 在ABC ∆中,BC 边上的中线AM 的长度为4,点O 在线段AM 上运动,则()OA OB OC ⋅+u u u r u u u r u u u r的最小值是______.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17. 已知等比数列{}n a 的前n 项和为n S ,满足314S =,且2a ,13a a +,4a 成等差数列. (1)求数列{}n a 的通项公式; (2)求使得30n S ≥成立的最小整数n .18. 如图是某公司一种产品的日销售量y (单位:百件)关于日最高气温x (单位:C ︒)的散点图.数据:(1)请剔除一组数据,使得剩余数据的线性相关性最强,并用剩余数据求日销售量y关于日最高气温x的线性回归方程$$ y bx a =+$;(2)根据现行《重庆市防暑降温措施管理办法》.若气温超过36度,职工可享受高温补贴.已知某日该产品的销售量为53.1,请用(1)中求出的线性回归方程判断该公司员工当天是否可享受高温补贴?附:()()()121ni iiniix x y y bx x==--=-∑∑$,$a y bx=-$.19. 如图,已知在直三棱柱111ABC A B C-中,1AA AC=.(1)若AC BC⊥,求证:1AC⊥平面1A BC;(2)若在底面△ABC∆中,2AB BC AC===,点P为线段1A B上一点,满足三棱锥C ABP-的体积,求线段BP的长度.20. 已知椭圆C:()222210x ya ba b+=>>,且()10,1P,212P⎫⎪⎭这两点在该椭圆上.(1)求该椭圆方程;(2)过()1,0K 的直线l 交椭圆于A ,B 两点,且2AK KB =u u u r u u u r,求直线l 的方程.21. 已知函数()()21ln 12f x x a x =+-. (1)当1a =-时,求()f x 的单调增区间;(2)若4a >,且()f x 在()0,1上有唯一的零点0x ,求证:210ex e --<<.请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线1C :4cos ρθ=,直线l 经过点()1,0M ,且倾斜角为θ.(1)求曲线1C 的直角坐标方程及直线l 的参数方程;(2)若直线l 与曲线1C 相交于A ,B 两点,求证:MA MB ⋅为定值,并求该定值. 23.【选修4-5:不等式选讲】 已知函数()12f x x x =++-. (1)解不等式()5f x ≥.(2)记()f x 的最小值是m ,若0x >,0y >且x y mxy +=,求2x y +的最小值.巴蜀中学2019届高考适应性月考卷文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分) 1-5:ABCDD 6-10:ACCBD11-12:CB【解析】1. {}|0A x x =>,{}|1B x x =>-,{}|0R C A x x =≤,则()(]1,0U C A B =-I ,故选A.2.()()()()()221111111i i i i ii i ---==--++-,故选B.3. A 选项需要a ,b 相交;B 选项若这无数多条直线均平行则无法推出垂直;D 选项有很多反例,如正四棱柱面对角线不垂直底面,故选C.4. 由题及对数函数性质知010a a >⎧⎨->⎩,解得1a >,故选D.5. 由题知02304120y x y x y <⎧⎪--<⎨⎪++>⎩对应的区域如图所示(不含边界),最值在()3,0-和()1.5,6--处取得,故选D.6. 由三角函数性质知1133x k ππ=+,2232x k ππ=+,所以()1212tan 33tan 32x x k k ππππ⎛⎫+=+++⎪⎝⎭tan 32ππ⎛⎫=+= ⎪⎝⎭A. 7. 三个小球排成一排有(西,游,记)、(西,记,游),…,共有6种取法,其中恰好排成为(西,游,记)有一种,故16P =,故选C.8. 22sin cos 21sin 212y x x x π⎛⎫==-+=-+ ⎪⎝⎭sin 21sin 21626x x πππ⎛⎫⎛⎫⎛⎫→+-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C. 9. 该程序的功能是对()111112231n n+++⋅⋅⋅+⨯⨯-,n Z +∈进行求和,故选B. 10. 23cos 12sin 25A A =-=,不妨在Rt ABD ∆中,设5AB =,3AD =,4BD =,则双曲线定义有24c BD ==,22a AB AD =-=,所以离心率2ce a==,故选D.11.已知AB =M到直线的最大距离为=,所以最大面积为10,故选C. 12. 令()f x λ=,()2222x fλλ⇒≤⇒-≤≤≤,故选B.二、填空题(本大题共4小题,每小题5分,共20分) 13. 144 14. 60︒15. 16. -8【解析】13. 由茎叶图可得中位数为143和145的平均值. 14. 由11//B D BD ,且1DBC ∆为正三角形. 15. 由余弦定理得3A π∠=,三角形中由正弦定理得AC =.16. 因为M 是中点,所以2OB OC OM +=u u u r u u u r u u u u r ,则()()224OA OB OC OA OM OA OA ⋅+=⋅=-⋅-u u u r u u u r u u u r u u u r u u u u r,当2OA =时,取得最小值-8.三、解答题〔共70分.解答应写出文字说明,证明过程或演算步骤)17. 解:(1)由()()23124131142S a q q a a a a ⎧=++=⎪⎨+=+⎪⎩得12a =,2q =,故2nn a =.(2)由()12212221n n n S +-==--,314S =;430S =,并且随着n 的增大,n S 在增大, 所以使得30n S ≥的最小整数4n =. 18. 解:(1)应剔除数据点()20,18,剩余5组数据中17x =,30y =,则()()()()()()2222442204644 1.1404224b-⨯-+-⨯-++⨯===-+-++$,$30 1.11711.3a=-⨯=, 则线性回归方程为$1.111.3y x =+. (2)当日销售量为53.1时,解出38x =,因为(]3836,39∈,于是该公司员工当天可以享受高温补贴. 19.(1)证明:已知1AA AC =,所以在正方形中,11AC AC ⊥, 由平面ABC ⊥平面11AAC C ,且AC BC ⊥, 所以BC ⊥平面11AAC C ,得1AC BC ⊥, 则有1AC ⊥平面1A BC . (2)解:法1:取AB 的中点M ,则CM 为三棱锥的高,且CM =,由13C ABP ABP V CM S -∆=⋅= 所以11sin 452ABP S AB BP ∆==⋅⋅︒,则有BP = 法2:有121223A ABCV -⎫=⨯=⎪⎪⎝⎭, 所以112C ABP P ABC A ABC V V V ---==,则点P 是1A B 的中点,所以BP = 20. 解:(1)由题可得()10,1P ,可得1b =, 由2P 带入得23114a +=,所以24a =, 则方程为2214x y +=.(2)若直线l 的斜率为0时,3AK KB =u u u r u u u r,不符合;设直线方程为l :1x ty =+,()11,A x y ,()22,B x y , 由题2AK KB =u u u r u u u r,122y y =-,①联立直线方程与椭圆方程可得()224230t y ty ++-=,12224t y y t -+=+,12234y y t -=+,② 联立①②可得2125t =,所以直线l的方程为1x y =+或1x y =+. 21. 解:(1)定义域为0x >,当1a =-时,()()21ln 12f x x x =--,则()()2111'x x x x f x x -++=--=,令()'0f x ≥且0x >,则102x +<≤, 故()f x在⎛ ⎝⎦上单调递增. (2)由()()21ln 12f x x a x =+-,有()()2111'ax f x ax a x x x -+=+-=,记()21g x ax ax =-+,由4a >,有()011110242110a g a a g ⎧>⎪⎪⎛⎫=-+<⎨ ⎪⎝⎭⎪⎪=>⎩,即()f x 在()0,1上有两个极值点1x ,2x ,不妨设12x x <,且1x ,2x 是210ax ax -+=的两个根,则121012x x <<<<, 又()f x 在()0,1上有唯一的零点0x ,且当0x +→时,()f x →-∞, 结合()f x 在()0,1上的图象,得0110,2x x ⎛⎫=∈ ⎪⎝⎭,且()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩两式结合消去a ,得0001ln 02x x x --=, 即0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭, 有()001'2ln 12ln102t x x =+<+<, 即()0t x 在10,2⎛⎫ ⎪⎝⎭上单调递减,又222212131015510e t e e e e e t e e e ⎧-⎛⎫=--+=< ⎪⎪⎝⎭⎪⎨-⎛⎫⎪=-=> ⎪⎪⎝⎭⎩,由零点存在定理,210x e e --<<. 22.【选修4-4:坐标系与参数方程】解:(1)因为4cos ρθ=,所以24cos ρρθ=, 所以1C 的一般方程为2240x y x +-=;l 的参数方程为1cos sin x t y t θθ=+⎧⎨=⎩. (2)将l 的参数方程代入曲线1C 的一般方程得22cos 30t t θ-⋅-=, 所以12123MA MB t t t t ⋅==⋅=, 所以MA MB ⋅为定值3. 23.【选修4-5:不等式选讲】解:(1)()21,23,1212,1x x x x x f x ->⎧⎪=-≤≤⎨⎪-<-⎩,因为()5f x ≥,所以{}|32x x x ≥≤-或.(2)()()12123f x x x x x =++-≥+--=, 所以3m =,即3x y xy +=,即113x y+=,所以()11221221333y x x y x y x y x y ⎛⎫+++++⎪⎝⎭+==≥+, 当且仅当222x y =,即13x =,163y =+时取得等号, 所以2x y +的最小值为1+。
重庆市巴蜀中学2018-2019学年八年级(下)第一次定时作业数学试卷

(2)求证:BD=AB+AE.
26.阅读下列两则材料,回答问题:
材料一:因为 所以我们将 与 称为一对“有理化因式”,有时我们可以通过构造“有理化因式”求值
例如:已知 ,求 的值
解: ,∵
材料二:如图,点A(x1,y1),点B(x2,y2),所以AB为斜边作Rt△ABC,则C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,所以AB= ,反之,可将代数式 的值看作点(x1,y1)到点(x2,y2)的距离.例如 = ,所以可将代数式 的值看作点(x,y)到点(1,﹣1)的距离;
三、解答题
21.计算
(1)4 .
(2) .
22.
23.先化简,再求值 ,其中m是使得一次函数y=(m﹣3)x+m+1不经过第三象限的整数值.
24.随着科技 发展,油电混合动力汽车已经开始普及,某种型号油电混合动力汽车,从甲地到乙地燃油行驶纯燃油费用80元,从甲地到乙地用电行驶纯电费用30元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元
A. 14B. 24C. 20D. 28
7.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是( )
A.1cm<OA<4cmB.2cm<OA<8cmC.2cm<OA<5cmD.3cm<OA<8cm
8.如图,两条宽度分别为1和2的方形纸条交叉放置,重叠部分为四边形ABCD,若AB+BC=6,则四边形ABCD的面积是( )
2018-2019学年重庆市巴蜀中学八年级(下)第一次定时作业数学试卷
一、填空题
1.下列各式中,是分式的为( )
A. B. C. D.
(解析版)重庆巴蜀中学2019年初三上第一次抽考数学试卷.doc

(解析版)重庆巴蜀中学2019年初三上第一次抽考数学试卷【一】选择题:〔每题4分,共48分〕1、〔4分〕点A〔2,A〕在反比例函数Y=的图象上,那么A的值是〔〕A、 2B、﹣2C、﹣4D、2、〔4分〕A是锐角,假设SINA=,那么锐角A是〔〕A、 30°B、 45°C、 60°D、 90°3、〔4分〕一个几何体的三视图如下图,那么这个几何体是〔〕A、B、 C、 D、4、〔4分〕假设△ABC的三个内角满足|TANA﹣1|+〔COSB﹣〕2=0,那么△ABC 的形状是〔〕A、等腰三角形B、直角三角形C、等腰直角三角形D、等边三角形5、〔4分〕如图,AB是⊙O的直径,点C、D是⊙O上的点,假设∠CAB=25°,那么∠ADC的度数为〔〕A、 65°B、 55°C、 60°D、 75°6、〔4分〕假设锐角A满足TANA=,那么SINA的值是〔〕A、 B、C、D、7、〔4分〕直线AB与反比例函数Y=﹣和Y=交于A、B两点与Y轴交于C,假设AC=BC,那么S△AOB=〔〕A、 6B、 7C、 4D、 38、〔4分〕在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,那么抽到卡片上印有的图案都是轴对称图形的概率为〔〕A、B、C、D、9、〔4分〕一次函数Y=KX+B,现分别从装有1,﹣2两张数字卡片的甲口袋和装有﹣1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作K,乙口袋的卡片上的数字作B,那么该一次函数的图象经过【一】【二】四象限的概率是〔〕A、B、C、D、10、〔4分〕如下图,李鑫老师利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6CM,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且顶端恰好与水面平齐〔即PA=PC〕,水平线L与OC夹角A=8°〔点A在OC上〕,那么铅锤P处的水深H为〔〕〔参考数据:SIN8°≈,COS8°≈,TAN8°≈〕A、 150CMB、 144CMC、 111CMD、 105CM11、〔4分〕如图△ABC是一个直三棱柱的俯视图,假设该直三棱柱的高10CM,∠A =30°,∠C=45°,BC=2CM,那么该直三棱柱的三种视图的面积之和为〔〕A、〔42+22〕CM2B、〔22+42〕CM2C、〔44+24〕CM2D、〔60+20+20〕CM212、〔4分〕如图,直线Y1=X与双曲线Y2=〔X》0〕交于点A,将直线Y1=X 向下平移4个单位后称该直线为Y3,假设Y3与双曲线交于B,与X轴交于C,与Y轴交于D,AO=2BC,连接AB,那么以下结论错误的有〔〕①点C坐标为〔3,0〕;②K=;③S四边形OCBA=;④当2《X《4时,有Y1》Y2》Y3;⑤S四边形ABDO=2S△COD、A、 1个B、 2个C、 3个D、 4个【二】填空题〔每题4分,共32分〕13、〔4分〕计算TAN60°﹣SIN60°+COS245°=、14、〔4分〕如图,过O的直线交反比例函数Y=于A、B两点,分别过A、B两点作Y轴,X轴的平行线交于C,那么S△ABC=、15、〔4分〕如下图的几何体的三视图,这三种视图中画图不符合规定的是、16、〔4分〕如下图的圆面图案是用相同半径的圆与圆弧构成的、假设向圆面投掷飞镖,那么飞镖落在黑色区域的概率为、17、〔4分〕如图,AB是⊙O的直径,AB=4CM,C、D是半圆的三等分点,连接AD、AC,那么弦AC=、18、〔4分〕点A、B、C在⊙O上,假设AB=AC,BC=24,⊙O半径为13,那么△ABC 的BC边上的高为、19、〔4分〕如图,小明同学站在离墙〔BC〕5米的A处,发现小强同学在离墙〔BC〕20米远且与墙平行的一条公路L上骑车,墙BC长为24米,小强骑车速度10米/秒,那么小明看不见小强的时间为秒、20、〔4分〕如图,矩形OABC,TAN∠AOB=,OB=10,将矩形OABC沿对角线OB翻折,点A落在A′,假设反比例函数Y=的图象经过A′,那么反比例函数的解析式为、【三】解答题21、〔18分〕计算:〔1〕3TAN30°﹣TAN45°+2COS30°+4SIN60°〔2〕|SIN45°﹣1|﹣+COS45°﹣TAN60°〔3〕△ABC中,∠ABC=135°,TANA=,BC=2,求△ABC的周长、22、〔10分〕在4张完全相同的卡片的上面分别写上数字3,2,4,4,再将它们的背面朝上洗均匀〔1〕随机抽出一张卡片,求抽到数字“4”的概率、〔2〕假设随机抽出一张卡片记下数字后放回洗均匀,再随机抽出一张卡片,用树状图或列表法求两次都没有数字“4”的概率、〔3〕如果再增加假设干张写有数字“4”的同样卡片放入前面的卡片中洗均匀后,使得随机抽出一张卡片是4的概率为,求增加了多少张卡片?23、〔10分〕如图,在某海域内有三个港口A、D、C、港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上、一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内、当船舱渗入的海水总量超过75吨时,船将沉入海中、同时在B 处测得港口C在B处的南偏东75°方向上、假设船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没〔要求计算结果保留根号〕?并指出此时船的航行方向、24、〔10分〕江北区为了了解该区常驻市民对跑步、篮球、足球、羽毛球、舞蹈等体育项目的喜爱情况,在该区范围内随机抽取了假设干名常驻市民,对他们喜爱以上的体育项目〔每人只选一项〕进行了问卷调查,将数据进行统计并绘制成了如下图的频数分布直方图和扇形统计图〔均不完整〕〔1〕在这次问卷调查中,一共抽查名常驻市民,篮球项目所占圆心角的度数是;估计该区1200万常驻市民中有人喜爱足球运动、有人喜欢跑步;〔2〕补全频数分布直方图;〔3〕假设这次问卷调查中喜欢跑步的人员中有1名男士,喜欢舞蹈的人员中有2名女士,现从喜欢跑步和喜欢舞蹈的人员中随机选取两名作区代表参加重庆市的竞技比赛,用列表法或树状图求所选的两名恰好是一位喜欢跑步的男士和一位喜欢舞蹈的女士的概率、25、〔10分〕如图,直线L1:Y1=KX+B与反比例函数Y2=相交于A〔﹣1,4〕和B〔﹣4,A〕,直线L2:Y3=﹣X+C与反比例函数Y2=相交于B、C两点,交Y轴于点D,连接OB、OC、OA、〔1〕求反比例函数的解析式和C的值、〔2〕求△BOC的面积〔3〕直接写出当KX+B≥时X的取值范围、〔4〕假设过原点O的直线交反比列函数于P、Q两点〔P在第二象限、Q在第四象限〕当以P、A、C、Q为顶点的四边形的面积为30时,求点Q的坐标、26、〔12分〕如图,在平面直角坐标系中,矩形ABCD,E是BC上一点,∠AED=90°,AB=6,SIN∠AEB=,矩形ABCD的点B与O重合,BC在X轴上,现有一张硬纸片△MGN,∠MGN=90°,点M在X轴上,点G在ED上,NG=3,N与E重合、现将△MGN以每秒1个单位的速度沿EB方向在X轴上匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD方向向点D匀速移动,点Q为直线GN与线段AE的交点,连接QP,当点P 到达终点D时,△MGN和点P同时停止运动,设运动时间X秒、〔1〕假设反比例函数的图象经过点D,求该反比例函数的解析式、〔2〕在整个运动过程中,设△MGN与△ABE重叠部分的面积为Y,求Y与X的函数关系式,并写出X的取值范围、〔3〕在整个运动过程中,是否存在点P,使△APQ为等腰三角形,假设存在,求出X的值,假设不存在,说明理由、重庆市巴蜀中学2018届九年级上学期第一次月考数学试卷参考答案与试题解析【一】选择题:〔每题4分,共48分〕1、〔4分〕点A〔2,A〕在反比例函数Y=的图象上,那么A的值是〔〕A、 2B、﹣2C、﹣4D、考点:反比例函数图象上点的坐标特征、分析:直接将点〔2,A〕代入Y=即可求出A的值、解答:解:由题意知,A=﹣,解得:A=﹣2、应选B、点评:此题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数、2、〔4分〕A是锐角,假设SINA=,那么锐角A是〔〕A、 30°B、 45°C、 60°D、 90°考点:特殊角的三角函数值、分析:根据特殊角的三角函数值求解、解答:解:∵SINA=,∴∠α=60°、应选C、点评:此题考查了特殊角的三角函数值,解答此题的关键是掌握几个特殊角的三角函数值、3、〔4分〕一个几何体的三视图如下图,那么这个几何体是〔〕A、B、 C、 D、考点:由三视图判断几何体、分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形、解答:解:俯视图为不规那么四边形,只有C符合、应选C、点评:此题考查由三视图确定几何体的形状,可运用排除法来解答、4、〔4分〕假设△ABC的三个内角满足|TANA﹣1|+〔COSB﹣〕2=0,那么△ABC 的形状是〔〕A、等腰三角形B、直角三角形C、等腰直角三角形D、等边三角形考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方、分析:根据非负数的性质,求出∠A和∠B的度数,然后可判定△ABC的形状、解答:解:由题意得,TANA﹣1=0,COSB﹣=0,那么TANA=1,COSB=,∠A=45°,∠B=45°,那么∠C=180°﹣45°﹣45°=90°,故△ABC为等腰直角三角形、应选C、点评:此题考查了特殊角的三角函数值,解答此题的关键是掌握几个特殊角的三角函数值、5、〔4分〕如图,AB是⊙O的直径,点C、D是⊙O上的点,假设∠CAB=25°,那么∠ADC的度数为〔〕A、 65°B、 55°C、 60°D、 75°考点:圆心角、弧、弦的关系、分析:由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠CAB=25°,得出∠B的度数,根据同弧所对的圆周角相等继而求得∠ADC的度数、解答:解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=25°,∴∠ABC=90°﹣∠CAB=65°,∴∠ADC=∠ABC=65°、应选A、点评:此题考查了圆周角定理以及直角三角形的性质、此题难度不大,注意掌握数形结合思想的应用、6、〔4分〕假设锐角A满足TANA=,那么SINA的值是〔〕A、 B、C、D、考点:锐角三角函数的定义、分析:根据题意,由TANA=,易得SINA==、解答:解:∵TANA=,∴SINA==,故答案为:、点评:此题主要考查了同角三角函数的基本关系,解题的关键是结合三角函数的定义、7、〔4分〕直线AB与反比例函数Y=﹣和Y=交于A、B两点与Y轴交于C,假设AC=BC,那么S△AOB=〔〕A、 6B、 7C、 4D、 3考点:反比例函数与一次函数的交点问题、专题:计算题、分析:作AD⊥Y轴于D,BE⊥Y轴于E,如图,先证明△ACD≌△BCE得到S△ACD =S△BCE,再利用面积代换得到S△AOB=S△AOD+S△BOE,然后根据反比例函数比例系数K的几何意义进行计算、解答:解:作AD⊥Y轴于D,BE⊥Y轴于E,如图,在△ACD和△BCE中,,∴△ACD≌△BCE,∴S△ACD=S△BCE,∴S△AOB=S△AOC+S△BOC=S△AOD+S△ACD+S△BOC=S△AOD+S△BCE+S△BOC=S△AOD+S△BOE=•|﹣2|+•|4|=3、应选D、点评:此题考查了反比例函数与一次函数的交点问题:一次函数与反比例函数的交点坐标满足两个函数解析式、也考查了反比例函数比例系数K的几何意义、8、〔4分〕在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,那么抽到卡片上印有的图案都是轴对称图形的概率为〔〕A、B、C、D、考点:列表法与树状图法;轴对称图形、分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案、解答:解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,∴抽到卡片上印有的图案都是轴对称图形的概率为:=、应选D、点评:此题考查的是用列表法或画树状图法求概率、列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件、注意概率=所求情况数与总情况数之比、9、〔4分〕一次函数Y=KX+B,现分别从装有1,﹣2两张数字卡片的甲口袋和装有﹣1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作K,乙口袋的卡片上的数字作B,那么该一次函数的图象经过【一】【二】四象限的概率是〔〕A、B、C、D、考点:列表法与树状图法;一次函数图象与系数的关系、分析:先根据题意列出树状图,再找出所有情况,看K《0,B》0的情况占总情况的多少即可求出答案、解答:解:画树状图共有6种情况,因为一次函数Y=KX+B经过第【一】【二】四象限,那么K《0,B》0,又因为K《0,B》0的情况有K=﹣1,B=2或K=﹣1,B=3两种情况,所以一次函数Y=KX+B经过第【一】【二】四象限的概率为=;应选:D、点评:此题考查了列表法与树状图,如果一个事件有N种可能,而且这些事件的可能性相同,其中事件A出现M种结果,那么事件A的概率P〔A〕=,注意此题是放回实验;10、〔4分〕如下图,李鑫老师利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6CM,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且顶端恰好与水面平齐〔即PA=PC〕,水平线L与OC夹角A=8°〔点A在OC上〕,那么铅锤P处的水深H为〔〕〔参考数据:SIN8°≈,COS8°≈,TAN8°≈〕A、 150CMB、 144CMC、 111CMD、 105CM考点:解直角三角形的应用、分析:在RT△ABC中,∠ACB=α=8°,AB=6,根据三角函数就可以求出BC的长;在直角△ABC中,根据条件,利用勾股定理就可以求出水深H、解答:解:∵L∥BC,∴∠ACB=α=8°,在RT△ABC中,∵TANα=,∴BC===42〔CM〕,根据题意,得H2+422=〔H+6〕2,∴H=144〔CM〕、应选:B、点评:此题考查了学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用、11、〔4分〕如图△ABC是一个直三棱柱的俯视图,假设该直三棱柱的高10CM,∠A =30°,∠C=45°,BC=2CM,那么该直三棱柱的三种视图的面积之和为〔〕A、〔42+22〕CM2B、〔22+42〕CM2C、〔44+24〕CM2D、〔60+20+20〕CM2考点:解直角三角形;简单几何体的三视图、分析:该直三棱柱的主视图与左视图都是矩形,俯视图是三角形,根据矩形与三角形的面积公式分别计算,再相加即可、解答:解:过B作BD⊥AC于D、在RT△BCD中,∵∠BDC=90°,∠C=45°,BC=2CM,∴BD=CD=BC=2CM,在RT△BAD中,∵∠BDA=90°,∠A=30°,∴AB=2BD=4CM,AD=BD=2CM,∴AC=AD+CD=〔2+2〕CM、主视图的面积是:10〔2+2〕=20+20〔CM2〕,左视图的面积是:10×2=20〔CM2〕,俯视图的面积是:×〔2+2〕×2=2+2〔CM2〕,∴该直三棱柱的三种视图的面积之和为:20+20+20+2+2=42+22〔CM2〕、应选A、点评:此题考查了解直角三角形,简单几何体的三视图,得出该直三棱柱的三种视图的形状是解题的关键、12、〔4分〕如图,直线Y1=X与双曲线Y2=〔X》0〕交于点A,将直线Y1=X 向下平移4个单位后称该直线为Y3,假设Y3与双曲线交于B,与X轴交于C,与Y轴交于D,AO=2BC,连接AB,那么以下结论错误的有〔〕①点C坐标为〔3,0〕;②K=;③S四边形OCBA=;④当2《X《4时,有Y1》Y2》Y3;⑤S四边形ABDO=2S△COD、A、1个B、 2个C、 3个D、 4个考点:反比例函数与一次函数的交点问题、专题:计算题、分析:根据一次函数图象的平移规律,由Y1=X向下平移4个单位得到直线BC的解析式为Y3=X﹣4,然后把Y=0代入确定C点坐标,即可判断①;作AE⊥X轴于E点,BF⊥X轴于F点,易证得RT△OAE∽△RTCBF,那么===2,假设设A点坐标为〔A,A〕,那么CF=A,BF=A,得到B点坐标〔3+A,A〕,然后根据反比例函数上点的坐标特征得A•A=〔3+A〕•A,解得A=2,于是可确定点A点坐标为〔2,〕,再将A点坐标代入Y2=,求出K的值,即可判断②;根据S四边形OCBA=S△OAE+S梯形AEFB﹣S△BCF,求出S四边形OCBA,即可判断③;根据图象得出当2《X 《4时,直线Y1在双曲线Y2的上方,双曲线Y2又在直线Y3的上方,即可判断④;先根据三角形面积公式求出S△COD=×3×4=6,再由S四边形ABDO=S四边形OCBA+S△OCD,得出S四边形ABDO=12,即可判断⑤、解答:解:①∵将直线Y1=X向下平移4个单位后称该直线为Y3,Y3与双曲线交于B,与X轴交于C,∴直线BC的解析式为Y3=X﹣4,把Y=0代入得X﹣4=0,解得X=3,∴C点坐标为〔3,0〕,故本结论正确;②作AE⊥X轴于E点,BF⊥X轴于F点,如图,∵OA∥BC,∴∠AOC=∠BCF,∴RT△OAE∽RT△CBF,∴===2,设A点坐标为〔A,A〕,那么OE=A,AE=A,∴CF=A,BF=A,∴OF=OC+CF=3+A,∴B点坐标为〔3+A,A〕,∵点A与点B都在Y2=〔X》0〕的图象上,∴A•A=〔3+A〕•A,解得A=2,∴点A的坐标为〔2,〕,把A〔2,〕代入Y=,得K=2×=,故本结论正确;③∵A〔2,〕,B〔4,〕,CF=A=1,∴S四边形OCBA=S△OAE+S梯形AEFB﹣S△BCF=×2×+×〔+〕×2﹣×1×=+4﹣=6,故本结论错误;④由图象可知,当2《X《4时,有Y1》Y2》Y3,故本结论正确;⑤∵S△COD=×3×4=6,S四边形ABDO=S四边形OCBA+S△OCD=6+6=12,∴S四边形ABDO=2S△COD,故本结论正确、应选A、点评:此题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式、也考查了相似三角形的判定与性质,图形的面积以及一次函数图象的平移问题、【二】填空题〔每题4分,共32分〕13、〔4分〕计算TAN60°﹣SIN60°+COS245°=、考点:特殊角的三角函数值、分析:将特殊角的三角函数值代入求解、解答:解:原式=﹣+=、故答案为:、点评:此题考查了特殊角的三角函数值,解答此题的关键是掌握几个特殊角的三角函数值、14、〔4分〕如图,过O的直线交反比例函数Y=于A、B两点,分别过A、B两点作Y轴,X轴的平行线交于C,那么S△ABC=8、考点:反比例函数系数K的几何意义、分析:设点A〔X,Y〕,那么XY=﹣4,根据交点关于原点对称可得出B〔﹣X,﹣Y〕,再根据三角形面积的公式进行计算即可、解答:解:设点A〔X,Y〕,那么B〔﹣X,﹣Y〕,所以XY=﹣4,S△ABC=•〔﹣X﹣X〕〔Y+Y〕=﹣2XY=8,故答案为8、点评:此题考查了反比例函数系数K的几何意义,解题关键是确定点A、B坐标,三角形面积的计算、15、〔4分〕如下图的几何体的三视图,这三种视图中画图不符合规定的是左视图和俯视图、考点:简单组合体的三视图、分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图、解答:解:根据几何体的摆放位置可知,主视图正确;左视图的高度不对;俯视图缺少两条看不到的虚线、故不符合规定的是左视图和俯视图、故答案为:左视图和俯视图、点评:此题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线、16、〔4分〕如下图的圆面图案是用相同半径的圆与圆弧构成的、假设向圆面投掷飞镖,那么飞镖落在黑色区域的概率为、考点:几何概率、分析:计算出黑色区域的面积与整个图形面积的比,利用几何概率的计算方法解答即可、解答:解:∵由有图可看出圆面图案总面积S总=6S1+6S2,∴黑色区域的面积S黑=2S1+2S2=S总,∴飞镖落在黑色区域的概率为;故答案为:、点评:此题考查了几何概率,一般地,对于古典概型,如果试验的基本事件为N,随机事件A所包含的基本事件数为M,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P〔A〕,即有P〔A〕=、17、〔4分〕如图,AB是⊙O的直径,AB=4CM,C、D是半圆的三等分点,连接AD、AC,那么弦AC=2CM、考点:圆周角定理;含30度角的直角三角形、分析:连接OC、OD、BC,利用圆周角、弧、弦间的关系求得∠COB=60°,那么由圆周角定理得到∠CAB=30°,∠ACB=90°、易求BC的长度,利用勾股定理来求AC 的长度、解答:解:如图,连接OC、OD、BC、∵C、D是半圆的三等分点,∴∠COB=60°,∴∠CAB=30°、又AB是直径,∴∠ACB=90°、又AB=4CM,∴BC=AB=2CM、∴由勾股定理得到:AC==2CM、故答案是:2CM、点评:此题考查了圆周角定理、含30度的直角三角形、根据条件“C、D是半圆的三等分点”求得∠COB=60°是解题的关键、18、〔4分〕点A、B、C在⊙O上,假设AB=AC,BC=24,⊙O半径为13,那么△ABC 的BC边上的高为8或18、考点:垂径定理;勾股定理、专题:分类讨论、分析:分点A在优弧和劣弧上两种情况,当A在优弧上时,过A作AD⊥BC于点D,那么可知O在AD上,连接BD,在RT△BOD中可求得OD=5,可知AD=5+13,当点A在劣弧上时可知AD=OA﹣AD=8、解答:解:如图1,当点A在优弧上时,过A作AD⊥BC于点D,∵AB=AC,∴BD=CD=12,且圆心O在AD上,连接OB,那么OB=OA=13,在RT△BOD中,由勾股定理可求得OD=5,∴AD=AO+OD=13+5=18;如图2,当点A在劣弧上时,过A作AD⊥BC于点D,∵AB=AC,∴BD=CD=12,且圆心O在AD上,连接OB,那么OB=OA=13,在RT△BOD中,由勾股定理可求得OD=5,∴AD=AO﹣OD=13﹣5=8;综上可知△ABC的BC边上的高为8或18,故答案为:8或18、点评:此题主要考查垂径定理和等腰三角形的性质、勾股定理等知识的应用,分点A在优弧和劣弧上两种情况求解是解题的关键、注意勾股定理的应用、19、〔4分〕如图,小明同学站在离墙〔BC〕5米的A处,发现小强同学在离墙〔BC〕20米远且与墙平行的一条公路L上骑车,墙BC长为24米,小强骑车速度10米/秒,那么小明看不见小强的时间为2、5秒、考点:视点、视角和盲区;相似三角形的应用、分析:如图,根据相似的判定可得出△ABC∽△ADE,从而得出DE的长,再根据小强骑车速度10米/秒,即可得出答案、解答:解:如图,∵BC∥DE,∴△ABC∽△ADE,∴BC:DE=5:25,∵BC=5米,∴DE=25米,∵小强骑车速度10米/秒,∴25÷10=2、5〔秒〕,故答案为2、5米、点评:此题考查了视点、视角和盲区,以及相似三角形的应用,根据相似得出DE 的长是解题的关键、20、〔4分〕如图,矩形OABC,TAN∠AOB=,OB=10,将矩形OABC沿对角线OB翻折,点A落在A′,假设反比例函数Y=的图象经过A′,那么反比例函数的解析式为Y=﹣、考点:反比例函数综合题、分析:根据正切值,可得OA、AB的关系,根据勾股定理,可得OA的长,根据翻折的性质,可得OA′与OA的关系,根据倍角三角函数的关系,可得∠AOA′的正切,再根据补角正切间的关系,可得∠A′OE的正切,根据勾股定理,可得A′点的坐标,根据待定系数法,可得函数解析式、解答:解:如图:作A′E⊥X轴与E点、,由TAN∠AOB==,得AB=4X,OA=3X、由勾股定理,得OA2+AB2=OB2,即〔3X〕2+〔4X〕2=102,解得X=2,3X=6、由翻折的性质,得OA′=OA=6,∠AOA′=2∠AOB、TAN∠AOA′=TAN2∠AOB===﹣、TAN∠A′OE=TAN〔π﹣∠AOA′〕=﹣TAN∠AOA′=、由正切函数值,可设OE=7X,A′E=24X、由勾股定理,得A′E2+OE2=A′O2,即〔7X〕2+〔24X〕2=62、解得X=,OE=﹣,A′E=,即A′点的坐标是〔﹣,〕、反比例函数Y=的图象经过A′,得K=XY=﹣×=﹣、反比例函数的解析式为Y=﹣,故答案为:Y=﹣、点评:此题考查了反比例函数综合题,利用了翻折的性质,三角函数的倍角关系,勾股定理、【三】解答题21、〔18分〕计算:〔1〕3TAN30°﹣TAN45°+2COS30°+4SIN60°〔2〕|SIN45°﹣1|﹣+COS45°﹣TAN60°〔3〕△ABC中,∠ABC=135°,TANA=,BC=2,求△ABC的周长、考点:解直角三角形;特殊角的三角函数值、专题:计算题、分析:〔1〕原式利用特殊角的三角函数值计算即可得到结果;〔2〕原式利用特殊角的三角函数值计算即可得到结果;〔3〕过CD垂直于AB,交AB延长线于点D,由题意得到三角形BCD为等腰直角三角形,根据BC的长求出CD=BD=2,在直角三角形ACD中,由TANA的值,根据CD求出AD的长,进而确定出AB的长,利用勾股定理求出AC的长,即可确定出三角形ABC周长、解答:解:〔1〕原式=﹣1++2=4﹣1;〔2〕原式=1﹣﹣1++﹣=﹣;〔3〕作CD⊥AB,交AB延长线于点D,∵∠ABC=135°,BC=2,∴∠CBD=45°,在RT△BCD中,BD=CD=BC=2,在RT△ADC中,TANA==,∴AD=4,AB=2,根据勾股定理得:AC==2,那么△ABC周长为2+2+2、点评:此题考查了解直角三角形,涉及的知识有:勾股定理,特殊角的三角函数值,二次根式的性质,锐角三角函数定义,以及等腰直角三角形的判定与性质,熟练掌握定理及法那么是解此题的关键、22、〔10分〕在4张完全相同的卡片的上面分别写上数字3,2,4,4,再将它们的背面朝上洗均匀〔1〕随机抽出一张卡片,求抽到数字“4”的概率、〔2〕假设随机抽出一张卡片记下数字后放回洗均匀,再随机抽出一张卡片,用树状图或列表法求两次都没有数字“4”的概率、〔3〕如果再增加假设干张写有数字“4”的同样卡片放入前面的卡片中洗均匀后,使得随机抽出一张卡片是4的概率为,求增加了多少张卡片?考点:列表法与树状图法;概率公式、专题:计算题、分析:〔1〕根据概率公式求解;〔2〕利用树状图展示所有16种等可能的结果数,再找出两次都没有数字“4”所占的结果数,然后根据概率公式求解;〔3〕设增加了X张卡片,根据概率公式得到=,然后解方程即可、解答:、解:〔1〕抽到数字“4”的概率==;〔2〕画树状图为:共有16种等可能的结果数,其中两次都没有数字“4”占4种结果数,所有两次都没有数字“4”的概率==;〔3〕设增加了X张卡片,根据题意得=,解得X=4,即增加了4张卡片、点评:此题考查了列表法与树状图法:通过列表法或树状图法所有可能的结果求出N,再从中选出符合事件A或B的结果数目M,求出概率、也考查了概率公式、23、〔10分〕如图,在某海域内有三个港口A、D、C、港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上、一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内、当船舱渗入的海水总量超过75吨时,船将沉入海中、同时在B 处测得港口C在B处的南偏东75°方向上、假设船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没〔要求计算结果保留根号〕?并指出此时船的航行方向、考点:解直角三角形的应用-方向角问题、专题:应用题;压轴题、分析:此题是将实际问题转化为直角三角形中的数学问题,可通过构造出与实际问题有关的直角三角形,利用题中角和边,借助于三角函数来求解、解答:解:连接AC、AD、BC、BD,延长AT,过B作BT⊥AT于T,AC与BT交于点E、过B作BP⊥AC于点P、由得∠BAD=90°,∠BAC=30°,AB=3×25=75〔海里〕,在△BEP和△AET中,∠BPE=∠ATE=90°,∠AET=∠BEP,∴∠EBP=∠EAT=30度、∵∠BAT=60°,∴∠BAP=30°,从而BP=×75=37、5〔海里〕、∵港口C在B处的南偏东75°方向上,∴∠CBP=45度、在等腰RT△CBP中,BC=BP=〔海里〕,∴BC《AB、∵△BAD是RT△,∴BD》AB、综上,可得港口C离B点位置最近、∴此船应转向南偏东75°方向上直接驶向港口C、设由B驶向港口C船的速度为每小时X海里,那么据题意应有〔60÷5×4﹣8〕≤75,解不等式,得:X≥20〔海里〕、答:此船应转向沿南偏东75°的方向向港口C航行,且航行速度至少不低于每小时20海里,才能保证船在抵达港口前不会沉没、点评:根据题意准确画出示意图是解这类题的前提和保障、可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,使问题得以解决、24、〔10分〕江北区为了了解该区常驻市民对跑步、篮球、足球、羽毛球、舞蹈等体育项目的喜爱情况,在该区范围内随机抽取了假设干名常驻市民,对他们喜爱以上的体育项目〔每人只选一项〕进行了问卷调查,将数据进行统计并绘制成了如下图的频数分布直方图和扇形统计图〔均不完整〕〔1〕在这次问卷调查中,一共抽查50名常驻市民,篮球项目所占圆心角的度数是144°;估计该区1200万常驻市民中有480万人喜爱足球运动、有48万人喜欢跑步;〔2〕补全频数分布直方图;〔3〕假设这次问卷调查中喜欢跑步的人员中有1名男士,喜欢舞蹈的人员中有2名女士,现从喜欢跑步和喜欢舞蹈的人员中随机选取两名作区代表参加重庆市的竞技比赛,用列表法或树状图求所选的两名恰好是一位喜欢跑步的男士和一位喜欢舞蹈的女士的概率、考点:列表法与树状图法;频数〔率〕分布直方图;扇形统计图、专题:计算题、分析:〔1〕根据喜欢羽毛球的人数和它所占的百分比可计算出所抽查的人数;用。
2019-2020学年重庆市渝中区巴蜀中学七年级(上)第一次月考数学试卷

2019-2020学年重庆市渝中区巴蜀中学七年级(上)第一次月考数学试卷(考试时间:120分钟满分:150分)一、选择题:(每小题4分,共48分)1.3的相反数是()A.3 B.﹣3 C.D.﹣2.下列各式中,不是代数式的是()A.3a B.0 C.2x=1 D.3.下列计算正确的是()A.﹣1+(﹣1)=0 B.0﹣(﹣1)=﹣1 C.1÷(﹣3)=D.﹣2×(﹣3)=64.绝对值大于2且小于5的所有负整数有()A.1个B.2个C.3个D.无数个5.在﹣(﹣1),﹣(﹣3)2,﹣22,﹣(﹣2)2这四个数中,最大的数与最小的数的和是()A.1 B.﹣1 C.5 D.﹣86.在下列六个数中:0,,,0.101001,﹣10%,5213,分数的个数是()A.2个B.3个C.4个D.5个7.我校给某“希望小学”邮寄每册a元的图书1000册,若每册图书的邮费为书价的5%,则共需邮费()元.A.5%a B.5%×1000aC.1000a(1+5%)D.508.已知m是负整数,则m,﹣m,的大小关系是()A.﹣m>≥m B.﹣m>>m C.m>>﹣m D.≥m>﹣m9.下列说法中,不正确的个数有()①有理数分为正有理数和负有理数,②绝对值等于本身的数是正数,③平方等于本身的数是±1,④只有符号不同的两个数是相反数,⑤多项式5x2﹣3x﹣1是二次三项式,常数项是1.A.2个B.3个C.4个D.5个10.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y的值是()A.5 B.10 C.19 D.2111.已知整数a、b,c,d在数轴上对应的点如图所示,其中|b|<|a|=|c|<|d|,则下列各式:①a+b+c+d >0,②b﹣a=b+c,③a c<d c,④+﹣=0,⑤>﹣,其中一定成立的有()A.2个B.3个C.4个D.5个12.当a取什么范围时,关于x的方程|x﹣4|+2|x﹣2|+|x﹣1|+|x|=a总有解()A.a≥4.5 B.a≥5 C.a≥5.5 D.a≥6二、填空题:(每小题4分,共40分)13.自从重庆成为网红城市,全国各地人民纷纷涌入重庆.据人民网统计,2019年国庆黄金周期间,重庆市实现旅游总收入约41170000元,其中41170000元用科学记数法表示为元.14.单项式﹣的系数是.15.若|m﹣2|=3,则m是.16.计算:19×(﹣38)=.17.如图是一个边长为a的正方形草坪,在草坪中修两条互相垂直的宽度为b的小路,则剩下草坪(即空白部分)的面积可以表示为.18.若数轴上的点A距离原点3个单位长度,若一个点从点A出发向右移动4个单位长度,再向左移动1个单位长度,此时终点所表示的数是.19.现定义两种新运算“△”和“⊙”,对任意有理数a、b,规定:a△b=a+b﹣1,a⊙b=ab﹣a2,那么(﹣2)⊙[8△(﹣3)]=.20.若m﹣2n=﹣4,则3(m﹣2n)2﹣(2n﹣m)3+4n﹣2m﹣1=.21.如图所示,有一个数字迷宫,﹣2在迷宫的第一个拐角,3在第2个拐角,5在第3个拐角,7在第4个拐角,…那么第101个拐角是.22.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是.三、解答题(共62分)23.(30分)计算:(1)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12)(2)7+(﹣6.5)+3+(﹣1.25)+2(3)(﹣81)÷(﹣2)×÷(﹣8)(4)(5)(6)24.(6分)已知a、b互为相反数,c、d互为倒数,x的绝对值和倒数都是它本身,求代数式4x2﹣cdx+4(a3+b3)的值.25.(8分)非洲猪瘟传入中国,近期我国猪肉价格不断攀升.9月19日,商务部会同国家发改委、财政部等部门开展中央储备肉投放工作,共向市场投放中央储备猪肉10000吨.此举旨在增加猪肉市场供给,保障猪肉价格稳定.我校食堂工作人员记录了9月第三周猪肉价格变化情况:(用正数表示比前一天上升数,用负数表示比前一天下降数)星期一二三四五六七价格变化+3.0 +5.0 +4.0 ﹣2.0 ﹣1.0 +1.0 ﹣2.0 (元/千克)(1)本周猪肉价格哪一天最高?哪一天最低?(2)我国一直都是消费猪肉的大国.根据公开资料显示,并预测2019年猪肉消费量将达到5840万吨,这样全国平均每天的猪肉消费量达到了16万吨.那么9月第三周全国猪肉实际总消费比按第二周末价格销售一周的总消费增加了多少万元?26.(8分)阅读理解若在一个两位正整数N的个位数字与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为364;若将一个两位正整数M加6后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为40.(1)30的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被9整除;(3)若一个两位正整数B的“明德数”的各位数字之和是B的“至善数”各位数字之和的一半,求B的最大值.27.(10分)如图,已知数轴上有三点A、B、C,若用AB表示A、B两点的距离,AC表示A、C两点的距离,且AB=AC,点A、点C对应的数是分别是a、c,且|a+40|+|c﹣20|=0.(1)求BC的长.(2)若点P、Q分别从A、C两点同时出发向左运动,速度分别为2个单位长度每秒、5个单位长度每秒,则运动了多少秒时,Q到B的距离与P到B的距离相等?(3)若点P、Q仍然以(2)中的速度分别从A、C两点同时出发向左运动,2秒后,动点R从A点出发向右运动,点R的速度为1个单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,点R运动了多少秒时恰好满足MN+AQ=31;并求出此时R点所对应的数.1.【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.2.【解答】解:A、3a是代数式,不符合题意;B、0是代数式,不符合题意;C、2x=1是方程,不是代数式,符合题意;D、是代数式,不符合题意;故选:C.3.【解答】解:∵﹣1+(﹣1)=﹣2,∴选项A不符合题意;∴选项B不符合题意;∴选项C不符合题意;∴选项D符合题意.故选:D.4.【解答】解:绝对值大于2且小于5的所有的负整数有:﹣3,﹣4,共两个,故选:B.5.【解答】解:∵﹣(﹣1)=1,﹣(﹣3)2=﹣9,﹣28=﹣4,﹣(﹣2)2=﹣4,∴在﹣(﹣1),﹣(﹣3)2,﹣22,﹣(﹣2)2这四个数中,最大的数是1,最小的数是﹣9,故选:D.6.【解答】解:在下列六个数中:0,,,0.101001,﹣10%,5213中,分数有,0.101001,﹣10%共3个.故选:B.7.【解答】解:每册a元的图书的邮费为:5%a元则1000册图书共需邮费:5%a×1000=5%×1000a元.故选:B.8.【解答】解:∵m是负整数,∴设m=﹣2,﹣m=2,=﹣,∴﹣m>>m,当m=﹣1时m=故选:A.9.【解答】解:有理数分为正有理数、0和负有理数,故①不正确;绝对值等于本身的数是正数和0,故②不正确;只有符号不同的两个数是相反数,故④正确;即不正确的个数是4个,故选:C.10.【解答】解:当x=7时,可得,可得:b=3,故选:C.11.【解答】解:根据题意,可知b+d>0,a+c=0,∴a+b+c+d>0,故①正确;∵﹣a=c,∴b﹣a=b+c,故②正确;∵a<0,b<0,d>3,∴=﹣1+1﹣2=﹣2,故④错误;故选:B.12.【解答】解:令y=|x﹣4|+2|x﹣2|+|x﹣1|+|x|,当x≥5时,y=5x﹣9≥11,∴5<y<11;∴5≤y≤6;∴6<y<4;∴y≥9;∴a≥5时等式恒有解.故选:B.13.【解答】解:将41170000用科学记数法表示应为4.117×107.故选答案为:4.117×10714.【解答】解:单项式﹣的系数是:﹣.故答案为:﹣.15.【解答】解:∵|m﹣2|=3,∴m﹣2=±3,故答案为5或﹣2.16.【解答】解:原式=(20﹣)×(﹣38)=20×(﹣38)﹣×(﹣38)=﹣758,故答案为:﹣758.17.【解答】解:可利用平移思想将原图形中的两条小路平移到下图的位置,故答案为(a﹣b)218.【解答】解:∵点A距离原点3个单位长度∴点A表示的数为﹣3或3﹣3+4﹣4=03+4﹣1=6故答案为:3或6.19.【解答】解:∵a△b=a+b﹣1,a⊙b=ab﹣a2,∴(﹣2)⊙[8△(﹣3)]=(﹣5)⊙4=﹣8﹣4故答案为:﹣12.20.【解答】解:∵3(m﹣2n)2﹣(6n﹣m)3+4n﹣2m﹣2=3(m﹣2n)2+(m﹣3n)3﹣2(m﹣2n)﹣7,∴当m﹣2n=﹣4时,故答案为:﹣9.21.【解答】解:第1个拐弯:1+1=2,为﹣2,第2个拐弯:8+1+1=3,第4个拐弯:1+1+7+2+2=1+(1+2)×3=7,第6个拐弯:1+1+1+2+7+3+3=1+(1+2+3)×2=13,…∵101=2×50+1,故答案为:﹣2602.22.【解答】解:∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,32.14﹣3.5=28.64,∴32.14﹣3.5=2×14.32.故答案为14.32.23.【解答】解:(1)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12)=﹣8+15﹣9+12(6)7+(﹣6.5)+8+(﹣1.25)+2=6﹣3.5+6(3)(﹣81)÷(﹣4)×÷(﹣8)=16×(﹣)(4)=×36﹣×36﹣×36﹣×20=﹣62.5;=﹣1﹣0.75××(﹣20)×(﹣)=﹣;=﹣16﹣1×(2﹣)﹣=﹣16﹣(+)=﹣18.24.【解答】解:根据题意知a+b=0、cd=1、x=1,所以原式=4﹣1=3.25.【解答】解:(1)设上周末价格为a元,则本周的价格依次为:(a+3.0)元,(a+8.0)元,(a+12.0)元,(a+10.0)元,(a+4.0)元,(a+10.0)元,(a+8.0)元,因此最高为周三,最低的为周一,(2)由题意得,(3+6+12+10+9+10+8)×16×1000=960000 (万元),答:总消费增加了960000万元.26.【解答】解:(1)30的“至善数”是360;“明德数”是30+6=36故答案为:360;36.则其“至善数与“明德数”分别为:它们的差为:=90a+54∴其“至善数”与“明德数”之差能被9整除.则B的至善数的各位数字之和是a+6+b由题意得:3≤b<4时,a+b+6=(a+6+b)或者:当4≤b≤2时,a+1+(6+b﹣10)=(a+3+b)∴当b=4,a=8时,B最大,最大值为84.27.【解答】解:(1)∵|a+40|+|c﹣20|=0,∴a+40=0,c﹣20=0,∴AC=|﹣40﹣20|=60.∴BC=AC﹣AB=40.∴点B对应的数为﹣20.∵Q到B的距离与P到B的距离相等,解得:t=或t=20.(3)当运动时间为t(t>2)秒时,点P对应的数为﹣7t﹣40,点Q对应的数为﹣5t+20,点R对应的数为t﹣2﹣40,∴点M对应的数为=﹣﹣41,点N对应的数为=﹣2t﹣11,∵MN+AQ=31,当2<t<12时,30﹣t+60﹣3t=31,当12≤t≤20时,30﹣t+5t﹣60=31,当t>20时,t﹣30+5t﹣60=31,∴t﹣2=或.∴点R运动了秒或秒时恰好满足MN+AQ=31,此时点R所对应的数为﹣或﹣。
2019-2020学年重庆市渝中区巴蜀中学七年级(上)第一次月考数学试卷
2019-2020学年重庆市渝中区巴蜀中学七年级(上)第一次月考数学试卷(考试时间:120分钟满分:150分)一、选择题:(每小题4分,共48分)1.3的相反数是()A.3 B.﹣3 C.D.﹣2.下列各式中,不是代数式的是()A.3a B.0 C.2x=1 D.3.下列计算正确的是()A.﹣1+(﹣1)=0 B.0﹣(﹣1)=﹣1 C.1÷(﹣3)=D.﹣2×(﹣3)=64.绝对值大于2且小于5的所有负整数有()A.1个B.2个C.3个D.无数个5.在﹣(﹣1),﹣(﹣3)2,﹣22,﹣(﹣2)2这四个数中,最大的数与最小的数的和是()A.1 B.﹣1 C.5 D.﹣86.在下列六个数中:0,,,0.101001,﹣10%,5213,分数的个数是()A.2个B.3个C.4个D.5个7.我校给某“希望小学”邮寄每册a元的图书1000册,若每册图书的邮费为书价的5%,则共需邮费()元.A.5%a B.5%×1000aC.1000a(1+5%)D.508.已知m是负整数,则m,﹣m,的大小关系是()A.﹣m>≥m B.﹣m>>m C.m>>﹣m D.≥m>﹣m9.下列说法中,不正确的个数有()①有理数分为正有理数和负有理数,②绝对值等于本身的数是正数,③平方等于本身的数是±1,④只有符号不同的两个数是相反数,⑤多项式5x2﹣3x﹣1是二次三项式,常数项是1.A.2个B.3个C.4个D.5个10.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y的值是()A.5 B.10 C.19 D.2111.已知整数a、b,c,d在数轴上对应的点如图所示,其中|b|<|a|=|c|<|d|,则下列各式:①a+b+c+d >0,②b﹣a=b+c,③a c<d c,④+﹣=0,⑤>﹣,其中一定成立的有()A.2个B.3个C.4个D.5个12.当a取什么范围时,关于x的方程|x﹣4|+2|x﹣2|+|x﹣1|+|x|=a总有解()A.a≥4.5 B.a≥5 C.a≥5.5 D.a≥6二、填空题:(每小题4分,共40分)13.自从重庆成为网红城市,全国各地人民纷纷涌入重庆.据人民网统计,2019年国庆黄金周期间,重庆市实现旅游总收入约41170000元,其中41170000元用科学记数法表示为元.14.单项式﹣的系数是.15.若|m﹣2|=3,则m是.16.计算:19×(﹣38)=.17.如图是一个边长为a的正方形草坪,在草坪中修两条互相垂直的宽度为b的小路,则剩下草坪(即空白部分)的面积可以表示为.18.若数轴上的点A距离原点3个单位长度,若一个点从点A出发向右移动4个单位长度,再向左移动1个单位长度,此时终点所表示的数是.19.现定义两种新运算“△”和“⊙”,对任意有理数a、b,规定:a△b=a+b﹣1,a⊙b=ab﹣a2,那么(﹣2)⊙[8△(﹣3)]=.20.若m﹣2n=﹣4,则3(m﹣2n)2﹣(2n﹣m)3+4n﹣2m﹣1=.21.如图所示,有一个数字迷宫,﹣2在迷宫的第一个拐角,3在第2个拐角,5在第3个拐角,7在第4个拐角,…那么第101个拐角是.22.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是.三、解答题(共62分)23.(30分)计算:(1)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12)(2)7+(﹣6.5)+3+(﹣1.25)+2(3)(﹣81)÷(﹣2)×÷(﹣8)(4)(5)(6)24.(6分)已知a、b互为相反数,c、d互为倒数,x的绝对值和倒数都是它本身,求代数式4x2﹣cdx+4(a3+b3)的值.25.(8分)非洲猪瘟传入中国,近期我国猪肉价格不断攀升.9月19日,商务部会同国家发改委、财政部等部门开展中央储备肉投放工作,共向市场投放中央储备猪肉10000吨.此举旨在增加猪肉市场供给,保障猪肉价格稳定.我校食堂工作人员记录了9月第三周猪肉价格变化情况:(用正数表示比前一天上升数,用负数表示比前一天下降数)星期一二三四五六七价格变化+3.0 +5.0 +4.0 ﹣2.0 ﹣1.0 +1.0 ﹣2.0 (元/千克)(1)本周猪肉价格哪一天最高?哪一天最低?(2)我国一直都是消费猪肉的大国.根据公开资料显示,并预测2019年猪肉消费量将达到5840万吨,这样全国平均每天的猪肉消费量达到了16万吨.那么9月第三周全国猪肉实际总消费比按第二周末价格销售一周的总消费增加了多少万元?26.(8分)阅读理解若在一个两位正整数N的个位数字与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为364;若将一个两位正整数M加6后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为40.(1)30的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被9整除;(3)若一个两位正整数B的“明德数”的各位数字之和是B的“至善数”各位数字之和的一半,求B的最大值.27.(10分)如图,已知数轴上有三点A、B、C,若用AB表示A、B两点的距离,AC表示A、C两点的距离,且AB=AC,点A、点C对应的数是分别是a、c,且|a+40|+|c﹣20|=0.(1)求BC的长.(2)若点P、Q分别从A、C两点同时出发向左运动,速度分别为2个单位长度每秒、5个单位长度每秒,则运动了多少秒时,Q到B的距离与P到B的距离相等?(3)若点P、Q仍然以(2)中的速度分别从A、C两点同时出发向左运动,2秒后,动点R从A点出发向右运动,点R的速度为1个单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,点R运动了多少秒时恰好满足MN+AQ=31;并求出此时R点所对应的数.1.【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.2.【解答】解:A、3a是代数式,不符合题意;B、0是代数式,不符合题意;C、2x=1是方程,不是代数式,符合题意;D、是代数式,不符合题意;故选:C.3.【解答】解:∵﹣1+(﹣1)=﹣2,∴选项A不符合题意;∴选项B不符合题意;∴选项C不符合题意;∴选项D符合题意.故选:D.4.【解答】解:绝对值大于2且小于5的所有的负整数有:﹣3,﹣4,共两个,故选:B.5.【解答】解:∵﹣(﹣1)=1,﹣(﹣3)2=﹣9,﹣28=﹣4,﹣(﹣2)2=﹣4,∴在﹣(﹣1),﹣(﹣3)2,﹣22,﹣(﹣2)2这四个数中,最大的数是1,最小的数是﹣9,故选:D.6.【解答】解:在下列六个数中:0,,,0.101001,﹣10%,5213中,分数有,0.101001,﹣10%共3个.故选:B.7.【解答】解:每册a元的图书的邮费为:5%a元则1000册图书共需邮费:5%a×1000=5%×1000a元.故选:B.8.【解答】解:∵m是负整数,∴设m=﹣2,﹣m=2,=﹣,∴﹣m>>m,当m=﹣1时m=故选:A.9.【解答】解:有理数分为正有理数、0和负有理数,故①不正确;绝对值等于本身的数是正数和0,故②不正确;只有符号不同的两个数是相反数,故④正确;即不正确的个数是4个,故选:C.10.【解答】解:当x=7时,可得,可得:b=3,故选:C.11.【解答】解:根据题意,可知b+d>0,a+c=0,∴a+b+c+d>0,故①正确;∵﹣a=c,∴b﹣a=b+c,故②正确;∵a<0,b<0,d>3,∴=﹣1+1﹣2=﹣2,故④错误;故选:B.12.【解答】解:令y=|x﹣4|+2|x﹣2|+|x﹣1|+|x|,当x≥5时,y=5x﹣9≥11,∴5<y<11;∴5≤y≤6;∴6<y<4;∴y≥9;∴a≥5时等式恒有解.故选:B.13.【解答】解:将41170000用科学记数法表示应为4.117×107.故选答案为:4.117×10714.【解答】解:单项式﹣的系数是:﹣.故答案为:﹣.15.【解答】解:∵|m﹣2|=3,∴m﹣2=±3,故答案为5或﹣2.16.【解答】解:原式=(20﹣)×(﹣38)=20×(﹣38)﹣×(﹣38)=﹣758,故答案为:﹣758.17.【解答】解:可利用平移思想将原图形中的两条小路平移到下图的位置,故答案为(a﹣b)218.【解答】解:∵点A距离原点3个单位长度∴点A表示的数为﹣3或3﹣3+4﹣4=03+4﹣1=6故答案为:3或6.19.【解答】解:∵a△b=a+b﹣1,a⊙b=ab﹣a2,∴(﹣2)⊙[8△(﹣3)]=(﹣5)⊙4=﹣8﹣4故答案为:﹣12.20.【解答】解:∵3(m﹣2n)2﹣(6n﹣m)3+4n﹣2m﹣2=3(m﹣2n)2+(m﹣3n)3﹣2(m﹣2n)﹣7,∴当m﹣2n=﹣4时,故答案为:﹣9.21.【解答】解:第1个拐弯:1+1=2,为﹣2,第2个拐弯:8+1+1=3,第4个拐弯:1+1+7+2+2=1+(1+2)×3=7,第6个拐弯:1+1+1+2+7+3+3=1+(1+2+3)×2=13,…∵101=2×50+1,故答案为:﹣2602.22.【解答】解:∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,32.14﹣3.5=28.64,∴32.14﹣3.5=2×14.32.故答案为14.32.23.【解答】解:(1)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12)=﹣8+15﹣9+12(6)7+(﹣6.5)+8+(﹣1.25)+2=6﹣3.5+6(3)(﹣81)÷(﹣4)×÷(﹣8)=16×(﹣)(4)=×36﹣×36﹣×36﹣×20=﹣62.5;=﹣1﹣0.75××(﹣20)×(﹣)=﹣;=﹣16﹣1×(2﹣)﹣=﹣16﹣(+)=﹣18.24.【解答】解:根据题意知a+b=0、cd=1、x=1,所以原式=4﹣1=3.25.【解答】解:(1)设上周末价格为a元,则本周的价格依次为:(a+3.0)元,(a+8.0)元,(a+12.0)元,(a+10.0)元,(a+4.0)元,(a+10.0)元,(a+8.0)元,因此最高为周三,最低的为周一,(2)由题意得,(3+6+12+10+9+10+8)×16×1000=960000 (万元),答:总消费增加了960000万元.26.【解答】解:(1)30的“至善数”是360;“明德数”是30+6=36故答案为:360;36.则其“至善数与“明德数”分别为:它们的差为:=90a+54∴其“至善数”与“明德数”之差能被9整除.则B的至善数的各位数字之和是a+6+b由题意得:3≤b<4时,a+b+6=(a+6+b)或者:当4≤b≤2时,a+1+(6+b﹣10)=(a+3+b)∴当b=4,a=8时,B最大,最大值为84.27.【解答】解:(1)∵|a+40|+|c﹣20|=0,∴a+40=0,c﹣20=0,∴AC=|﹣40﹣20|=60.∴BC=AC﹣AB=40.∴点B对应的数为﹣20.∵Q到B的距离与P到B的距离相等,解得:t=或t=20.(3)当运动时间为t(t>2)秒时,点P对应的数为﹣7t﹣40,点Q对应的数为﹣5t+20,点R对应的数为t﹣2﹣40,∴点M对应的数为=﹣﹣41,点N对应的数为=﹣2t﹣11,∵MN+AQ=31,当2<t<12时,30﹣t+60﹣3t=31,当12≤t≤20时,30﹣t+5t﹣60=31,当t>20时,t﹣30+5t﹣60=31,∴t﹣2=或.∴点R运动了秒或秒时恰好满足MN+AQ=31,此时点R所对应的数为﹣或﹣。
重庆巴蜀2018-2019学年度(下)初三年级第一次全真模拟考试(数学试题)
盒子中随机地取出 1个球,则取出的两球标号之和为4的概率是
.
15.如图,等边△ABC边长为 10cm,以 AB为直径的☉O分别交 CA,CB于 D,E两点,则图中阴影部
分的面积(结果保留π)是
cm2.
16.如图,矩形纸片 ABCD中,已知 AD=8,折叠纸片使 AB边与对角线 AC重合,点 B落在点 F处,折
2
(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
A.67.4米
B.69.4米
C.71.4米
D.73.4米
11.如图,在直角坐标系中,直线 AB:y=-2x+b,直线 y=x与 OA的垂直平分线交于点C,与 AB交于点D,
反比例函数
的图象过点C,当
时,k的值是( )
组;
(3)该小区每月丢弃塑料袋的数不少于 40个的家庭大约有多少户?
22.某班“数学兴趣小组”对函数
的图象与性质进行了探究,探究过程如下,请补充完整.
(1)函数
的自变量 x的取值范围是
;下表是 y与 x的几组对应值.
x … -3 -2 -1 0
23 4 5 …
y…
-1
3
m
…
则表格中的 m=
;
(2)如图,在平面直角坐标系中,描出了以上表中各对对应值
痕为 AE,且 EF=3,则 AB的长为
.
17.甲、乙两人分别骑自行车从黄花园巴蜀中学、重庆洪崖洞两地出发,相向而行,甲先出发 5分钟后,
乙再出发,乙出发几分钟后和甲相遇,同时乙由于自行车故障,停车修理自行车,8分钟修好自行车后,
继续向黄花园巴蜀中学出发,甲到达重庆洪崖洞后,立即掉头,向黄花园巴蜀中学行驶,直到追上乙.甲、
重庆市巴蜀中学2018-2019学年初2019届初三下学期第一次诊断考试数学试题(无答案)
巴蜀中学初2019届初三下学期一诊考试数学试题(本卷共四个大题,满分150分,考试时间120分钟)一、选择题(本大题12小题,每小题4分,共48分)1.下列个数中是负整数的是( )A.-2B.5C.21 D.52- 2.下列剪纸作品中,不是轴对称图形的是( )3.下列调查中,适宜采用普查方式的是( )A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识4.下列命题中是假命题的是( )A.两点之间线段最短B.对顶角相等C.同角或等角的补角相等D.两直线被第三条直线所截,同位角相等 5.估计3168⨯+的值在( ) A.1到2之间 B.2到3之间 C.3到4之间 D.4到5之间6.二次函数322--=x x y 的顶点坐标是( )A.(1,-3)B.(-1,-2)C.(1,-4)D.(0,-3) 7.按如图所示的运算程序,能使输出结果为10的是( )A.2,7==y xB.2,4-=-=y xC. 4,3=-=y xD.3,21==y x 8.观察下列图形规律,其中第1个图形由6个○组成,第2个图由14个○组成,第3个图由24个○组成,……,照此规律下去,则第6个图由○的个数一共是( )A.64B.65C.66D.679.如图,AB 是☉O 的直径,CD 是☉O 上的点,∠DCB=30°,过点D 作☉O 的切线交AB 的延长线于点E ,若AB=4,则DE 的长是( )A.2B.4C.3D.3210.“不览夜景,未到重庆”,重庆两江游是指乘坐观光游船,夜游长江和嘉陵江。
如图,小洋在长江边D 处,测得江面上的“交运明月”号游船A 的俯角为40°,若DE=41米,DE ⊥CE ,CE=27米,CE 平行于AB ,BC 的坡角的正切值为34,坡长BC=135米,则AB 的长约为( ) (参考数据:84.040tan ,77.040cos ,64.040sin ≈︒≈︒≈︒)A.67.4米B.69.4米C.71.4米D.73.4米11.如图所示,在直角坐标系中,直线AB :y= -2x+b ,直线y=x 与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数x k y =的图像经过点C ,当23=∆CDE S 时,k 的值是( ) A.18 B.12 C.9 D.312.如果关于x 的不等式组⎪⎩⎪⎨⎧+<->-)21(321144x x x m 有且仅有三个奇数解,且关于x 的分式方程1323022=----x x mx 有非负数解,则符合条件的所有整数m 的和是( )A.15B.27C.29D.45二、填空题(本大题6个小题,每小题4分,共24分)13.计算:=+︒----1260sin 4)32()31(0114.甲盒装有3个乒乓球,分别标号为1,2,3;乙盒装有2个乒乓球,分别标号为1,2.现分别从每个盒中随机地取出1个球,则取出的两个球标号之和为4的概率是15.如图,等边三角形ABC 边长为10cm ,以AB 为直径的☉O 分别交CA 、CB 于D 、E 两点,则图中阴影部分的面积(结果保留π)是 cm ².16.如图,矩形纸片ABCD 中已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为 .17.甲、乙两人分别骑自行车从黄花园巴蜀中学、重庆洪崖洞两地出发,相向而行,甲先出发5分钟后,乙再出发,乙出发几分钟后和甲相遇,同时乙由于自行车故障,停车修理自行车,8分钟修好自行车后,继续向黄花园巴蜀中学出发,甲到达重庆洪崖洞后立即掉头,向黄花园巴蜀中学行驶,直到追上乙.甲乙两人之间相距的路程y (米)与甲出发的时间x (分钟)之间的关系式如图所示.则甲最后追上乙时,甲距离黄花园巴蜀中学的路程是 米.18.小明今年4月份两次同时购进了A 、B 两种不同单价的水果,第一次购买A 种水果的数量比B 水果的数量多50%,第二次购买A 水果的数量比第一次购买A 水果的数量少60%,结果第二次购买水果的总数比第一次购买水果的总数量多20%,第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(A 、B 两种水果的单价不变),则B 水果的单价与A 水果的单价的比值是 三、解答题:(本大题7个小题,每小题10分,共70分)19.计算:(1)2)2()32)(23(b a a b b a -+-+ (2)12)11(2232+-+÷---+x x x x x x x x .20.如图,△ABC中,∠C=2∠B,D是BC上一点,且AD⊥AB,点E是BD的中点,连结AE.(1)求证:BD=1AC;(2)若AE=6.5,AD=5,求△ABE的周长.21.小洋要统计小区500户居民每月丢弃塑料袋的数量情况,她随机调查了其中40户居民,按每月丢弃的塑料袋的数量分组进行统计,绘制了如下频数分布表和频数分布直方图;根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这40户家庭每月丢弃塑料袋数量的中位数位于第组;(3)该小区每月丢弃塑料袋的数量不少于40个的家庭大约有多少户?22.某班“数学兴趣小组”对函数x x y +-=11的函数图象与性质进行了探究,探究过程如下,请补充完整. (1)函数x x y +-=11的自变量x 的取值范围是 ;下表是y 与x 的几组对应值.则表格中的m= ;(2)如图,在平面直角坐标系中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数图象,写出一条该函数的其它性质 ;(4)该函数的图象关于点( , )成中心对称,若直线y=m 与该函数的图象无交点,请求出m 的取值范围.23.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已经成为国内外游客最喜欢的旅游目的地城市之一,在著名“网红打卡地”磁器口,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经过测算知,该小面成本为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天可多售30碗.(1)若该小面店每天至少卖出360碗,则每碗小面的售价不超过多少元?(2)为了更好的维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元.24.如图,在平行四边形ABCD 中,∠D=30°,AC=AD ,AF ⊥CD ,CM ⊥AN ,BN ⊥AN ,点E 在AN 上,且∠CEM=30°. (1)若AF=3,求AB 的长; (2)求证:AE BN CM =+33232.25.阅读下列两则材料,回答问题:材料一:定义直线y=kx+b (kb≠0)与直线y=bx+k (kb≠0)互为“对称直线”,例如:直线y=x+2与直线y=2x+1互为“对称直线”;直线y=kx+b 中,k 成为斜率,若A ),(11y x ,B.),(22y x 为直线y=kx+b 上任意两点(21x x ≠),则斜率2121x x y y k --=材料二:对于平面直角坐标系中的任意两点A ),(11y x ,B.),(22y x ,定义一种新的运算:L (A,B )=2121y y x x +,例如:A (-3,1),B (2,4),则L (A,B )= -3×2+1×4= -2.(1)若点A (-3,1),B (2,4)在直线y=kx+b 上,则k= ;直线y=2x+3上一点P (x ,y )又是它的“对称直线”上的点,求点P 的坐标;(2)对于直线y=kx+b 上任意一点M (m ,n ),都有点N (2m ,6n-34)在y=kx+b 的“对称直线”上,横坐标互不相同的三个点C 、D 、E 满足L (C ,D )=L (D ,E ),且D 点的坐标为(2,2),过点D 作DF ∥y 轴,交直线CE 于点F ,若DF=6,请求出直线CE 、直线y=kx+b 与x 轴围成的三角形面积.四、解答题:(本大题1个小题,共8分)26.如图,在平面直角坐标系中,抛物线22223222+--=x x y 与x 轴交于点A 、点B (点A 在B 的左侧),与y 轴交于点C ,抛物线的对称轴与x 轴交于点E 。
2018-2019学年巴蜀中学七年级上学期第一次月考数学试卷
一、选择题:(每小题3分,共36分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.−2、0、1、−3四个数中,最小的数是( )A 、−2B 、0C 、1D 、−32.下列各式中,不是整式的是( )A 、3aB 、2x =1C 、0D 、x +y3.下列各式中运算正确的是( )A 、7x −6x =1B 、x 2+x 2=x 4C 、3a 2+2a 3=5a 5D 、3x 2y −4yx 2=−x 2y4.下列有理数中,负数的个数是( )①−(−1),②−(−3)2,③−|−π|,④−(−4)3,⑤−22A 、1个B 、2个C 、3个D 、4个5.已知单项式−2x 2y n 3与3x m y 3是同类项,则n −m 的值为( ) A 、−1 B 、1 C 、2 D 、36.下列说法中,不正确的个数有( )①符号不同的数是相反数,②绝对值等于本身的数是正数,③0是最大的非负整数,也是最小的非正整数,④有理数分为正有理数和负有理数,⑤−3x 2y +4x −1是三次三项式,常数项是1.A 、2个B 、3个C 、4个D 、5个7.有理数a 、b 在数轴上的位置如图所示,则下列各式中,正确的有( )①ab >0;②|b −a|=a −b ;③a +b >0;④a 1>b1;⑤a −b <0 A 、3个 B 、2个 C 、5个 D 、4个8.若a −b =−2,ab =3,则代数式3a +2ab −3b 的值为( )A 、12B 、0C 、−12D 、−89.若A 是四次多项式,B 是三次多项式,则A +B 的次数是( )A 、四次B 、三次C 、七次D 、不能确定10.两个小朋友玩跳棋游戏,游戏的规则是:先画一根数轴,棋子落在数轴上k 0点,第一步从k 0点向左跳1个单位到k 1,第二步从k 1向右跳2个单位到k 2,第三步从k 2向左跳3个单位到k 3,第四步从k 3向右跳4个单位到k 4,…,如此跳20步,棋子落在数轴的k 20点,若表示的数是18,问k 0的值为( )A 、12B 、10C 、8D 、611.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A 、200−60xB 、140−15xC 、200−15xD 、140−60x12.如图①是一块瓷砖的图案,用这种瓷砖铺设地面,如果铺设成如图②的图案,其中完整的圆一共有5个,如果铺设成如图③的图案,其中完整的圆一共有13个,如果铺设成如图④的图案,其中完整的圆一共有25个,以此规律下去,第20个图中,完整的圆一共有( )A 、761个B 、400个C 、181个D 、221个二、填空题(每小题2分,共26分)13.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为______________平方千米.14.−732y x 的系数是___________. 15.在下列各式:①π−3;②ab =ba ;③x ;④2m −1>0:⑤yx y x +-;⑥8(x 2+y 2)中,代数式的有____________个.16.计算:|6−2π|−π=___________.17.若a 是最大的负整数,b 与c 互为倒数,|d|=5,则2a −bc −d =___________.18.设a ※b =2ab −3b 2−1,则4※(−1)=_____________.19.如图是一个边长为a 的正方形草坪,在草坪中修两条互相垂直的宽度为b 的小路,则剩下草坪(即空白部分)的面积可以表示为________________.20.如果多项式x 2−(3+a )x +5x 2b +6是关于x 的四次三项式,则ab =____________.21.当x =5时,ax 5−bx 3−8的值为12,当x =−5时,ax 5−bx 3−8的值为__________.22.由于看错了运算符号,“小马虎”把一个整式减去一个多项式2a −3b 误认为加上这个多项式,结果得出的答案是a +2b ,则原题的正确答案是__________.23.下列说法:①若a ≠b ,则a 2≠b 2,②若|a|=|−2|,则a =−2,③若a 为任意有理数,则|a|+1≥1,④若ab >0,a +b <0,则a <0,b <0,⑤若|m +n|=|m|+|n|,则mn >0,其中正确的有(填番号)____________.24.若ab ≠0,a +b ≠0,则aa ||+b b ||+ab ab ||+b a b a ++||=_________. 25.世界上著名的莱布尼兹三角形如图所示,则第20行从左边数第3个位置上的数是______.三、解答题(共38分)26.计算:(1)(−8)−(−15)+(−9)−(−12)(2)(−18)×(97−65+187) (3)(−1)÷(51−31)×(−721) (4)−24+(−1)2021÷34×[2−(−32)2+34]27.化简下列各式(1)2(a 2−ab )−2a 2+3ab(2)3m 2−[5m −(21m −3)+2m 2]+428.化简求值5a2b−[2a2b−3(2ab2−a2b)−5ab2−1]−4ab2,其中a,b满足(a−1)2+|b+2|=0.29.从有关方面获悉,在我市农村已经实行了农民新型合作医疗保险制度.享受医保的农民,则5000元按30%报销、15000元按40%报销、余下的10000元按50%报销;题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2017年门诊看病医疗费用为600元,则他这一年的门诊医疗费用报销后自己应支付元.(2)若某农民一年内实际住院医疗费为m(5000<m<20000)元,求他应自付医疗费多少元(用含m的代数式表示)?(3)若某农民一年内因本人住院按标准报销医疗费15000元,求该农民当年实际医疗费用共多少元?四、附加题(每题4分,共20分):30.①|x−5|+|x+1|的最小值=___________.②|x−3|+|x−2|+|x+1|+|x+2|的最小值=_____________.31.若x2+2x−1=0,则代数式x4+3x3−4x2−11x−2018的值为____________.32.若a、b为整数,且|a−b|2016+|c−a|2016=1,则|a−b|+|c−a|+b−c=_________.33.黑板上写有1,2,3,…,2015,2016这2016个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字.例如:擦掉7,13和1998后,添上8;若再擦掉8,6,38,添上2,等等.如果经过1007次操作后,发现黑板上剩下两个数,一个是51,则另一个数是____________.34.有这样一对数:一个数的数字排列完全颠倒过来就变成另一个数,简单地说就是顺序相反的两个数,我们把这样的一对数互称为反序数.比如:123的反序数是321,4056的反序数是6504.若一个两位数与其反序数之和是一个整数的平方,求满足上述条件的所有两位数.。