大学物理流体力学116页PPT
合集下载
流体力学课件(全)

X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
大学物理流体力学精品PPT课件

三 粘性与粘度
粘性——流体流动时,在内部产生的切应力。 流体流动时,各层流体的流速不同。快层必然带 动慢层,慢层必然阻滞快层。层与层之间的相对 滑动,产生内摩擦力。
z
F
v0
v+dv
f f v
5
四 理想流体的概念
理想流体——没有粘性并且不可压缩的流体。
五 流速场 定常流动
拉格朗日的追踪法 ——流元、流块
§2-3. 伯肃叶公式和斯托克斯公式 层流与湍流
层流: 流体运动规则,各层流动互不掺混,质 点运动轨线是光滑,而且流场稳定。
湍流: 流体运动极不规则,各部分激烈掺混, 质点运动轨线杂乱无章,而且流场极不 稳定。
21
牛顿内摩擦定律
流体流动时,各层流体的流速不同。快层必然带 动慢层,慢层必然阻滞快层。层与层之间的相对 滑动,产生内摩擦力。
1 2
v2
PA
PB
gh
v 2gh
3.飞机机翼周围的空气是如何流动的
假设在机翼右方的空气是水平方向以速度v1向左运动的,如图。 由于机翼倾斜,流经机翼的流线向 下偏移,如图中的v2。这两个矢量 之差v2- v1正是指向机翼对空气的 作用力的方向。根据牛顿第三定律, 空气对机翼施加大小相等、方向相 反的反作用,如图中的F。 这个力 的垂直分量正是飞机的升力(lift)。
公式 • §2-4. 液体的表面现象
3
§2-1. 理想流体
一 流体 液体和气体统称为流体,最鲜明的特征是
形状不定,具有流动性。
气体:易压缩 液体: 不易压缩
二 压强
dS dF
面积元 两侧流体相互作用的弹性力
dS
dF
方向为面元内法线方向
p dF 单位面积上的压力称为压强
《流体力学导论》PPT课件_OK

2021/8/30
17
二、流体连续介质假设
从微观角度看,流体和其它物体一样,都是由大量不 连续分布的分子组成,分子间有间隙。但是,流体力学所 要研究的并不是个别分子的微观运动,而是研究由大量分 子组成的宏观流体在外力作用下的宏观运动。因此,在流 体力学中,取流体微团来作为研究流体的基元。所谓流体 微团是一块体积为无穷小的微量流体,由于流体微团的尺 寸极其微小,故可作为流体质点看待。这样,流体可看成 是由无限多连续分布的流体微团组成的连续介质。这种对 流体的连续性假设是合理的,因为在流体介质内含有为数 众多的分子。例如,在标准状态下,lmm3气体中有2.7× 1016个分子;lmm3的液体中有3×10 19个分子。可见分子间 的间隙是极其微小的。因此在研究流体宏观运动时,可
2021/8/30
4
液体或气体界面处,不仅研究相互之间的作用力,而且还 需要研究它们之间的传热、传质规律。
工程流体力学是研究流体(液体、气体)处于平衡状 态和流动状态时的运动规律及其在工程技术领域中的应用。
流体力学的基础理论由三部分组成。一是流体处于平 衡状态时,各种作用在流体上的力之间关系的理论,称为 流体静力学;二是流体处于流动状态时,作用在流体上的 力和流动之间关系的理论,称为流体动力学;三是气体处 于高速流动状态时,气体的运动规律的理论,称为气体动 力学。工程流体力学的研究范畴是将流体流动作为宏观机 械运动进行研究,而不是研究流体的微观分子运动,因而
出液体中压力传递的定理;1686年牛顿(Newton,I.)发
2021/8/30
9
表了名著《自然哲学的数学原理》对普通流体的黏性性状 作了描述,即现代表达为黏性切应力与速度梯度成正比— 牛顿内摩擦定律。为了纪念牛顿,将黏性切应力与速度梯 度成正比的流体称为牛顿流体。
流体力学完整版课件全套ppt教程

阻力系数 0.4 阻力系数 0.2 阻力系数 0.137
前言
火车站台安全线
本章小结
【学习目标】 1. 理解流体力学的学科定义; 2. 了解流体力学的发展简史; 3. 熟悉流体力学的研究方法 。
工程流体力学
中国矿业大学电力学院
§1.1 流体的定义 §1.2 连续介质假说 §1.3 流体的物理性质
流体在受到外部剪切力作用时会发生变形,其内部相应会 产生对变形的抵抗,并以内摩擦力的形式表现出来。
➢ 粘性的定义
流体的粘性就是阻止发生剪切变形的一种特性,内摩擦力则 是粘性的动力表现。
§1.3 流体的物理性质
➢ 牛顿的平板实验
实验装置:2块平板,平板间充满流体。
实验过程:用力拉动液面上的平板,直 到平板匀速前进。
前言
曹冲(公元196-208年)称象
孙权 曾 致 巨 象 , 太祖欲知其斤重, 访之群下,咸莫能 出其理。冲曰: “置象大船之上, 而刻其水痕所至, 称物以载之,则校 可知矣。”太祖悦, 即施行焉。
前言
都江堰(公元前256年,李冰父子修都江堰)
战国时期,秦国蜀郡太 守李冰和他的儿子,修建 了著名的都江堰水利工程。 都江堰的整体规划是将岷 江水流分成两条,其中一 条引入成都平原,这样既 可以分洪减灾,又可以引 水灌田、变害为利。
前言
二、流体力学的研究方法
2. 实验室模拟
➢ 作用:实验模拟能显示运动特点及其主要趋势,实验结果可 检验理论的正确性。
➢ 优点:能直接解决生产中的复杂问题,能发现流动中的新现 象和新原理,它的结果可以作为检验其他方法是否正确的依 据。
➢ 缺点:对不同情况,需作不同的实验,所得结果的普适性较 差。
前言
流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功
令
HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准
流体力学ppt课件-流体动力学

g
g
2g
水头
,
z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.
详细版流体力学-流体静力学.ppt

pm pab pa gh p
pv
c.真空度pv
pv pa pab
注意:pv表示绝对压强小于当地大气压强而形成 真空的程度,读正值!
.精品课件.
15
3.压强单位 标准大气压(atm) =1.013×105Pa=760mmHg=10.33mH2O 工程大气压(at) =0.9807×105Pa=735.5mmHg=10mH2O =1kg/cm2(每平方厘米千克力,简读公斤)
x y z 对(1)、(2)、(3)式坐标交错求偏导,整理得
X Y y x
Y Z z y
Z X x z
——力作功与路径无关的充分必要条件 必存在势函数U,力是有势力
dU
U x
dx
U y
dy
U dz .精品课z 件.
8
U X x
U Y y
U Z z
——力与势函数的关系
(4)式可写为:
换算: 1kPa=103Pa
1bar=105Pa
.精品课件.
16
4.测压计 一端与测点相连,一端与大气相连 例 求pA(A处是水,密度为ρ,测压 计内是密度为ρ’的水银)
解:作等压面
pA ga ' gh
pA 'h ag
例 求pA(A处是密度为ρ的空气,测压计内是密度为ρ’的 水)
解:pA ' gh
(1)用分割法求P大小,作用点为D;
或
yD
Jc yc A
h
Jc
sin
A
T
(从形心C处算起)
(2)对A点求矩
P
A
G l cos P AD Tl cos T
2
C l
D θ
流体力学基本知识PPT优秀课件

第一章 流体力学基本知识
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。