高层建筑结构设计论文
高层建筑结构设计具体问题论文

浅谈高层建筑结构设计与具体问题分析摘要:随着经济的发展,建筑工程设计人员所承担的任务也会越来越多,技术难度也会更大,这对设计人员是严峻的挑战。
本文一方面围绕高层建筑结构,总结了高层建筑结构设计的特点以及提出了高层建筑结构分析和各种体系相对应的方法。
为实际高层建筑结构分析与设计提供一定参考。
另一方面本文根据建设部有关部门对近年来建筑工程设计中存在问题的统计材料,并结合在抗震审查工作中发现的一些问题,就其中比较重要的若干问题作些探讨和分析。
关键词:高层建筑;建筑工程设计;结构体系;问题abstract: with economic development, have undertaken the task of building engineering staff will be more and more a greater technical difficulty, severe challenges designers. this paper around the high-rise building structures on the one hand, summarizes the characteristics of the structural design of high-rise buildings as well as the corresponding methods of structural analysis of high-rise buildings and a variety of system. the actual analysis and design of high-rise building structure to provide a reference. on the other hand this article relevant departments under the ministry of construction of the building works in recent years the statistical material problems in the design, combined withsome of the problems found in the seismic review, explore and analyze some important number of issues.keywords: high-rise buildings; architectural and engineering design; structural system; problems中图分类号:[tu355]文献标识码:a 文章编号:2095-2104(2012)由于在设计上出现的问题,会给工程施工阶段与交付使用等方面带来很多安全质量隐患。
高层建筑结构设计论文

高层建筑结构设计论文随着科学技术的不断发展,功能俱全的高层建筑越来越多。
高层建筑结构设计也越来越成为建筑结构工程师的重要工作内容。
下面是店铺为大家整理的高层建筑结构设计论文,供大家参考。
高层建筑结构设计论文范文一:探究高层建筑结构边节点抗震性能1试验概况1.1试验构件设计和制作边节点试验构件取用承重框架梁柱反弯点之间的一个平面组合体,即“T字形”试件。
为有效保证试件的浇筑质量和垂直度,并与工程实际相符,全部试件均采用钢模板、立模浇筑。
边节点构件柱子的截面尺寸为200mm×200mm,梁的截面尺寸为150mm×250mm,纵向受力钢筋采用HRB400级,箍筋采用HPB235级。
柱子的配筋率为1.13%,梁的配筋率为0.9%,所有构件配筋率和钢筋的强度相同。
为防止柱头破坏,柱上、下两端箍筋加密;节点核心区按照抗震要求对箍筋进行了加密处理。
本次试验共包括7根试件,详细的试验构件概况如表1所示,构件的尺寸和配筋图示,节点核心区采用柱混凝土的构件,施工缝留设在梁下部;节点核心区采用梁混凝土的构件,分别在梁上和梁下留设两道施工缝,施工缝处浇筑时间间隔为2天(48小时)。
1.2试验方法和加载装置采用低周反复试验方法进行研究,加载制度为力—位移混合控制加载,在开始加载到构件屈服前采用力控制;构件屈服后,改用屈服位移的整数倍为级差作为回载控制点,每一位移下循环3次。
在实际框架结构中,当作用水平荷载时,上柱反弯点可视为水平可移动铰,相应的下柱反弯点可视为固定铰;而节点两侧梁的反弯点可视为水平可移动铰。
这样可以有两种加载方案:一种是在柱端施加水平荷载或位移,这时梁能够左右移动而上下受到约束,产生剪力和弯矩。
这种边界条件比较符合实际结构中的受力状态;另一种是将柱保持垂直状态,在梁的自由端施加反复荷载或位移,此时边界条件变为上下柱反弯点为不动铰,梁反弯点为自由端。
本次试验采用的是柱端加载的方式,即采用在柱顶施加轴向力和水平力的方式进行试本次试验在东北电力大学结构试验室进行,采用美国MTS公司生产的MTS液压式伺服加载系统进行试验,采用MTS动态数据采集系统进行数据采集。
高层建筑结构设计要点研究论文六篇

高层建筑结构设计要点研究论文六篇关于《高层建筑结构设计要点研究论文六篇》,是我们特意为大家整理的,希望对大家有所帮助。
第一篇摘要:随着我国人口急剧上升,土地资源稀缺问题愈加明显,为了提升土地利用率,开发商开始将目光投向高层建筑。
近年来,复杂高层与超高层建筑得到广泛应用,它即满足了城市发展的需要,也实现了有限土地资源的有效利用。
因此,本文主要对复杂高层与超高层建筑结构设计要点进行探讨,用以提高高层建筑的合理性与科学性。
关键词:复杂高层;超高层;建筑结构;设计要点1引言随着复杂高层与超高层建筑的不断增加,政府对高层建筑的质量提出更高要求,尤其是建筑结构的持久性、可靠性已经成为社会关注的焦点。
因此,在进行复杂高层与超高层建筑结构设计时,要结合建筑物的形态特征、功能需要等进行,为提高复杂高层与超高层建筑的安全性能做铺垫。
2复杂高层与超高层建筑结构设计的主要控制因素2.1重力荷载与其他类型的建筑相比,复杂高层与超高层建筑具有特殊性,不仅建筑高度不可比拟,还需要面临重力荷载的挑战。
特别是随着建筑高度不断攀升,地面受力与重力荷载会逐渐上升,在力的作用下墙上的轴压力与竖向构件柱的压力也不断增加,从而加大超高层建筑的困难性。
其次,复杂高层与超高层建筑的水平位移也是建筑结构设计的矛盾点,主要体现在两个方面:①楼层越高风效应就越大,在风的作用下其合力作用点的位置就越高,由此自然风效应对超高层建筑产生的作用效应就更大。
②在建筑结构设计中,建筑的结构自重是企业必须考虑的问题,因为它关乎建筑物的稳定性。
而结构自重与重心位置相关,随着建筑楼层不断升高其重心位置随之升高,从而结构自重不断加大,成为强力作用下的薄弱环节,比如地震等。
2.2风振加速度风力大小与建设楼层的高低相关,通常楼层越高其风力效果越强,因此在超高层建筑中的风力作用特别显著。
但是,人们对风作用的舒适度有一定的感知,若风振作用过强则会令人产生不适感,从而降低居住品质。
高层建筑结构论文

高层建筑结构论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。
高层建筑不仅是城市现代化的象征,更承载着人们对于高效利用空间和提升生活品质的期望。
然而,高层建筑的结构设计与施工面临着诸多挑战,需要综合考虑多种因素,以确保其安全性、稳定性和功能性。
高层建筑的定义在不同的国家和地区可能会有所差异,但通常是指高度超过一定数值(如 24 米或 7 层)的建筑物。
高层建筑之所以与普通建筑在结构设计上有显著区别,主要是因为其高度带来的一系列特殊问题。
首先,风荷载是高层建筑结构设计中必须重点考虑的因素。
随着高度的增加,风速也会显著增大,风对建筑物的作用效应也更为复杂。
强风可能导致建筑物产生较大的水平位移和振动,影响居住者的舒适度甚至结构的安全性。
为了减小风荷载的影响,高层建筑的外形通常会设计成流线型,以减少风的阻力。
同时,在结构设计中会采用加强的抗侧力体系,如框架核心筒结构、筒中筒结构等,来抵抗水平风力。
其次,地震作用对高层建筑的影响也不可忽视。
地震是一种突发的、破坏力巨大的自然灾害,高层建筑在地震中的表现直接关系到人们的生命财产安全。
在地震区建造高层建筑,需要根据当地的地震烈度进行抗震设计。
这包括选择合适的结构体系、确定结构的抗震等级、加强关键部位的构造措施等。
例如,采用延性较好的材料和构件,设置多道抗震防线,以增加结构在地震中的耗能能力和抗倒塌能力。
高层建筑的自重也是一个重要问题。
由于高度大,建筑的自重会产生巨大的竖向荷载。
为了承受这些荷载,需要选用高强度的材料,如高性能混凝土和高强度钢材。
同时,合理的结构布置可以有效地传递和分配竖向荷载,确保结构的稳定性。
在高层建筑结构的设计中,基础设计至关重要。
高层建筑的基础需要承受巨大的上部荷载,并将其均匀地传递到地基中。
常见的基础形式包括桩基础、筏板基础等。
在选择基础形式时,需要充分考虑地质条件、地下水位、建筑物的荷载分布等因素。
对于地质条件复杂的地区,还需要进行详细的地质勘察和地基处理,以确保基础的稳定性和可靠性。
高层建筑结构设计要点分析论文

高层建筑结构设计要点分析【摘要】根据笔者从事建筑结构设计的工作经验,结合某高层建筑,对高层建筑结构设计的特点进行了简要的概述与分析,指出了在高层建筑结构设计和构造要求,以及高层建筑结构设计过程中应注意控制事项,以提高建筑结构设计的经济性和安全性。
【关键词】高层建筑;设计特点;结构设计;整体稳定1 引言高层建筑是社会生产的需要和人们生活需求的产物,是现代工业化、商业化和城市化的必然结果。
科学技术的发展,高强轻质材料的出现以及机械化、电气化在建筑中的实现等,为高层建筑的发展提供了技术条件和物质基础。
随着高层建筑结构高度、复杂程度等的不断增加,高层建筑结构设计也带来了许多新的课题和更高的挑战。
因此,如何设计出安全、功能齐全、舒适美观、经济合理,同时又要符合人们精神生活要求,满足人们生产和生活的需求的建筑,是结构设计师们必须要面对和解决的首要问题。
为此,本文对高层建筑结构设计进行了简要的探讨。
2 高层建筑结构设计特点高层建筑结构设计特点主要有以下几点:1)水平荷载是结构设计时的决定性因素。
这是因为结构由自重等竖向荷载产生的轴力和弯矩的大小,仅与楼房高度的一次方成正比;而结构由于水平荷载产生的倾覆力矩及在竖构件中产生的轴力,是与楼房高度的两次方成正比;同时,对一建筑来说,自重等竖向荷载基本上是定值,而风荷载和地震作用等水平荷载,其数值是随结构动力特性的不同而有较大幅度的变化;2)轴向变形不容忽视。
因为在高层建筑中,自重等竖向荷载很大,能够使柱产生较大的轴向变形,从而会对连续梁弯矩产生较大的影响,对预制构件的下料长度产生影响,另外对构件的剪力和侧移也会产生影响,易使结构设计不够安全;3)侧移是结构设计的关键因素。
水平荷载下结构的侧移变形随着楼房高度的增加迅速增大,因此水平荷载作用下结构的侧移应控制在规定限度之内;4)结构延性是重要设计指标。
与较低楼房相比,高层建筑结构在地震作用下的变形更大一些。
为了能让结构在进入塑性变形阶段后仍具有较强的变形能力,防止建筑倒塌,必须采取一定的构造措施,以保证结构具有足够的延性[1]。
高层建筑结构设计分析(1)论文

浅谈高层建筑结构设计的分析摘要:随着高层建筑在我国的迅速发展,建筑高度的不断增加,建筑类型与功能愈来愈复杂。
高层建筑作为特殊的建筑形式,加强其结构设计的实践探讨非常必要。
本文分析了高层建筑结构形式特点的基础上,从不同角度对加强高层建筑结构设计的思路进行了分析。
关键词:高层建筑结构设计设计分析abstract: with the high-level architecture in china’s rapid development, the construction of the height of the increasing, building type and function more and more complex. high-rise building as a special form of construction, strengthen the structure design practice discussion is very necessary. this paper analyzes the high-rise building structure based on the characteristics of the form, from various angles to strengthen high-level building structural design train of thought is analyzed.keywords: designing high-rise design analysis中图分类号:[tu208.3]文献标识码:a文章编号:前言随着社会经济的迅速发展和建筑功能的多样化,城市人口的不断增多及建设用地日趋紧张和城市规划的需要,促使高层建筑得以快速发展。
另一方面由于轻质高强材料的开发及新的设计计算理论的发展,抗风和抗震理论的不断完善,加之新的施工技术和设备的不断涌现,特别是计算机的普及和应用以及结构分析手段的不断提高,为高层建筑迅速发展提供了必要的技术条件。
高层建筑结构设计论文

小议高层建筑结构设计[摘要]随着科学技术、结构设计理论,高强材料的迅速发展,为建筑师们提供了丰富的想象空间,同时也为新颖结构体系的出现创造了条件.本文针对高层建筑结构体系,总结了高层建筑结构设计的特点,提出了高层建筑结构分析和各种体系相对应的方法以促进高层建筑的进一步发展,为实际高层建筑结构分析与设计提供一定的参考,[关键词]高层建筑;结构;设计;剪力墙结构中图分类号:[tu208.3] 文献标识码:a 文章编号:一、高层建筑结构设计的特点高层建筑结构设计的特点高层建筑结构设计的特点高层建筑结构设计的特点1、结构延性是重要设计指标。
相对于低矮的建筑物,高度较大的建筑物结构更柔一些,在风力、地震、沉降等自然力的作用下会产生更大的变形。
为了使高层建筑结构在进入塑性变形阶段后仍具有较强的变形能力,避免损毁倒塌,在结构上采取合适的措施,使高层建筑具有一定的结构延性是一个不容忽视的问题。
2、水平载荷成为决定因素。
在低矮建筑结构设计中,一般都是以重力为代表的竖向荷载控制着结构设计,但是在高层建筑中,尽管竖向载荷的影响仍旧巨大,但是起决定作用的是水平载荷。
这是因为建筑物的自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,只是与楼房高度的一次方成正比;但是水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比。
3、侧移变形不容忽视。
与底层建筑不同,高层建筑的水平荷载数值往往很大,并且这种水平载荷会随着建筑物高度的增加迅速变大,所有在设计中不仅要求建筑物结构具有足够的强度,还需要具有足够的抗推刚度,使建筑物在水平荷载下产生的侧移被控制在某一范围之内。
4、抗震设计要求更高。
抗震设计时现代高层建筑设计中必须要考虑的因素,对于高层建筑抗震设防结构的设计,除了要考虑正常情况下的竖向荷载、水平载荷以及风荷载外,良好的抗震性能也是不容忽视的,高层建筑抗震设计的要求要做到小震不坏、大震不倒。
建筑高工论文模板(10篇)

建筑高工论文模板(10篇)在建筑的中心部分,有意识地利用那些功能较为固定的服务用房的围护结构,形成中央核心筒,而筒体处于几何位置中心,还可以使建筑的质量重心、刚度中心和型体核心三心重合,更加有利于结构受力和抗震。
1.2核的分散与分离随着时代的发展、技术的进步,人们对建筑需求的变化和设计侧重点的不同,以中央核心筒为主流的高层建筑“内核”空间构成模式开始受到了挑战。
对于结构专业来说,加强建筑周边的刚度也会有效地抵抗地震对高层建筑的破坏,所以如果将垂直交通和设备用房等分散地布置在周边,则无疑也会对结构抗震有利。
同时,这种分散的多个外核的空间构成模式,也正好适用于新兴的巨型框架结构,使这种结构体系中的巨型支撑柱具有了使用功能。
而从建筑设计的角度来看,核的移动、垂直交通、服务性房间和管道井分散到建筑的周边,对于高层建筑的空间构成模式和立面造型上的变化也是极具革命性的。
它不但适应了其它专业的需求,而且还有利于避难疏散,创造更大的使用空间和使高层建筑的底部获得解放。
这种空间构成模式所具有的灵活性和先进性,很快便被推崇技术表现的欧洲建筑师们所发现,并创造性地应用在他们的作品之中。
1.3中庭空间的出现受高层旅馆的影响,一些办公大楼为了追求气派和空间变化,便在入口处附设一个中庭,实际上,核心筒的分散和分离,中庭空间的介入,已使高层建筑的空间构成模式彻底发生了变化。
新一代的高层建筑空间组织更为灵活多样,由于空间设计的侧重点已由追求经济效率向营造宽松舒适的生活环境转变,所以许多新建的高层建筑都以“景观空间”的概念,将共享空间与功能空间相结合,把核分散向四周,垂直交通采用玻璃电梯,直接采光,给人们以开敞明亮、将动线视觉化的空间感受。
空间构成模式也由封闭的“积层式”,变为上下贯通的“动态流动空间”。
1.4底部空间的变化早期的高层建筑多直接面对街道,从街道进入门厅,再由门厅进入电梯厅,垂座电梯至各楼层,这是高层建筑中最为普遍的空间流线组织方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高层建筑结构设计论文
高层建筑结构设计与计算相关问题
摘要:我国颁布的高层建筑混凝土结构技术规程J GJ 3-2002~(以下简称高规)在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,加上现代人们对于建筑要求的多样化提出了更多和更复杂的要求,产生了很多不规则的复杂高层建筑,使结构设计不可能一次完成。
如何正确进行结构设计和结构计算,以满足新规范的要求,是每个结构设计人员都必须面临的问题。
本文主要对高层建筑结构设计与计算进行了一些探讨。
关键词:高层建筑设计计算
1.认真做好结构方案的概念设计
结构设计人员如果盲目信赖计算机,而不重视概念设计,是不可能设计出经济合理的结构的。
《建筑抗震设计规范》(以下简称抗震规范)第3.4.1条规定:建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。
实际上,结构的概念设计与建筑师的方案设计也是相互影响、相互协调的。
结构概念设计的目的首先是在初步设计以前为所设计的工程项目设定一个总体性的方案,根据建筑意图和使用功能的需要,根据当地建造条件、材料来源和业主对资金的使用等多方面因素的要求,使下一步的设计施工和维护使用都能做到
“又好、又快、又省”。
2.结构整体计算准确与计算结果分析无误
基本选定结构方案后,紧接着就是高层结构设计的核心部分一结构计算。
首先,根据所选取的结构体系,选用准确的结构模型和选取正确的结构设计软件。
其次,结构计算开始前,设计人员先要根据规范的具体规定和软件手册对参数意义的描述,以及根据工程的实际情况,对结构参数和特殊构件进行正确设置。
2.1 结构参数(部分)的确定
周期折减系数:周期折减系数的目的是为了充分考虑框架结构和框剪结构的填充墙刚度对计算周期的影响,必须折减,否则使地震作用偏小。
周期折减系数应根据本工程填充墙的多少来确定周期折减系数值,填充墙多取小值,填充墙少取大值,《高规》第3.3.16条规定计算各振型地震影响系数所采用的结构自振周期应考虑非承重墙体的刚度影响予以折减,第3.3.17条规定一般框架结构取0.6~0.7,框剪结构取0.7~0.8,剪力墙结构取0.9~1.0。
2.2 结构整体计算
《高规》用于控制结构整体性的主要指标主要有:适用高度和高宽比、周期比、位移比、刚度比、层间受剪承载力之比、刚重比、剪重比等。
适用高度和高宽比。
《高规》第4.2节对于选用不同结构体系的
钢筋混凝土高层建筑规定了最大适用高度和最大高宽比。
它的目的是对结构刚度、整体稳定、承载能力和经济合理性的宏观控制。
在带有大型裙房的复杂高层建筑中,计算高宽比的房屋高度和宽度可按裙房以上部分考虑。
对于带悬挑的结构,结构房屋宽度应按扣除悬挑宽度厚的结构宽度计算。
周期比。
周期比是控制结构扭转效应的重要指标。
《高规》第4.3.5条对结构扭
转为主的第一自振周期Tt与平动为主的第一自振周期T1之比的要求给出了规定。
它的目的是使抗侧力的构件的平面布置更有效更合理,使结构不至出现过大的扭转。
由于当结构以扭转为主的第一白振周期Tt与平动为主的第一自振周期Tl两者接近时,由于振动耦联的影响,将使结构的扭转效应明显增大。
如果周期比不满足规范的要求,设计人员需要增加结构周边构件的刚度,或者在结构的刚度有富余时,适当降低结构中间构件的刚度,使得结构满足规
范要求。
判断结构扭转为主的第一自振周期T t时,可以通过计算振型方向因子来判断。
在两个平动和一个转动构成的三个方向因子中,当转动方向因子大于0.5时,则该振型可认为是扭转为主的振型。
位移比(层间位移比)是控制结构平面不规则性的重要指标。
其限值在《抗震规范》和《高规》中均有明确的规定。
需要指出的是,新规范中规定的位移比限值是按刚性板假定作出的。
此外,位移比的大小是判断结构是否规则的重要依据,设计人员应正确选用考虑偶然偏
心影响的单向地震下的位移比。
刚度比是控制结构竖向不规则,避免竖向刚度突变而形成薄弱层的重要指标。
限值详见《抗震规范》第3.4.2条和《高规》第4.4.2条规定。
层间受剪承载力比是控制结构竖向不规则的重要指标。
层间受剪承载力是指在所考虑的水平地震作用方向上,该层全部柱及剪力墙的受剪承载力之和。
层间受剪承载力比限值详见《抗震规范》第 3.4.2条和《高规》第4.4.3条规定。
刚重比是结构刚度与重力荷载之比。
它是控制结构整体稳定性的重要因素,也是影响重力二阶效应的主要参数。
该值如果不满足要求,则可能引起结构失稳倒塌,应当引起设计人员的足够重视。
2.3结构整体计算结果的合理性判断要得到结构合理的整体计算结果
必须首先确定几个参数合理取值,才能保证后续计算结果的正确性。
这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。
3.加强对结构构件进行优化设计和施工图设计
对结构整体合理性的计算和调整之后,紧接着就是进行结构单个构件内力和配筋计算。
计算结构不超筋,并不表示构件初始设置的截面和形状合理,设计人员还应进行构件截面优化设计,使构件在保证受力要求的条件下截面的大小和形状合理,并节省材料。
但需要注意
的是,在进行截面优化设计时,应以保证整体结构合理性为前提,因为构件截面的大小直接影响到结构的刚度,从而对整体结构的周期。
位移、地震力等一系列参数产生影响,不
可盲目减小构件截面尺寸,使结构整体安全度降低。
在施工图设计阶段,还必须满足规范规定的各项具体措施和要求。
《混凝土规范》、《高规》和《抗震规范》对结构的构造提出了非常详尽的规定,规范中的这些措施往往是强制性条文,也是很多一震害调查和抗震设计经验的总结和保证结构安全的最后一道防线,设计人员万万不可麻痹大意、掉以轻心。
如计算得出的钢筋排数、直径、架构等,如不符合现场工程的实际情况或不便于施工,还要做最后的调整计算。