定义域和值域的求法
函数定义域、值域求法总结

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1 (5)y=x tan 中2ππ+≠k x ;y=x cot 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法(2)图象法(数形结合) (3)函数单调性法 (4)配方法(5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法(8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。
三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(例2 求下列函数的定义域:① 14)(2--=xx f ②2143)(2-+--=x x x x f②=)(x f x11111++④xx x x f -+=)1()(⑤373132+++-=x x y\例3 若函数aax axy 12+-=的定义域是R ,求实数a 的取值范围例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。
练习:设)(x f 的定义域是[-3,2],求函数)2(-x f 的定义域例7已知f(2x -1)的定义域为[0,1],求f(x)的定义域已知f(3x -1)的定义域为[-1,2),求f(2x+1)的定义域。
[2,25-)练习:已知f(x 2)的定义域为[-1,1],求f(x)的定义域若()y f x =的定义域是[]0,2,则函数()()121f x f x ++-的定义域是( )A.[]1,1-B⎥⎦⎤⎢⎣⎡-21,21 C.⎥⎦⎤⎢⎣⎡1,21 D.10,2⎡⎤⎢⎥⎣⎦已知函数()11xf x x+=-的定义域为A,函数()y f f x =⎡⎤⎣⎦的定义域为B,则( )A.A B B =B.B A ∈ C.A B B = D. A B =2、求值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xk y 的定义域为{x|x ≠0},值域为{y|y ≠0};二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}.例1 求下列函数的值域① y=3x+2(-1≤x ≤1) ②)(3x 1x32)(≤≤-=x f ③ xx y 1+=(记住图像)例2 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;练习:1、求函数y =3+√(2-3x)的值域2、求函数[]5,0,522∈+-=x x x y 的值域例3 求函数y=4x -√1-3x(x ≤1/3)的值域。
求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法在数学中,函数的定义域和值域是非常重要的概念。
定义域是指函数可以接受的输入值的集合,而值域则是函数能够取得的输出值的集合。
正确确定函数的定义域和值域是解决函数相关问题的关键,下面我们将详细介绍求函数定义域和值域的常用方法。
一、函数的定义域的常用方法:1. 显式定义法:对于一些常见的函数,我们可以直接根据其表达式来确定其定义域。
例如,对于一元多项式函数f(x)=ax^n+bx^m+...+c,其定义域可以是实数集或者区间。
2.隐式定义法:对于一些函数可能没有明确的表达式,或者函数的定义域和表达式没有直接的关系,我们可以根据函数的特性和性质来确定其定义域。
例如,对于分式函数f(x)=1/(x-1),我们可以得知分母不能为0,所以其定义域是实数集减去1的那部分实数。
3.已知条件法:有时候我们可以根据函数在一些点的取值情况来确定其定义域。
例如,对于一个连续函数f(x),如果我们知道在一些区间上f(x)恒大于0,那么可以确定该区间为函数的定义域。
4.集合运算法:当函数的定义域可以表示为多个区间或集合的并、交、差等运算时,我们可以利用这些运算来求解函数的定义域。
例如,对于函数f(x)=√(x+1)-√(x-1),我们可以先求出√(x+1)和√(x-1)的定义域,然后求出它们的交集。
二、函数的值域的常用方法:1.考察函数表达式法:对于一些常见的函数,我们可以观察其表达式,根据其中的字母、常数等特性来确定其值域的范围。
例如,对于平方函数f(x)=x^2,我们可以观察到平方函数的输出恒为非负数,所以其值域是[0,+∞)。
2.定义域与函数性质法:当我们已经确定了函数的定义域后,可以根据函数的性质来确定其值域。
例如,对于连续函数f(x)在一些区间上单调增加或者单调减少,我们可以确定函数在该区间上取值范围。
3.极限与极大极小值法:利用函数的极限性质、导数等衍生性质来确定函数的值域。
例如,对于函数f(x)=x^3-3x+2,我们可以求出其导数为f'(x)=3x^2-3,然后根据导数的符号确定函数的单调性和极值点,从而确定其值域。
定义域与值域求法

函数定义域、值域求法一、定义域是函数中的自变量x的范围。
求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1( 5 )中x二、值域是函数中y的取值范围。
常用的求值域的方法:(1)直接法(2)图象法(数形结合)(3)函数单调性法(4)配方法(5)换元法(包括三角换元)(6)反函数法(逆求法)(7)分离常数法(8)判别式法(9)复合函数法(10)不等式法(11)平方法等等三、典例解析1、定义域问题例1求下列函数的定义域:1 ;②;③例2 求下列函数的定义域:3 ②③④⑤解:①要使函数有意义,必须:即:∴函数的定义域为: []②要使函数有意义,必须:∴定义域为:{ x|}③要使函数有意义,必须:∴函数的定义域为:④要使函数有意义,必须:∴定义域为:⑤要使函数有意义,必须:即 x< 或 x> ∴定义域为:例3 若函数的定义域是R,求实数a 的取值范围例4 若函数的定义域为[1,1],求函数的定义域例5 已知f(x)的定义域为[-1,1],求f(2x-1)的定义域。
分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x的取值范围就是复合函数的定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中的x 位置相同,范围也应一样,∴-1≤2x-1≤1,解出x的取值范围就是复合函数的定义域。
(注意:f(x)中的x与f(2x-1)中的x不是同一个x,即它们意义不同。
)解:∵f(x)的定义域为[-1,1],∴-1≤2x-1≤1,解之0≤x≤1,∴f(2x-1)的定义域为[0,1]。
例6已知已知f(x)的定义域为[-1,1],求f(x2)的定义域。
答案:-1≤x2≤1 x2≤1-1≤x≤1练习:设的定义域是[3,],求函数的定义域例7已知f(2x-1)的定义域为[0,1],求f(x)的定义域因为2x-1是R上的单调递增函数,因此由2x-1,x∈[0,1]求得的值域[-1,1]是f(x)的定义域。
函数定义域值域求法(全十一种)

文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x
故
22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。
1、函数定义域、值域求法总结

1、函数定义域、值域求法总结函数定义域、值域求法总结1、函数的定义域是指自变量“x ”的取值集合。
2、在同一对应法则作用下,括号内整体的取值范围相同。
一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。
因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。
一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。
定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。
()的定义域求的定义域已知练习)2(],9,3[log :313-x f x f():f (x),f[g(x)]题型一已知的定义域求的定义域()():f g x ,f (x)⎡⎤⎣⎦题型二已知的定义域求的定义域()[]():f g x ,f h(x)⎡⎤⎣⎦题型三已知的定义域求的定义域()[]()[])x (h f x f x g f →→一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。
函数定义域值域求法总结

注:对于二次函数 ,
⑴若定义域为R时,
①当a>0时,则当 时,其最小值 ;
②当a<0时,则当 时,其最大值 .
⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若 [a,b],则 是函数的最小值(a>0)时或最大值(a<0)时,
在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,
所求的函数值域为{y|y≤4/3}。
小结:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。
②∵顶点横坐标2 [3,4],
当x=3时,y=-2;x=4时,y=1;
∴在[3,4]上, =-2, =1;值域为[-2,1].
③∵顶点横坐标2 [0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上, =-2, =1;值域为[-2,1].
④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3,x=5时,y=6,
(提示:定义域是自变量x的取值范围)
练习:
已知f(x2)的定义域为[-1,1],求f(x)的定义域
若 的定义域是 ,则函数 的定义域是( )
A. B C. D.
已知函数 的定义域为A,函数 的定义域为B,则( )
A. B.B C. D.
2、求值域问题
利用常见函数的值域来求(直接法)
一次函数y=ax+b(a 0)的定义域为R,值域为R;
(注意:f(x)中的x与f(2x-1)中的x不是同一个x,即它们意义不同。)
第二讲 函数的定义域和值域的求解方法

第二讲 函数的定义域和值域的求解方法一、定义域的求解方法:(1)若()x f 为整式,则定义域为R ;(2)若()x f 是分式,则其定义域是分母不为0的实数集合;(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合;(4)指数函数的定义域(也就是指数部分)为R ;(5)对数函数的定义域(真数部分)为R +;(6)幂函数的定义域要视指数的情况而定,如:2()f x x =与12()f x x =;(7)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合;(*)实际问题中,确定定义域要考虑实际问题例:1、求下列函数的定义域: (1)2322---=x x x y ; (2)x x y -⋅-=11; (3)x y --=113;(4)2253x x y -+-=; (5)()⎪⎩⎪⎨⎧--=x x x x f 23412、已知函数()x f 的定义域是[-3,0],求函数()1+x f 的定义域。
3、若函数()3123++-=mx mx x x f 的定义域是R ,求m 的取值范围。
练习:1.求下列函数的定义域:(1)()142--=x x f ; (2)()21432-+--=x x x x f(3)()x x f 11111++=; (4)()()x x x x f -+=01已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫ ⎝⎛++=342x f xf y 的定义域。
二、值域的求解方法:1、直接法:直接根据函数表达式来求值域。
例:4y x =, (2,3)x ∈2、单调性法:利用函数的单调性来求值域。
例:2y x =3、图象法:利用函数图象来求值域。
例:2y x =,2(2,5)y x x =∈-4、配方法:把函数化简成二次函数的形式,利用二次函数的性质来求。
例:221x x y x x -=-+5、判别式法:把式子化成一元二次方程的形式,利用判别式法来求。
函数定义域值域求法总结

函数定义域值域求法总结函数的定义域(Domain)和值域(Range)是函数的基本性质之一,它们是通过对函数的规则、图像以及问题的具体要求进行分析和计算得出的。
在数学中,定义域和值域的求法可能会因函数类型的不同而有所不同。
本文将总结一些常见的函数定义域和值域求法方法,并提供一些示例。
一、函数定义域的求法方法1. 使用函数规则:根据函数的定义和规则,确定函数所能接受的变量范围。
例如,对于一个有理函数(Rational Function) f(x) = 1/(x-2),由于分母不能为零,所以定义域为除去 x=2 的所有实数。
2. 图像法:绘制函数的图像,观察函数在整个定义域上是否有意义。
一般来说,如果函数在一些点处没有定义或出现断点,则这个点不属于定义域。
例如,对于一个分段函数(Piecewise Function)f(x) = ,x,其图像是一条 V 型曲线,因此定义域为所有实数。
3.非负实数法:有些函数定义域存在特定的限制,负数、零或者正数。
例如,对于一个以平方根为主的函数f(x)=√(x-3),它的定义域要求x-3≥0,即x≥34. 根式定义域法:对于一些函数,如开方函数、对数函数,可以通过求解不等式来确定函数的定义域。
例如,对于对数函数 f(x) = log(x),由于 log 函数的定义域要求 x > 0,所以它的定义域为所有正实数。
5.分式的定义域法:对于一个分式函数,要求分母不为零。
因此,可以根据分式的分母求解不等式来确定函数的定义域。
例如,对于一个分式函数f(x)=2/(x+1),由于分母要求不等于零,所以定义域为除去x=-1的所有实数。
二、函数值域的求法方法1. 观察法:通过观察函数的定义和规则,或者通过观察函数的图像,推测函数的值域。
例如,对于一个二次函数 f(x) = ax^2 + bx + c,如果 a > 0,那么函数的值域是 (−∞, f(v)],其中 f(v) 是顶点的纵坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义域和值域的求法 Final revision by standardization team on December 10, 2020.
函数定义域求法总结
一、定义域是函数y=f(x)中的自变量x 的范围。
(1)分母不为零
(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1
(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠
二、抽象函数的定义域
1.已知)(x f 的定义域,求复合函数()][x g f 的定义域
由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。
2.已知复合函数()][x g f 的定义域,求)(x f 的定义域
方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。
3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域
结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。
4.已知()f x 的定义域,求四则运算型函数的定义域
若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。
函数值域求法四种
在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本次课就函数值域求法归纳如下,供参考。
1. 直接观察法
对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1
y =的值域。
解:∵0x ≠ ∴0x 1
≠
显然函数的值域是:),0()0,(+∞-∞
例2. 求函数x 3y -=的值域。
解:∵0x ≥
故函数的值域是:]3,[-∞
2. 配方法
配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=
∵]2,1[x -∈
由二次函数的性质可知:当x=1时,4y min =,当1x -=时,
8y max =
故函数的值域是:[4,8]
3. 判别式法
例4. 求函数22
x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程
(1)当1y ≠时,R x ∈ 解得:23
y 21
≤≤
(2)当y=1时,0x =,而⎥⎦⎤
⎢⎣⎡
∈23,21
1 故函数的值域为⎥⎦⎤
⎢⎣⎡
23,21
例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-(1)
∵R x ∈
∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-
但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤
由0≥∆,仅保证关于x 的方程:
0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0
≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤
21y ,0y min +==∴代入方程(1) 解得:]2,0[22
222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集
时,应综合函数的定义域,将扩大的部分剔除。
4. 换元法
通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。
例6. 求函数1x x y -+=的值域。
解:令t 1x =-,)0t (≥
则1t x 2+= ∵
43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知
当0t =时,1y min =
当0t →时,+∞→y
故函数的值域为),1[+∞
课堂练习
一、 求函数的定义域
1、求下列函数的定义域:
⑴y =
⑵y =
⑶01
(21)1
11y x x =+-+-
2、设函数的定义域为,则函数的定义域为_ _ _;函数的定义域为________;
3、若函数(1)f x +的定义域为,则函数(21)f x -的定义域是 ;函数
1(2)f x
+的定义域为 。
4、知函数的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求
实数m 的取值范围。
5、若函数()f x = 3
442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )
A 、(-∞,+∞)
B 、(0,43]
C 、(43,+∞)
D 、[0, 43) 6、若函数2()1f x mx mx =++的定义域为R ,则实数m 的取值范围是( )
(A)04m << (B) 04m ≤≤(C) 4m ≥ (D) 04m <≤
7.已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.
8.若函数)(x f y =的定义域为⎥⎦
⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为 。
9.已知函数2(22)f x x -+的定义域为[]03,,求函数()f x 的定义域.
10.已知函数
的定义域为,则的定义域为________。
11. 函数定义域是,则的定义域是( )
A. B. C. D.
12.已知函数f(2x )的定义域是[-1,1],求f(log 2x)的定义域.
13.若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.
14.已知函数
的定义域是,求的定义
域。
15.若函数f (x +1)的定义域为[-2
1,2],求f (x 2)的定义域. 二、 求函数的值域
1.函数()()2
11f x x R x =∈+的值域是_________
2.2222x x y x -+-=+的值域是________
3.12y x x =+-的值域是__________
4.二次函数(]247,0,3y x x x =-+-∈的值域为 。
5.函数265y x x =---的值域是 15函数241y x x =+-的值域是
6.函数224y x x =--+的值域是( )
A [2,2]-
B [1,2]
C [0,2]
D [2,2]-
7.若函数y =x 2-3x -4的定义域为[0,m ],值域为[-4
25,-4],则m 的取值范围是( ) A.(0,]4 B.[23,4] C.[23,3] D.[2
3,+∞) 8.221
x x y x x -=-+ 9.如何求函数23(1)1x y x x +=>-+的值域21(1)3
x y x x +=>-+呢 课后小结:
(1) 求函数定义域时,不要化简所给解析式,而是直接从所给的解析式寻找使解析式
有意义时自变量满足的条件。
(2) 函数的定义域要用集合或区间形式表示,这一点初学者易忽视。
(3) 定义域的求法:见上面讲义。
(4) 求函数值域时要先观察函数的结构特征,然后选好所适合的方法来解题,尤其要
注意根据定义域来求值域,不要忽略定义域的范围。
家庭作业
1. 设函数
的定义域为,则 (1)函数
的定义域为________。
(2)函数
的定义域为__________。
2、已知函数
的定义域为,则的定义域为__________ 3、已知函数的定义域为,则y=f(3x-5)的定义域为________。
4、4.设函数y=f(x)的定义域为[0,1],求y=f()3
1()31-++x f x 定义域。
5
.55、若函数a ax ax y 12+
-=的定义域是R ,求实数a 的取值范围 6.求下列函数的值域。