人教A版高中数学必修2第三章 直线与方程3.2 直线的方程教案

合集下载

高中数学 第三章 直线与方程 3.2.2 直线的两点式方程教案 新人教A版必修2

高中数学 第三章 直线与方程 3.2.2 直线的两点式方程教案 新人教A版必修2

§3.2.2直线的两点式方程[教材]人教A版数学必修2:第三章直线与方程 3.2直线的方程第2课时[学情分析]我校为一所普通高中,部分学苗基础较差,学生在态度习惯、知识结构、思维品质、数学能力等方面相对薄弱。

本节课是在学生学习完直线的方程第一节:直线的点斜式方程之后,学生已经建立了两种具体的直线方程:点斜式、斜截式的概念及会应用它们求直线方程,并对直线方程、方程直线的概念有了一定的理解和认识,已形成了一定的认知结构。

另外对于两点确定一条直线,直线的纵截距的概念也已经明确清晰,所以对本节课的学习,学生应该具备了一定的认知和实践能力的条件。

但由于部分学生观察、类比、迁移、化归、计算等方面能力的薄弱,可能在两点式方程形式的导出、综合性应用的问题上会有一定难度。

[学习内容分析]直线方程共有四种特殊形式,本节课是学习第三、四种特殊形式,在本大节3.2直线的方程中重要性略低于前两种形式,使用频率也不高。

但它在体现点斜式方程的应用,衬托点斜式方程的重要性,及为学习一般式方程作铺垫,体现由特殊到一般的知识归纳提升过程有着重要意义。

本节的主要知识点是两个方程的导出及应用,它们的教学基于点斜式方程,同时引领学生学会一个数学方法即待定系数法,说明这种方法在确定曲线方程问题中是常用的重要方法。

另外把方程思想、数形结合思想贯穿于课堂教学的始终,强调解析几何的一般方法和思想。

通过对两点式、截距式方程形式美的认识,让学生感受数学的对称美、和谐美等美的特质。

通过对两点式方程由分式到整式的变形,为学生了解一般式方程中系数A、B的几何意义(直线的方向向量即为(B,-A),法向量为(A,B)),为学习直线的参数方程做一铺垫。

同时教给学生这个整式形式的方程是已知两点求直线方程并化为一般方程的一个小技巧,并为学生感性认识行列式为进一步学习高等数学埋下伏笔。

以体现搭建共同基础,提供发展平台的课程理念。

[教学目标]1.知识与技能:掌握直线的两点式、截距式方程并会用于求直线方程的相关问题;2.过程与方法:理解两点式方程的导出过程,掌握求直线方程的直接法及间接法(待定系数法);3.态度、情感、价值观:通过对方程形式美的发现,感受数学美和数学文化,进一步体会方程思想、数形结合思想、分类讨论思想。

高中数学人教A版必修2教案-3.2_直线的方程_教学设计_教案_1

高中数学人教A版必修2教案-3.2_直线的方程_教学设计_教案_1

教学准备1. 教学目标1.掌握直线与平面垂直的概念并能用三种语言表示;2.掌握直线与平面垂直的判定定理及语言表示;3.会用线面垂直的定义和判定定理证明简单命题.2. 教学重点/难点1.掌握直线与平面垂直的概念并能用三种语言表示;2.掌握直线与平面垂直的判定定理及语言表示;3.会用线面垂直的定义和判定定理证明简单命题.3. 教学用具4. 标签教学过程从源于身边的图片中寻找并感知直线与平面的垂直关系.1.旗杆与地面的位置关系2.将一本书打开直立在桌面上,观察书脊(想象成一条直线)与桌面的位置关系呈什么状态?此时书脊与每页书和桌面的交线的位置关系如何?直线与平面垂直的定义1.铅垂线与地面上的任意一条直线的关系?(演示实验)2.如果一条直线和平面a相交,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直.如右图直线垂直于平面a3.直线与平面垂直的画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.例1 已知下列命题:探究直线与平面垂直的判定定理1.旗杆与比萨斜塔对比直观感觉塔与地面不垂直,旗杆是与地面垂直的,但是如何测定旗杆与地面垂直?(分组讨论)2.如下图,请同学们准备一块三角形的纸片,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕与桌面所在的平面α垂直?3.直线与平面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.图形语言:归纳小结1、直线与平面垂直的定义及应用;2、直线与平面垂直判定定理证明及应用;3、数学思想:转化的思想课外小组探究1.你认为三棱锥中最多有几个直角三角形?2.四棱锥最多有几个直角三角形呢?布置作业P74 习题2.3 B组:2,4.。

高中数学人教A版必修2教案-3.2_直线的方程_教学设计_教案_2

高中数学人教A版必修2教案-3.2_直线的方程_教学设计_教案_2

教学准备1. 教学目标(一)知识教学点掌握直线方程的一般形式。

.(二)能力训练点1、明确直线方程一般式的形式特征;2、会根据直线方程的一般式求斜率和截距;3、会把直线方程的点斜式、两点式化为一般式。

(三)德育渗透点通过对直线方程的几种形式的特点的分析,认识事物之间的普遍联系与相互转化,培养学生看问题一分为二的辩证唯物主义观点.2. 教学重点/难点掌握直线方程的一般形式3. 教学用具4. 标签教学过程(一)引入新课点斜式、斜截式不能表示与x轴垂直的直线;两点式不能表示与坐标轴平行的直线;截距式既不能表示与坐标轴平行的直线,又不能表示过原点的直线.与x轴垂直的直线可表示成x=x0,与x轴平行的直线可表示成y=y0。

它们都是二元一次方程.我们问:直线的方程都可以写成二元一次方程吗?反过来,二元一次方程都表示直线吗?(二)直线方程的一般形式我们知道,在直角坐标系中,每一条直线都有倾斜角α.当α≠90°时,直线有斜率,方程可写成下面的形式:y=kx+b当α=90°时,它的方程可以写成x=x0的形式.由于是在坐标平面上讨论问题,上面两种情形得到的方程均可以看成是二元一次方程.这样,对于每一条直线都可以求得它的一个二元一次方程,就是说,直线的方程都可以写成关于x、y的一次方程.反过来,对于x、y的一次方程的一般形式Ax+By+C=0.(1)其中A、B不同时为零.(1)当B≠0时,方程(1)可化为这里,我们借用了前一课y=kx+b表示直线的结论,不弄清这一点,会感到上面的论证不知所云.(2)当B=0时,由于A、B不同时为零,必有A≠0,方程(1)可化为它表示一条与y轴平行的直线.这样,我们又有:关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0这个方程(其中A、B不全为零)叫做直线方程的一般式.引导学生思考:直线与二元一次方程的对应是什么样的对应?直线与二元一次方程是一对一的,既一一对应。

直线的两点式方程第一课时教案-人教A版数学必修2第三章直线方程3.2.2

直线的两点式方程第一课时教案-人教A版数学必修2第三章直线方程3.2.2

第三章直线方程3.2.2 直线的两点式方程1 教学目标[1]体会直线方程的两点式和截距式的发现和推到过程[2]会运用这两种形式求出相关的直线方程[3]了解直线的两点式和截距式特点及适用X围[4]培养学生数学结合思想和严谨的科学态度2教学重点/难点教学重点:直线的方程的两点式和截距式的推导和使用教学难点:两种直线方程的适用X围3专家建议通过引导学生用点斜式方程的求法由特殊到一般推导出直线方程的两点式,培养学生的推理能力和严谨的思维能力.本节课的两点式方程是在已知两点坐标情况下利用上节课的点斜式方程推导而出,因此上节课的点斜式方程的掌握是本节课所需要的基础知识;此外对于垂直于x 轴或y轴的的直线是否可以应用两点式写出直线方程是本节课另一重点;而截距式方程适用的X围是什么?在涉及解决与截距有关的直线问题时,应该如何使用截距是方程是学生不易掌握的内容,教学中应该着重解决。

4 教学方法启发式教学5 教学过程5.1 复习引入【师】我们上节课学习了直线的点斜式方程和斜截式方程,你能回答他们的一般形式吗? 【板演/PPT 】引导学生回答点斜式方程:y - y 0= k (x - x 0),K 为斜率,(x 0,y 0)为直线所过的已知定点。

直线的斜截式方程为:y kx b =+,k 为斜率,b 为纵截距。

【师】他们所适用的X 围是什么? 【生】斜率存在才能适用上述方程5.2 新知介绍 [1] 直线的两点式方程【师】利用我们所学过的知识思考:已知直线l 过A (3,-5)和B (-2,5),如何求直线l 的方程? 【板书/PPT 】解:∵直线l 过点A (3,-5)和B (-2,5)将A (3,-5),k=-2代入点斜式,得 y -(-5)=-2( x -3 )()23255-=----=∴l k即 2x+y -1=0【师】由特殊到一般,请同学们思考:设直线l 经过两点P 1(x 1,y 1),P 2(x 2,y 2),(其中x 1≠x 2,y 1≠y 2),你能写出直线l 的点斜式方程吗? 【生】讨论与计算 【板书/PPT 】利用点斜式写出直线的方程:.)(,,12112121112121121221x x x x y y y y y y x x x x y y y y x x y y k x x --=--≠---=-∴--=≠时,方程也可以写成当直线的方程为【师】根据方程的特点和所借助的条件引导学生总结直线方程两点式的概念 【板书/PPT 】经过直线上两点P1(x1,y1), P2(x2,y2)(其中x1≠x2,y1≠y2 )的直线方程叫做直线的两点式方程,简称两点式.[2] 两点式方程适用X 围【师】那么是不是已知任一直线中的两点就能用两点式写出直线方程呢? 【生】交流和讨论,准备发言),(2121121121y y x x x x x x y y y y ≠≠--=--【学生表达/PPT 】当x 1 =x 2或y 1= y 2时,直线P 1P 2没有两点式程.( 因为x 1 =x 2或y 1= y 2时,两点式的分母为零,没有意义) 因此两点式不能表示平行于坐标轴或与坐标轴重合的直线.【师】若点P 1 ( x 1 , y 1 ),P 2( x 2 , y 2)中有x 1 =x 2 ,或y 1= y 2,此时过这两点的直线方程是什么?【生】思考,组织语言 【学生发言/PPT 】当x 1 =x 2 时方程为: x =x 1;当 y 1= y 2时方程为:y= y 1【师】同学们,下面看看我们能否运用新学知识解决下面问题 【PPT 】练习:写出过下列两点的直线的两点式方程: 1、M (2,1),N (0,-3) 2、A (5,0),B (0,5)2021311--=---x y 、答案:5050502--=--x y 、155=+⇒y x[3] 探究直线的截距式方程【师】我们已经掌握的根据直线已知的两个点可以直接写出直线方程的两点式方程,下面请同学思考以下问题 【板书/PPT 】例:如图,已知直线 l 与x 轴的交点为A(a,0),与y 轴的交点为B(0,b),其中a ≠0,b ≠0,求直线l 的方程. 【生】思考,计算【师】同学们,说说你的思路和结果 【板书/PPT 】1=+by a x :师生总结直线方程结果【师】给出直线的截距式方程的定义 【板书/PPT 】当直线l 不经过原点时,其方程可以化为1x yab+= , 方程称为直线的截距式方程,其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b .【师】截距式适用于横、纵截距都存在且都不为0的直线,下面我们试试应用新知。

人教A版高中数学必修2第三章直线与方程3.2直线的方程教案

人教A版高中数学必修2第三章直线与方程3.2直线的方程教案

又 α∈[ 0°,180 °)
∴α= 135°
因此,这条直线的斜率是- 1,倾斜角是 135°
巩固练习 P37 练习 4、5
4、归纳总结
数学思想:数形结合、分类讨论
数学方法:图象法、公式法
三、内容、方法小结:
本节介绍了直线的倾斜角和斜率的定义, 以及斜率的两种求法, 教学中运用图像
法和公式法使得内容更易理解。
形如 y=kx+b(k ≠0) 叫做一次函数;它的图象是一条直线;当 k> 0 时,在 R
.
上是增函数,当 k< 0 时,在 R 上是减函数。 ⑵画出下列一次函数的图象 ① y = 2x + 4
精品文档
② y = - 2x + 2
小结:作一次函数图象的方法-由于两点确定一条直线, 故可在直线上任取两点, 通常取点 (0 , b) 与( -b/k , 0) 。
( 1)通过创设的问题情境,引导学生探究平面内两条直线的平行或垂直关系的充要条 件激发学生学习数学的兴趣
( 2)通过数学探究活动,使学生能用联系的观点看问题,掌握代数化处理几何问题的
方法及数学地思考问题的方法,体会唯物辩证法在数学中的体现。
3.过程与方法 : 在初中平面几何的直线平行或垂直关系的基础上,
如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平
行,即 学生 2: 实验 2, 我实验探究的结果是当两条直线互相垂直时 , 他们的斜率的
乘积都等于 -1, 当两条直线的斜率乘积等于 -1 的时候 , 这两条直线是互相垂直 的.
有没有同学补充 ?若没有 , 老师提问 : 当这两条直线有一条与 y 轴平行时 , 上 面的结论还成立吗 ?让大家再动手操作一下 . 因此 , 我们实验一的最终结论应该是 : 两.条.直.线.都.有.斜.率. ,如果它们互相垂直, 那 么它们的斜率互为负倒数 ( 即乘积为 -1) ;反之,如果它们的斜率互为负倒数, 那 么它们互相垂直,即

高中数学 3.2 直线的方程教案 新人教A版必修2

高中数学 3.2 直线的方程教案 新人教A版必修2

3.2.1 直线的点斜式方程一、教学目标1、知识与技能(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。

(3)体会直线的斜截式方程与一次函数的关系.2、过程与方法在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

3、情态与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

二、教学重点、难点:(1)重点:直线的点斜式方程和斜截式方程。

(2)难点:直线的点斜式方程和斜截式方程的应用。

3.2.2 直线的两点式方程一、教学目标1、知识与技能(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。

2、过程与方法让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。

3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。

二、教学重点、难点:1、重点:直线方程两点式。

2、难点:两点式推导过程的理解。

3.2.3 直线的一般式方程一、教学目标1、知识与技能(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。

2、过程与方法学会用分类讨论的思想方法解决问题。

3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。

二、教学重点、难点:1、重点:直线方程的一般式。

2、难点:对直线方程一般式的理解与应用。

三、教学设想。

人教版高一数学必修二第三章 直线与方程教案

教学课题 人教版必修二第三章直线与方程一、知识框架3.1 直线的倾斜角与斜率1. 倾斜角与斜率(1)倾斜角(2)斜率定义 当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.规定当直线l 与x 轴平行或重合时,规定直线的倾斜角为︒0 记法 α图示范围0°≤α<180° 作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度。

(2)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可。

定义α≠90°一条直线的倾斜角α的正切值叫做这条直线的斜率 α=90° 斜率不存在③当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.④对于不重合的直线l 1,l 2,其倾斜角分别为α,β,有l 1∥l 2⇔α=β.(2)垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1,那么它们互相垂直.有12121-=⋅⇔⊥k k l l①当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;②较大的倾斜角总是等于较小倾斜角与直角的和.3.2 直线的方程1. 直线的点斜式方程(1)直线的点斜式方程①定义:如下图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程)(00x x k y y -=-叫做直线l 的点斜式方程,简称点斜式.特别地,当倾斜角为︒0时,有0=k ,此时直线与x 轴平行或重合,方程为00=-y y 或者0y y =。

②说明:如下图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或0x x =(2)直线的斜截式方程 ①定义:如下图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程b kx y +=叫做直线l 的斜截式方程,简称斜截式.②说明:左端y 的系数恒为1,一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是︒90的直线没有斜截式方程.2. 直线的两点式方程(1)直线的两点式方程①定义:如图所示,直线l 经过点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则方程y -y 1y 2-y 1=121x x x x --叫做直线l 的两点式方程,简称两点式.②说明:与坐标轴垂直的直线没有两点式方程,当x 1=x 2时,直线方程为x =x 1;当y 1=y 2时,直线方程为y =y 1.(2)直线的截距式方程①定义:如图所示,直线l 与两坐标轴的交点分别是P 1(a,0),P 2(0,b )(其中a ≠0,b ≠0),则方程为1=+by a x 叫做直线l 的截距式方程,简称截距式.2. 利用三种直线方程求直线方程时,要注意这三种直线方程都有适用范围,利用它们都不能求出垂直于x 轴的直线方程。

人教A版高中数学必修2《三章 直线与方程 3.2直线的方程 3.2.2 直线的两点式方程》教案_11

3.2.2 直线的两点式方程1.学习内容方面在初中,学生学了一点平面几何的知识,那时他们还仅限于图形的处理。

到了高中从《直线与方程》、《圆与方程》到选修1-1《圆锥曲线》这三章他们开始接触解析几何。

解析几何的本质就是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。

在《直线与方程》这一章中,以平面直角坐标系为平台,给直线插上方程的“翅膀”,通过直线的方程研究直线之间的位置关系:平行、垂直,以及两条直线的交点坐标,点到直线的距离公式等等。

从几何直观到代数表示(建立直线的方程),从代数表示到几何直观(通过方程研究几何性质),直线的方程起了一个“桥梁”的作用。

直线的方程重要性不言而喻了。

2.两点式本身的优点分析直线的两点式体现了“两点确定一条直线”这一朴素的数学理念;两点式方程起着承上启下的作用,它保持了知识的完整性和系统性,在思想与方法层面上,对学生分析问题解决问题的能力的培养有好处;两点式方程的表达式工整,结构优美。

3. 学生方面学生方面,我教班级是文科平行班,大部分学生基础略差,学生在学习态度、学习习惯、知识结构、数学能力等方面相对薄弱。

本节课是在学生学习完直线的点斜式方程之后,学生已经建立了两种具体的直线方程:点斜式、斜截式的概念及会应用它们求直线方程,并对直线方程、方程直线的概念有了一定的理解和认识,已形成了一定的认知结构。

另外对于纵截距的概念在直线的截距式方程时也已经明确清晰,所以对本节课的学习,学生应该具备了一定的认知和实践能力的条件。

但由于部分学生观察、类比、迁移、计算等方面能力的薄弱,可能在两点式方程形式的导出、综合性应用的问题上会有一定难度。

1、知识与技能(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。

2、过程与方法(1)让学生经历直线的两点式方程的发现过程,提高学生分析、比较、概括、化归的数学能力。

(2)在教学中充分揭示“数”与“形”的内在联系,体会数、形的统一美,激发学生学习数学的兴趣,并且继续渗透数形结合与分类讨论的数学思想方法。

高中数学 第三章 直线与方程 3.2.3 直线的一般式方程学案(含解析)新人教A版必修2(2021

山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2的全部内容。

3.2.3 直线的一般式方程学习目标1。

掌握直线的一般式方程;2.理解关于x,y的二元一次方程Ax+By+C=0(A,B 不同时为0)都表示直线;3。

会进行直线方程的五种形式之间的转化.知识点一直线的一般式方程思考1 直线的点斜式、斜截式、两点式、截距式这四种形式都能用Ax+By+C=0(A,B不同时为0)来表示吗?答案能.思考2 关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)一定表示直线吗?答案一定.思考3 当B≠0时,方程Ax+By+C=0(A,B不同时为0)表示怎样的直线?B=0呢?答案当B≠0时,由Ax+By+C=0得,y=-错误!x-错误!,所以该方程表示斜率为-错误!,在y轴上截距为-错误!的直线;当B=0时,A≠0,由Ax+By+C=0得x=-错误!,所以该方程表示一条垂直于x轴的直线.形式Ax+By+C=0条件A,B不同时为0知识点二直线的一般式与点斜式、斜截式、两点式、截距式的关系类型一直线一般式的性质例1 设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0.(1)若直线l在x轴上的截距为-3,则m=________。

人教版高中数学必修2第三章直线与方程-《3.2.3直线的一般式方程》教案

3.2.3 直线的一般式方程整体设计教学分析直线是最基本、最简单的几何图形,它是研究各种运动方向和位置关系的基本工具,它既能为进一步学习作好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.直线方程是这一章的重点内容,在学习了直线方程的几种特殊形式的基础上,归纳总结出直线方程的一般形式.掌握直线方程的一般形式为用代数方法研究两条直线的位置关系和学习圆锥曲线方程打下基础.根据教材分析直线方程的一般式是本节课的重点,但由于学生刚接触直线和直线方程的概念,教学中要求不能太高,因此对直角坐标系中直线与关于x和y的一次方程的对应关系确定为“了解”层次.两点可以确定一条直线,给出一点和直线的方向也可以确定一条直线,由两个独立条件选用恰当形式求出直线方程后,均应统一到一般式.直线的一般式方程中系数A、B、C的几何意义不很鲜明,常常要化为斜截式和截距式,所以各种形式应会互化.引导学生观察直线方程的特殊形式,归纳出它们的方程的类型都是二元一次方程,推导直线方程的一般式时渗透分类讨论的数学思想,通过直线方程各种形式的互化,渗透化归的数学思想,进一步研究一般式系数A、B、C的几何意义时,渗透数形结合的数学思想.三维目标1.掌握直线方程的一般式,了解直角坐标系中直线与关于x和y的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.重点难点教学重点:直线方程的一般式及各种形式的互化.教学难点:在直角坐标系中直线方程与关于x和y的一次方程的对应关系,关键是直线方程各种形式的互化.课时安排1课时教学过程导入新课思路1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题. 思路2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A (1,8);(2)在x 轴和y 轴上的截距分别是-7,7;(3)经过两点P 1(-1,6)、P 2(2,9);(4)y 轴上的截距是7,倾斜角是45°.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、77yx +-=1、121696++=--x y 、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式. 推进新课 新知探究 提出问题①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线?③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化? ④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化?⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α.1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b.2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零. 结论1°:直线的方程都可以写成关于x 、y 的一次方程.②分析:a 当B≠0时,方程可化为y=-B A x-B C ,这就是直线的斜截式方程,它表示斜率为-BA,在y 轴上的截距为-B C 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-AC,表示一条与y 轴平行或重合的直线.结论2°:关于x,y 的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式. 注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. ③引导学生自己找到答案,最后得出能进行互化.④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1⑤列表说明如下:应用示例例1 已知直线经过点A(6,-4),斜率为-34,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-34的直线方程的点斜式方程为y+4=-34(x-6). 化成一般式,得4x+3y-12=0. 变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线? (2)系数满足什么关系时,与坐标轴都相交? (3)系数满足什么条件时,只与x 轴相交? (4)系数满足什么条件时,是x 轴? (5)设P(x 0,y 0)为直线Ax+By+C=0上一点, 证明这条直线的方程可以写成A(x-x 0)+B(y-y 0)=0. 答案:(1)C=0; (2)A≠0且B≠0; (3)B=0且C≠0; (4)A=C=0且B≠0;(5)证明:∵P(x 0,y 0)在直线Ax+By+C=0上, ∴Ax 0+By 0+C+0,C=-Ax 0-By 0. ∴A(x-x 0)+B(y-y 0)=0.2.(2007上海高考,理2)若直线l 1:2x+my+1=0与l 2:y=3x-1平行,则m=____________. 答案:-32例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画出图形.解:由方程一般式x -2y +6=0, ① 移项,去系数得斜截式y=2x+3. ② 由②知l 在y 轴上的截距是3,又在方程①或②中,令y=0,可得x=-6. 即直线在x 轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x 轴,y 轴上的截距点),过这两点作出直线l (图2).图2点评:要根据题目条件,掌握直线方程间的“互化”. 变式训练直线l 过点P(-6,3),且它在x 轴上的截距是它在y 轴上的截距的3倍,求直线l 的方程. 答案:x+3y-3=0或x+2y=0. 知能训练课本本节练习1、2、3. 拓展提升求证:不论m 取何实数,直线(2m -1)x -(m+3)y -(m -11)=0恒过一个定点,并求出此定点的坐标.解:将方程化为(x+3y-11)-m(2x-y-1)=0,它表示过两直线x+3y-11=0与2x-y-1=0的交点的直线系. 解方程组⎩⎨⎧=--=-+,012,0113y x y x ,得⎩⎨⎧==3,2y x .∴直线恒过(2,3)点. 课堂小结通过本节学习,要求大家:(1)掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系; (2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式; (3)通过学习,培养相互合作意识,培养学生思维的严谨性,注意语言表述能力的训练. 作业习题3.2 A 组11.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章解析几何初步【课题】第一节直线的倾斜角与斜率【教学目标】1.知识与技能:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.2.情感、态度、价值观:(1)培养学生观察、探索能力,运用数学语言表达能力。

(2)帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神3.过程与方法:通过启发引导、讨论等方法,理解直线的倾斜角与斜率的概念,掌握由直线上两点的坐标求直线的倾斜角和斜率的方法。

掌握直线的点斜式方程,会实现直线方程的各种形式之间的互化。

【教学重点难点】1.教学重点:直线的倾斜角和斜率的概念,过两点的直线的斜率公式2.教学难点:斜率概念的学习,过两点的直线的斜率公式【教法学法】启发式教学法、对话式教学法【教学准备】多媒体、实物模型【教学安排】2课时【教学过程】一、复习引入:直线和圆都是最常见的简单几何图形,在生产实践和实际生活中有广泛的应用。

初中几何对直线和圆的基本性质作了比较系统的研究,初中代数研究了一次函数图象及其性质,高一数学研究了三角函数、平面向量,直线和圆的方程的内容以上述知识为基础,直线和圆的方程是解析几何的基础知识,在解决实际问题中有广泛的应用。

本节要研究的是直线的两个基本概念,即直线的倾斜角和斜率。

⑴回顾一次函数的图象及性质形如y=kx+b(k≠0)叫做一次函数;它的图象是一条直线;当k>0时,在R上是增函数,当k<0时,在R上是减函数。

⑵画出下列一次函数的图象①y = 2x + 4 ② y = -2x + 2小结:作一次函数图象的方法-由于两点确定一条直线,故可在直线上任取两点,通常取点(0 , b)与(-b/k , 0)。

研究两点(-2,0)、(0,4)与函数式y = 2x + 4的关系是:这两点就是满足函数式的两对x、y的值。

由作图知满足函数式y = 2x + 4的每一对x、y的值都是函数y = 2x + 4上的点;这条直线上的点的坐标都满足函数式y = 2x + 4。

小结:一次函数y=kx+b(k≠0)的图象是一条直线,它是以满足y=kx+b(k≠0)的每一对x、y的值为坐标的点构成的。

由于函数式y=kx+b(k≠0)也可以看成二元一次方程,所以我们说,这个方程的解和直线上的点存在这样的对应关系。

二、讲授新课:⑴直线方程的概念以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程叫做这条直线的方程,这条直线叫做这个方程的直线。

在平面直角坐标系中研究直线时,就是利用直线和方程的这种关系,建立直线的方程,并通过方程来研究直线的有关问题,为此,我们先研究直线的倾斜角,理解直线的倾斜角和斜率的定义,并注和斜率。

正面请同学们阅读教材P34-35意它们的变化范围。

(5分钟)⑵直线的倾斜角 ①定义:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。

当直线和x 轴平行或重合时,我们规定直线的倾斜角为0º。

②范围:0º≤α<180ºαo x o x⑶直线的斜率定义:倾斜角不是90º的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示,即(4)过两点的直线的斜率公式、形式特点 方向向量:1α o x o x 直线上的向量21P P 及与它平行的向量都称为直线的方向向量。

直线P 1P 2的方向向量21P P 的坐标是(x 2-x 1,y 2-y 1),其中P 1(x 1,y 1),P 2(x 2,y 2);当直线P 1P 2与x 轴不垂直时,x 2≠x 1,此时21121P P x x -也是直线P 1P 2的方向向量,且它的坐标是),(1121212y y x x x x ---,即(1,k ),其中k 为直线P 1P 2的斜率。

注:方向向量与x 轴所成的最小正角与直线l 的倾斜角相等。

(5)斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线的斜率公式是: )(211212x x x x y y k ≠--= 推导如下:设直线P 1P 2的倾斜角为α,斜率为k ,向量的方向是向上的21P P (如下图),向量21121221P P OP ),y y ,x x P P = 过原点作向量--=(,则点P (x 2-x 1 , y 2-y 1),而且直线OP 的倾斜角也是α,根据正切函数的定义有)(tan 121212x x x x y y ≠--=α,即)(121212x x x x y y k ≠--=。

同样,当向量同样的公式。

的方向是向下时,也有21P P 小结:斜率公式的形式特点⑴斜率公式与两点的顺序无关,即两点的纵坐标和横坐标在公式中的前后次序可同时颠倒。

⑵斜率公式表明,直线对于x 轴的倾斜程度,可以通过直线上任意两点坐标表示,而不需要求出直线的倾斜角。

⑶斜率公式中,当x 1=x 2时不适用,此时直线和x 轴垂直,直线的倾斜角α=90°。

3、应用举例例1 如图,直线l 1的倾斜角为α1=l 2的斜率。

解:l 1的斜率k 1=tan α1=tan30°=3 ∵l 1⊥l 2∴l 2的倾斜角α2=90°+30∴l2的斜率k2=tan120°=-3α1α2o x例2直线过点A(-2,0), B(-5,3),求直线AB的斜率。

解:k=(3-0)/[(-5)-(-2)]=-1又α∈[0°,180°)∴α=135°因此,这条直线的斜率是-1,倾斜角是135°巩固练习P37练习4、54、归纳总结数学思想:数形结合、分类讨论数学方法:图象法、公式法三、内容、方法小结:本节介绍了直线的倾斜角和斜率的定义,以及斜率的两种求法,教学中运用图像法和公式法使得内容更易理解。

四、课后作业P89 2 3五、板书设计:1.倾斜角和斜率倾斜角定义:例1斜率定义:两点式求斜率例2作业:六、教学反思:【课题】第二节两条直线平行与垂直的判定【教学目标】1.知识与技能: 掌握斜率存在的两条直线平行或垂直的充要条件;能用解析法解决平面几何问题。

2.情感、态度、价值观:(1)通过创设的问题情境,引导学生探究平面内两条直线的平行或垂直关系的充要条件激发学生学习数学的兴趣(2)通过数学探究活动,使学生能用联系的观点看问题,掌握代数化处理几何问题的方法及数学地思考问题的方法,体会唯物辩证法在数学中的体现。

3.过程与方法: 在初中平面几何的直线平行或垂直关系的基础上,本节将从新的角度来研究平面内两条直线的平行或垂直关系,理解数形结合的数学思想。

【教学重点难点】1.教学重点:掌握两条直线平行、垂直的充要条件,并会判断两条直线是否平行、垂直2.教学难点:是斜率不存在时两直线垂直情况的讨论(公式适用的前提条件)【教法学法】讲解、练习、演示、探究【教学准备】计算机、投影仪、三角板.【教学安排】2课时【教学过程】一、复习引入:上课前我们先来看这样一个故事:魔术师的地毯一位魔术师拿了一块边长为1.3米的地毯去找地毯匠,要求把这块正方形的地毯改制成宽0.8米,长2.1米的矩形.地毯匠对魔术师说:“难道你连小学算术都没学过吗?边长为1.3米的正方形的面积是1.69平方米,而宽0.8米、长2.1米的矩形面积只有1.68平方米。

两者并不相等呀!”而魔术师只给了地毯匠一幅图,让他照着做就是了。

地毯匠照做了,缝好一量,果真可以,魔术师得意洋洋地取走了地毯,可地毯匠却很纳闷,百思不得其解,那0.01平方米的地毯去哪了?你能帮他解开疑团吗?现在大家可能不知道从何下手,那我们就带着这个问题来学习这节课的内容,看看能否利用我们下面学习的知识来解决这个问题.引入课题: 两条直线的平行与垂直的判定二、讲授新课:师:上节课我们学习了斜率,谁能告诉我斜率是什么?生:斜率是一条直线倾斜角的正切值.师:那什么是倾斜角?生:倾斜角是一条直线向上的部分与x轴正半轴所夹的角.师:两条直线的平行与垂直与这两条直线的倾斜角与斜率有什么关系呢?下面我们就一起来实验探究这个问题.大家打开几何画板,完成实验报告.给学生10分钟时间完成实验报告师:下面我们请两位同学来汇报一下你的实验结果学生1:实验1,我实验探究的结果是当两条直线互相平行时, 他们的斜率是相等的,当两条直线的斜率相等的时候,这两条直线是平行的.有没有同学补充?若没有,老师提问:当这两条直线都与y轴平行时,这两条直线的斜率也相等吗?让大家再动手操作一下.老师再问,若两条直线的斜率相等,这两条直线除了平行还有没有其它的位置关系?重合.因此,我们实验一的最终结论应该是:两条直线....,...而.且不重合....都.有斜率如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即学生2:实验2,我实验探究的结果是当两条直线互相垂直时,他们的斜率的乘积都等于-1,当两条直线的斜率乘积等于-1的时候,这两条直线是互相垂直的.有没有同学补充?若没有,老师提问:当这两条直线有一条与y轴平行时,上面的结论还成立吗?让大家再动手操作一下.因此,我们实验一的最终结论应该是:两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数(即乘积为-1);反之,如果它们的斜率互为负倒数,那么它们互相垂直,即师:上面是我们利用几何画板实验探究的结果,还没有经过理论验证.大家能否利用所学的知识证明这两个结论呢?首先我们先证明结论一.已知L1∥L2(图1-29),它们的斜率分别为k1,k2,求证它们的斜率相等. 证明:因为L1∥L2,所以α1=α2.∴tg α1=tg α2. 即 k1=k2.反过来,已知k1=k2,k1,k2分别为不重合的直线L1,L2的斜率,求证:L1∥L2证明:因为k1=k2,所以tg α1=tg α2由于0°≤α1<180°, 0°≤α<180°, ∴α1=α2. 又∵两条直线不重合, ∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.下面我们一起来证明两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x 轴上方;乙图的特征是L1与L2的交点在x 轴下方;丙图的特征是L1与L2的交点在x 轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0。

相关文档
最新文档