实变函数证明大全(期末复习)
实变函数期末考试重点

实变函数考试重点题目第一章:求极限 Eg :求1(,)n A n n=的上下极限下极限1111lim inf (,)(,)(0,)n nm n m m A n m n m ∞∞∞======+∞上极限1111lim sup (,)(,)(0,)n nm n mm A n m n m ∞∞∞======+∞P24页 第5题5、设F 是]1,0[上全体实函数所构成的集合,c F 2=.证明:(1)设)(x E χ为E 的示性函数,]}1,0[|{⊂=E E A ,F E x B E ⊂⊂=]}1,0[|)({χ,显然B A ~,于是F B A c ≤==2;(2)设]}1,0[|))(,{(∈=x x f x G f ,}|{F f G C f ∈=,}]1,0[|{R ⨯⊂=P P D ,显然D C F ⊂~,于是cD C F 2=≤=,总之,c F 2=.P30页 定理1 定理2 P35页 第2 12题2.设一元实函数)()(R C x f ∈⇒R ∈∀a ,})(|{a x f x G >=是开集,})(|{a x f x F ≥=是闭集.证明:(1)G x ∈∀0,取0)(0>-=a x f ε,因)()(0x C x f ∈,那么对于0>ε,0>∃δ,..t s δ<-||0x x 时, ε<-|)()(|0x f x f ,即a x f x f =->ε)()(0,从而G x N ⊂),(0δ,所以G 是开集.(2)F x '∈∀0,∃互异点列F x k ⊂}{..t s 0x x k →,显然a x f k ≤)(,因)()(0x C x f ∈,有a x f x f k k ≤=∞→)(lim )(0,即F x ∈0,于是F F ⊂',所以所以F 是闭集.12、设实函数)()(nC x f R ∈⇔O ∈∀G ,O ∈-)(1G f.证明:“⇒”O ∈∀G ,)(10G fx -∈∀,因O ∈∈G x f )(0,0>∃ε..t s G x f N x f ⊂∈)),(()(00ε,那么对于0>ε,0>∃δ,..t s ),(0δx N x ∈∀,均有G x f N x f ⊂∈)),(()(0ε, 从而)(1G fx -∈,于是)(),(10G fx N -⊂δ,所以O ∈-)(1G f.“⇐”n x R ∈∀0,0>∀ε,由于O ∈=)),((0εx f N G , 那么O ∈∈-)(10G fx ,这样0>∃δ..t s )(),(10G fx N -⊂δ,从而)(),(10G f x N x -⊂∈∀δ,均有)),(()(0εx f N x f ∈,即)()(nC x f R ∈.P42页 定理4P44页 定理2 定理3定理2:∀非空n E R ⊂,0>∀d ,}),(|{d E x x U <=ρ ⇒ O ∈⊂U E . 证明:显然U E ⊂.U x ∈∀,取0),(>-=E x d ρδ,),(δx U y ∈∀,有d E x E x x y E y =+<+≤),(),(),(),(ρδρρρ可见U y ∈,这样U x U x ⊂∈),(δ, ∴O ∈⊂U E .P45页 第5.6题5、设非空n E R ⊂,则),(E P ρ在n R 上一致连续.证明:0>∀ε,取εδ=,n Q P R ∈∀,,只要δρ<),(Q P ,由于),(),(),(E Q Q P E P ρρρ+≤,),(),(),(E P P Q E Q ρρρ+≤,有ερρρ<≤-),(|),(),(|Q P E Q E P ,所以, ),(E P ρ在n R 上一致连续.6、∀非空⊕C ∈21,F F ⇒)()(nC P f R ∈∃..t s 1)(0≤≤P f ,且0)(≡P f ,1F P ∈;1)(≡P f ,2F P ∈.证明:显然)(),(),(),()(211nC F P F P F P P f R ∈+=ρρρ,1)(0≤≤P f ,且0)(≡P f ,1F P ∈;1)(≡P f ,2F P ∈.P54页 定理(3)(4) P57页 第5 7题5、设实函数)(x f 在],[b a 上连续,}),(|),{(b x a x f y y x E ≤≤==,证明0*=E m . 证明:因为],[)(b a C x f ∈,于是)(x f 在],[b a 上一致连续,那么0>∀ε, 0>∃δ, ..t s 当δ<-||t s ,时,ε<-|)()(|s f t f .取δ<-na b ,将],[b a 进行n 等分,其分点为b x x x a n =<<<= 10,记],[1i i i x x I -=,])(,)([εε+-=i i i x f x f J ,显然,)(}),(|),{(11ni i ini i J II x x f y y x E ==⨯⊂∈==,∑∑==⨯=⨯≤≤ni i ini i iJ m Im J Im E m 11*)]()([)(0εε)(2)2(1a b na b ni -=⋅-=∑=,于是,由ε的任意性,知0*=E m .7、0*>E m ,证明必E x ∈∃,..t s 0>∀δ,都有0)),((*>δx N E m .证明:反证.假设E x ∈∀,0>∃x δ,使得0)),((*=x x N E m δ ,当然存在以有理数为端点的区间x I ..t s ),(x x x N I x δ⊂∈,由于}{x I 至多有可数个,记作}{k J ,有)(1∞=⊂k kJE E 那么0)(01**=≤≤∑∞=k k J E mE m ,这与条件0*>E m 不符,说明必E x ∈∃,..t s 0>∀δ,都有0)),((*>δx N E m .P65页 定理5 定理6 P68页 第4 5 9 11题4、设M ⊂}{m E ,证明m mm mmE E m inf lim )inf lim (≤.又+∞<∞=)(1m m E m ,证明m mm m mE E m sup lim )sup lim (≥.证明:因m m k k E E ↑⊂∞= ,有m mmk km m mk km mmE EEm E m inf lim lim)()inf lim (1≤==∞=∞→∞=∞=.又因m mk k E E ↓⊃∞= ,+∞<∞=)(1 m m E m ,有m mmk km m mk km mmE EEm E m sup lim lim)()sup lim (1≥==∞=∞→∞=∞=.5、设M ⊂}{m E ,+∞<∑∞=1)(m m E m ,证明0sup lim =m mmE .证明:因m mk k E E ↓⊃∞= ,+∞<≤∑∞=∞=11)()(m mm m Em E m ,有0)(lim)(lim )()sup lim (01=≤==≤∑∞=∞→∞=∞→∞=∞=mk km mk k m m mk km mEm E m E m E m,所以0sup lim =m mmE .P103页 第2题2、证明当)(x f 既是1E 上又是2E 上的非负可测函数时,)(x f 也是21E E 上的非负可测函数. 证明:由条件知 R ∈∀a ,n E x a x f x E M ∈∈>],)(;[1,n E x a x f x E M ∈∈>],)(;[2,于是],)(;[21E E x a x f x E ∈>n E x a x f x E E x a x f x E M ∈∈>∈>=],)(;[],)(;[11 所以)(x f 也是21E E 上的非负可测函数.P104页 第6 11题6、设实函数)()(n C x f R ∈,证明:M ∈∀E ,均有)()(E x f M ∈. 证明:M ∈∀E ,R ∈∀a ,显然O ∈+∞=),(a G ,下面证明M ∈-)(1G f.},)(|{)(10nx a x f x G fx R ∈>=∈∀-,因O ∈∈G x f )(0,0>∃ε..t s G x f N x f ⊂∈)),(()(00ε,这样对于0>ε,0>∃δ,..t s ),(0δx N x ∈∀,均有G x f N x f ⊂∈)),(()(0ε,从而)(1G f x -∈,于是)(),(10G f x N -⊂δ,那么M O ⊂∈-)(1G f.由于M ∈=∈>=--)(},)(|{)(11G f E E x a x f x G f,所以)()(E x f M ∈.11、设)(x f 是E 上的可测函数,)(y g 是R 上的连续函数,证明)]([x f g 是E 上的可测函数.证明:R ∈∀a ,因)()(R C y g ∈,若O ∈-∞=),(a G ,有O ∈<=-})(|{)(1a y g y G g由于})]([|{a x f g x x <∈⇔a x f g <)]([⇔)()(1G g x f -∈⇔)]([11G gfx --∈,于是M ∈=<--)]([})]([|{11G gf a x fg x ,所以)()]([E x f g M ∈.P117页 第2题2、设K x f k ≤|)(|..e a E ,)()(x f x f mk →E x ∈, 证明K x f ≤|)(|..e a E . 证明:+∈∀N m ,当mx f x f k 1|)()(|<-,K x f k ≤|)(|时,mK x f x f x f x f k k 1|)(||)()(||)(|+<+-≤,于是]1|)(|;[m K x f x m mE m +≥= ]|)(|;[]1|)()(|;[K x f x m m x f x f x m k k >+≥-≤0]1|)()(|;[→≥-≤mx f x f x m k ,∞→k ,有0=m mE ,因↑}{m E ,有0lim ]|)(|;[==≥∞→m m E K x f x m 所以K x f ≤|)(|..e a E .课件 第四章第四节 倒数第2~5题3、定理:设)()(x f x f mk →,)()(x g x f mk →E x ∈, 则)(~)(x g x f E. 证明: +∈∀N k m ,, 若mx f x f k 21|)()(|<-,mx g x f k 21|)()(|<-,有mx g x f x f x f x g x f k k 1|)()(||)()(||)()(|<-+-≤-,于是 ]1|)()(|;[m x g x f x E ≥-]21|)()(|;[]21|)()(|;[m x g x f x E m x f x f x E k k ≥-≥-⊂ ,从而]1|)()(|;[m x g x f x mE ≥-]21|)()(|;[]21|)()(|;[mx g x f x mE m x f x f x mE k k ≥-+≥-≤000=+→, 又因∞=≥-=≠1]1|)()(|;[)]()(;[m mx g x f x E x g x f x E ,有 0)]()(;[=≠x g x f x mE ,所以)(~)(x g x f E.1、设)()(x f x f mk →,)()(x g x g mk →,E x ∈, 证明)()()()(x g x f x g x f mk k ++→. 证明:已知,0>∀σ,当2|)()(|σ<-x f x f k ,2|)()(|σ<-x g x g k ,时,σ<-+-≤+-+|)()(||)()(||)]()([)]()([|x g x g x f x f x g x f x g x f k k k k ,由于)()(x f x f m k →,)()(x g x g mk →,E x ∈,有]|)]()([)]()([|;[0σ≥+-+≤x g x f x g x f x m k k0]2|)()(|;[]2|)()(|;[→≥-+≥-≤σσx g x g x m x f x f x m k k ,所以)()()()(x g x f x g x f mk k ++→.2、设)()(x f x f mk →,)()(E x g M ∈且几乎处处有限, 证明)()()()(x g x f x g x f mk →. 证明:已知,)()(x f x f mk →,)(x g 在E 上几乎处处有限,那么0>∀σ,0>∀ε,0>∃K ..t s2]|)()(|;[εσ<≥-Kx f x f x m k , 2]|)(|;[ε<≥K x g x m ]|)()()()(|;[σ≥-x g x f x g x f x m k ]]|)(||)()(|;[σ≥-≤x g x f x f x m k]|)(|;[]|)()(|;[K x g x m K x f x f x m k ≥+≥-≤σεσ<≥+≥-≤]|)(|;[]|)()(|;[K x g x m Kx f x f x m k ,所以)()()()(x g x f x g x f mk →.3、设0)(→mk x f ,证明0)(2→mk x f .证明:已知,0)(→mk x f ,那么0>∀σ,0>∀ε,..t s εσ<≥-]|)()(|;[x f x f x m k ,有εσσ<≥=≥-]|)(|;[]|0)(|;[2x f x m x f x m k k ,所以0)(2→mk x f .。
实变函数复习题

复习题1 一、判断1、若N 是自然数集,e N 为正偶数集,则N 与e N 对等。
(对)2、由直线上互不相交的开间隔所成之集是至多可列集。
(对)3、若12,,,n A A A 是1R 上的有限个集,则下式()1212n n A A A A A A ''''+++=+++成立。
(对)4、任意多个开集的交集一定是开集。
(错)5、有限点集和可列点集都可测。
(对)6、可列个零测集之并不是零测集。
(对)7、若开集1G 是开集2G 的真子集,则一定有12mG mG <。
(错) 8、对于有界集1ER ⊆,必有*m E <+∞。
(对)9、任何点集E 上的常数函数()f x =C ,x E ∈是可测函数。
(错)10、由()f x 在()1,2,k E k = 上可测可以推出()f x 在1kk E E ∞==∑上可测。
(对)二、填空1、区间(0,1)和全体实数R 对等,只需对每个()0,1x ∈,令 ()tan()2x x πϕπ=-2、任何无限集合都至少包含一个 可数子集3、设12,S S 都可测,则12S S ⋃也可测,并且当12S S ⋂为空集时,对于任意集合T 总有***1212[()]()()m T S S m T S m T S ⋂⋃=⋂+⋂4、设E 是任一可测集,则一定存在F ∂型集F ,使F E ⊂,且 ()0m E F -=5、可测集n ER ⊂上的 连续函数 是可测函数。
6、设E 是一个有界的无限集合,则E 至少有一 个聚点。
7、设π是一个与集合E 的点x 有关的命题,如果存在E 的子集M ,适合mM=0,使得π在E\M 上恒成立,也就是说,E\E[π成立]= 零测度集 ,则我们称π在E 上几乎处处成立。
8、E 为闭集的充要条件是'(E E)E E ⊂∂⊂或 。
9、设A 、B 是两个非空集合,若,A B B A ≤≤,则有 A =B。
三、证明 1、证明:若A B ⊂,且~A A C ⋃,则有~B B C ⋃。
实变函数复习要点

实变函数复习要点实变函数是指定义域为实数集,值域为实数集的函数。
在复习实变函数的要点时,我们可以从以下几个方面入手:1.函数的定义与表示:回顾函数的基本定义,即一个变量映射到唯一的函数值。
再回顾函数的表示方法,如函数图像、表达式、数列等。
2.函数的性质与分类:函数常具有有界性、单调性、奇偶性、周期性等基本性质。
了解这些性质的定义,并学会根据给定条件判断函数的性质。
另外,实变函数可分为初等函数和非初等函数,初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等。
3.基本运算:复习函数的基本运算法则,包括函数的加减乘除、复合函数和反函数等。
了解这些运算方法可以帮助我们进行函数的简化与分析。
4.函数的极限:函数的极限是函数理论中的重要概念。
复习函数的极限定义与相关定理,如极限的唯一性、有界性、保序性、四则运算法则等。
还要学会计算函数的极限,并理解极限的几何和物理意义。
5.函数的导数与微分:复习导数的定义与性质,包括导数的存在性、可导性与连续性之间的关系,以及导数的基本运算法则。
进一步学习高阶导数、隐函数与参数方程的导数,并应用导数进行函数的近似与最值计算。
6.函数的积分与不定积分:再次回顾函数积分的定义与常见的积分法则,如分部积分法、换元积分法等。
学习计算函数的不定积分和定积分,并理解积分的几何和物理意义。
7.函数的级数表示与展开:了解函数级数的定义与相关定理,如函数级数的收敛性、绝对收敛性、一致收敛性等。
学习级数展开及其应用,如泰勒级数、傅里叶级数等。
8.函数的图像与应用:绘制函数的图像,了解函数在不同区间的特点和行为。
掌握函数在各种应用问题中的求解方法,如函数的最值、极值与拐点、函数的增减性与凹凸性、函数的模型建立与优化等。
9.常见函数的特殊性质与应用:通过实例了解部分特殊函数的性质与应用,如阶乘函数、取整函数、莫比乌斯函数等。
10.综合应用与思考:通过解答真实问题和综合应用题,巩固所学的实变函数的知识,培养动手实践能力和思考能力。
实变函数(复习资料,带答案)

---《实变函数》试卷一一、单项选择题( 3 分×5=15 分)1、下列各式正确的是()( A) lim A n A k ;(B) lim A nn 1 k n A k ;n n 1 k n n( C) lim A n A k ;( D) lim A nn 1 k A k ;n n 1 k n n n2、设 P 为 Cantor 集,则下列各式不成立的是()(A)P c (B)mP 0(C)P'P(D)P P3、下列说法不正确的是()(A)凡外侧度为零的集合都可测( B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集(D)波雷耳集都可测4、设f n ( x) 是 E 上的a.e.有限的可测函数列 , 则下面不成立的是()(A)若f n(x) f ( x) ,则f n( x) f ( x)(B)sup f n ( x) 是可测函数(C)inf f n (x) 是可测函数 ; ( D)若n nf n (x) f (x) ,则 f (x) 可测5、设 f(x) 是[ a,b]上有界变差函数,则下面不成立的是()(A) f (x) 在 [ a, b] 上有界(B)f ( x) 在 [ a,b] 上几乎处处存在导数(C)f'( x)在[ a, b]上 L 可积 (D)bf '(x)dx f (b) f (a)a二.填空题 (3 分× 5=15 分 )1、(C s A C s B) ( A ( A B))_________2、设 E 是 0,1 上有理点全体,则oE' =______, E =______, E =______.3、设 E 是 R n中点集,如果对任一点集T 都,则称 E是L可测的4、f ( x)可测的 ________条件是它可以表成一列简单函数的极限函数 . (填“充分”,“必要”,“充要”)5、设f (x)为 a, b 上的有限函数,如果对于a, b 的一切分划,使_____________________________________则,称f ( x)为a, b 上的有界变差函数。
实变函数整理(定理精简版)

定理1.12若A 非空集合,则A 与其幂集φ(A)不对等。 证明 假定A 与其幂集φ(A)对等,即存在一一映射 f :A ->φ(A),作集合B={:()x A x f x ∈∉},于是有y ∈A,使f(y)=B ∈φ(A),分析一下y 与B 的关系:(1)若y ∈B,则由B 之定义可知()y f y ∉=B;(2)若y ∉B,则由B 之定义可知()y f y ∈=B 。这些矛盾说明A 与φ(A)之间并不存在一一映射,即A 与φ(A)并不是对等的。n R 中有界闭集的任一开覆盖均含有一个有限子覆盖。证明 设F 是nR 中的有界闭集,Γ是F 的一个开覆盖,可以假定Γ由可列个开集组成:Γ={12,i G G G ……}。令k H =1ki i G =,k L =F ⋂H c k (k=1,2…)。显然,k H 是开集,kL 是闭集且有k L 1k L +⊃(k=1,2…)。分两种情况:1,存在0k ,使得0k L 是空集,即0H ck 中不含F 的点,从而知F 0k H ⊂,定理得证;2,一切k L 皆非空,则有Canter 闭集套定理知,存在点0x ∈k L (k=1,2…),即0x ∈F 且0x ∈H c k (k=1,2…)。这就是说F 中存在点0x 不属于一切k H ,与原假设矛盾,故第(2)种情况不存在。定理1.28若F 是nR 的闭集,f(x)是定义在F 上连续函数且|f(x)|≤M(x ∈F),则存在nR 上的连续函数g(x)满足| g(x)|≤M,g(x)= f(x),x ∈F 。 证明 把F 分成三个点集:A=:()3M x F f x M ⎧⎫∈≤≤⎨⎬⎩⎭, B=:()3M x F M f x -⎧⎫∈-≤≤⎨⎬⎩⎭,C=:()33M M x F f x -⎧⎫∈≤≤⎨⎬⎩⎭,作函数1()g x =(,)(,)3(,)(,)M d x B d x A d x B d x A -⎛⎫⎪+⎝⎭,x ∈n R 。因为A 与B 是互不相交的闭集,所以1()g x 处处有定义且在n R 上处处连续,此外还有|1()g x |3M≤,x ∈ n R ,|f(x)-1()g x |23M≤,x ∈F 。再在F 上考察f(x)-1()g x ,用类似方法作n R 上连续函数2()g x ,由于f(x)-1()g x 的界是2M/3,故2()g x 满足|2()g x |12()33M≤,x ∈n R ,|[f(x)-1()g x ]-2()g x |23≤23M =223⎛⎫⎪⎝⎭M,x ∈F 。继续,可得nR 上连续函数列{()k g x },使|()k g x |11233k -⎛⎫≤ ⎪⎝⎭M,x ∈nR (k=1,2…),|f (x)-1()ki i g x =∑|≤23k⎛⎫⎪⎝⎭M,x ∈F(k=1,2…)。表明1()kk gx ∞=∑是一致收敛,若记其和函数为g(x),则其是nR 上连续函数;表明g(x)=1()kk gx ∞=∑=f(x),x ∈F 。对任意x ∈nR ,|g(x)|≤1|()|k k g x ∞=∑≤3M (1+23+223⎛⎫ ⎪⎝⎭+…) ≤3M 1213-= M 。 定理 2.16设E 是nR 中可测集且m(E)>0。作点集E-E def={x –y:x,y E ∈},则存在0δ>0,使E-E ⊃B(0,0δ)。 证明 取λ满足1-(1)2n -+<λ<1,存在矩体I ,使得λ|I|<m(IE )。现在记I 的最短边长为δ,并作开矩体J=12(,,):||(1,2,....,)2n i x i δξξξξ⎧⎫=<=⎨⎬⎩⎭…,n 。从而只需证明J ⊂E-E,即证明对每个0x J ∈,点集IE 必与点集(IE )+{0x }相交。因为J 是以原点为中心、边长为δ的开矩体,所以I 的平移矩体I+{0x }仍含有I 的中心。知m(I0I+{}x )>2n -|I|。由此可得m(I0I+{}x )=|I|+I+m({0x })-m(I0I+{}x )<2|I|-2n -|I|,即m(I0I+{}x )<2λ|I| 。但由于IE 与(IE )+{0x }有着相同的测度并且都大于λ|I|,同时又都含于m(I0I+{}x )之中,故它们必定相交,否则其并集测度要大于2λ|I|,故引起矛盾。 定理(EropoB):证明 对任给的ε>0,有lim ()k j k j m E ε∞→∞=⎛⎫⎪⎝⎭=0.现在取正数列1/i (i=1,2…),则对任给的δ>0以及每一个i,存在i j ,使得1()2i k i k j m E i δ∞=⎛⎫< ⎪ ⎪⎝⎭,令E δ=11()ik i k j E i ∞∞==,有m(E δ)≤11()i k i k j m E i ∞∞==⎛⎫ ⎪ ⎪⎝⎭∑≤12i i δ∞=∑=δ。现证明在点集E\E δ=11:|()()|i ki k j x E f x f x i ∞∞==⎧⎫∈-<⎨⎬⎩⎭上,{()k f x }是一致收敛于f(x)的。事实上,对任给的0ε>,存在i 使得1/i<ε。从而对一切x ∈E\E δ,当k ≥i j 时,有|()k f x -f(x)|<1i<ε。说明()k f x 在E\E δ上一致收敛于f(x)。定理 3.18(卢津定理):证明假定f(x)是实值函数,这是因为m({}:|()|x E f x ∈=+∞)= 0 。首先考虑f(x)是可测简单函数:f(x)=1()ip i E i c x χ=∑,x ∈E=1pi i E =,iE j E =∅(i ≠j)。此时,对任给的δ>0及每个E δ,可作E δ中闭集iF ,使m(i E \i F )<pδ,i=1,2…p 。因为当x ∈i F 时,f(x)=i c ,故f(x)在i F 上连续。而12,F F …p F 是互不相交的,可知f(x)在F=1pi i F =上连续,显然F 是闭集,且有m(E\F)=i 1m(E \)p i i F =∑<1pi pδ=∑=δ。其次考虑f(x)是一般可测函数的情形,由于可作变换g(x)=()1|()|f x f x +。故假设f(x)是有界函数。根据简单函数逼近,存在可测简单函数列{()k x ϕ}在E 上一致收敛于f(x)。现在对任给的δ>0及每个()k x ϕ,均作E 中的闭集k F ,m(E \)k F <2kδ,使()k x ϕ在k F 上连续。令F=1k k F ∞=,则F ⊂E,且有m(E\F)≤1m(E \)k k F ∞=∑<δ。因为每个()k x ϕ在F 上都是连续的,根据一致收敛性,易知f(x)在F 上连续。 定理 4.4(Levi 非负渐升列的积分):证明 易知f(x)是E 上的非负可测函数,积分()Ef x dx⎰有定义。因为()k Ef x dx ⎰≤1()k Ef x dx +⎰(k=1,2…),所以lim ()k Ek f x dx →∞⎰有定义,而且从函数列的渐升性可知lim ()k Ek f x dx →∞⎰≤()Ef x dx ⎰,现令c 满足0<c<1,h(x)是n R 上任一非负可测简单函数,且h(x)≤f(x),x ∈E 。记k E ={x ∈E:()k f x ≥ch(x)}(k=1,2…),则{k E }是递增可测集列且lim k k E →∞=E,可知lim ()kE k ch x dx →∞⎰=c ()Eh x dx ⎰。于是从()k Ef x dx ⎰≥()kk E f x dx ⎰≥()kE ch x dx ⎰=()kE c h x dx ⎰ 得到 lim ()k E k f x dx →∞⎰≥c ()Eh x dx ⎰。在上式中令c->1,有lim ()kEk f x dx→∞⎰≥()Eh x dx ⎰。依f(x)的积分定义即知lim()k Ek f x dx →∞⎰≥()Ef x dx ⎰。。
实变函数复习要点

3
可测函数的收敛性 知道“几乎处处”是如何表述,以及各种情形下的“几乎处处” 。明确:我们所学 习的对象,都是“几乎处处有限的可测函数(列) ” 掌握“处处收敛” 、 “一致收敛” 、 “几乎处处收敛” , “依测度收敛”的概念 掌握上述各种收敛之间的关系(掌握结论,无需会证明) 一致收敛 处处收敛 几乎处处收敛 (当 mE < ¥ 时)依测度收敛 几乎处处收敛与一致收敛的关系:Egroff 定理(注意,也有 mE < ¥ )
第一章 集合 集合的运算 子交并补,可数交,可数并,任意交,任意并。集合运算的运算律,De Morgan 法 则。会证明两集合相等 单调集列的极限集,一般集列的上极限集、下极限集。会求简单的单调集列的极限 集。 集合的基数 明确集合基数的概念,理解基数与“个数”的区别与联系 会在一些简单的集合间建立一一对应,比如建立 (a, b) 到 [a, b ] 的一一对应 能识别常见的可数集与不可数集,知道“没有最大基数”
第二章 n 中的点集 基本概念 掌握“内点,外点,边界点,内部,外部,边界,聚点,导集,闭包,孤立点” , 给定一个集合,会求前述点集 开集、闭集、完备集 理解开集、 闭集、 自密集、 完备集的概念, 能分辨一个集合属于哪一类。 了解 Cantor 集的构造方式, 并要掌握其特性: 完备集; 不可数集; 测度为零; 内部是空集。 Cantor 集用来构造反例,打破我们的常规直观感觉。 知道 n 与 1 中开集的构造方式,特别是 1 中的 了解Gd 型集, Fs 型集,Borel 集的定义,知道这些抽象概念因何而出场 掌握:对于连续函数 f , E[ f > a ] 是开集
2
依测度收敛与几乎处处收敛的关系 几乎处处收敛 (当 mE < ¥ 时)依测度收敛 依测度收敛 必有子列几乎处处收敛:Riesz 定理 Lusin 定理 掌握可测函数与连续函数的关系:Lusin 定理
实变函数证明题大全

1、设',()..E R f x E a e ⊂是上有限的可测函数,证明:存在定义在'R 上的一列连续函数{}n g ,使得lim ()()..n n g x f x a e →∞=于E 。
证明:因为()f x 在E 上可测,由鲁津定理就是,对任何正整数n ,存在E 的可测子集n E ,使得1()n m E E n-<, 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥⊂-由此可得1[||]()n n mE f g n m E E n-≥≤-<,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ⇒,由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞=,..a e 于E2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 就是可测函数。
证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >就是直线上的开集,设11[](,)nn n E f c αβ∞=>=U ,其中(,)n n αβ就是其构成区间(可能就是有限个,nα可能为-∞nβ可有为+∞)因此222211[()][]([][])n n n n n n E f g c E g E g E g αβαβ∞∞==>=<<=><I U U 因为g 在2E 上可测,因此22[],[]n n E g E g αβ><都可测。
故[()]E f g c >可测。
3、设()f x 就是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>就是一开集,而{|()}E x f x a =≥总就是一闭集。
实变函数总结

篇一:实变函数复习提纲实变函数复习提纲第一章集合2006-7-14一、基本概念:集合、并集、交集、差集、余集;可数集合、不可数集合;映射、一一映射(对应);集合的对等,基合的基数(势、浓度).二、基本理论:1、集合的运算性质:并、交差、余集的运算性质;德一摩根公式;2、集合对等的性质;3、可数集合的性质、基数:n?a、q?a(a>0);4、不可数数集合的基数:r?c(c>a>0).三、基本题目1、集合对等的判定、求基合的基数例证明i=(-1,1)和r=(-∞,+∞)是对等的,并求i. 证:作映射ф:??x??tan因??x??tan?2x,x∈(-1,1),其值域为r=(-∞,+∞)、?2x,在(-1,1)∴?:??x??tan?2x是(-1,1)到r上的一一对应, 即 i= (-1,1)1?1?(x)?tanx2由对等的定义知:i~r.∵i~r∴i?r,又r?c,∴i?c. 2 集合的运算,德。
摩根律的应用 3 可数数集合的判定(??,??)=r第二章点集一、基本概念:距离、度量空间、n维欧氏空间;聚点、内点、界点,开核、导集、闭包;开集、闭集、完备集;构成区间二、基本理论1、开集的运算性质;2、闭集的运算性质3、直线上开集的构造;4、直线上闭集的构造三、基本题目1 求集合的开核、导集、闭包,判定开集、闭集例设e为[0,1]上的有理数点的全体组成的集1)求e,e,e; 2)判定e是开集还是闭集,为什么?解:1)对于?x?e,x的任意邻域u(x)内有无数个无理点,∴u(x)?e,∴x不是_e的内点,由x的任意性,知e无内点,∴e??.对于?x??0,1?,?u(x)内都有无数多个有理点,即有无数多个e的点,∴x为e的聚点.又在[0,1]外的任一点都不是e的聚点. ∴e???0,1?. ∵e?e?e??e??0,1???0,1? ,∴2)e 不是开集,也不是闭集.因为e??,而e是非空的,∴e?e, ∴e不是开集.因为e???0,1?,而[0,1]中的无理点不在e内,即e??e,∴由定义知,e不是闭集. 2 直线上开集、闭集的构造__e??0,1?.第三章测度论引入:把区间的长度、平面图形的面积、空间立体图形的体积推广到点集的度量—测度.一、基本概念:勒贝格外测度,l测度,可测集,可测集类1勒贝格外测度的定义:设e为r中任一点集,对于每一列覆盖e的开区间uii?e,i?1n?作出它的体积和?? ?ii?1?i(?可以等于+∞,不同的区间列一般有不同的?),所有这一切的?组成一个下方有界的数集,它的下确量(由e完全确定)称为e的勒贝格外测度,简称外测度或外测度,记为m*e,即:m*e?infe???ii???i??i? ?i?1?注:由定义1知:r 中的任一点集都有外测度(一个非负数). 2勒贝格测度、可测集的定义:设e为r中点集,若对任一点集t都有nnm*t?m*(t?e)?m*(t?ce)(1)则称e为l可测的,这时e的l外测度m*e就称为e的l测度,记为me,条件(1)称为卡拉泰奥多里条件,也简称卡氏条件.l可测集的全体记为?.3可测集类1)零测度集类: 2)一切区间i(开、闭、半开半闭)都是可测集合,且mi?i 3)凡开集、闭集皆可测 4)凡博雷尔集都是可测的二、基本理论1勒贝格外测度的性质(1)m*e≥0,当e 为空集时m*e=0(即m*??0);(非负性);(2)设a?b,则m*a≤m*b;(单调性) ??(3)m*(uai)≤m*ai?1?i;(次可数可加性) i?12 勒贝格测度、可测集的性质及可测性 1)(定理1)集合e可测←→对任意的a?e,b?[ce,总有m*(a?b)?m*a?m*b 2)余集的可测性:s可测←→cs可测3)并集的可测性:若s1,s2都可测,则s1∪s2也可测; 4)交集的可测性:若s1,s2都可测,则s1∩s2也可测; 5)差集的可测性:若s1,s2都可测,则s1-s2也可测;6)可列可加性:设?s?i?是一列互不相交的可测集,则u?1si也是可测的,且im(us??i)??msii?i?17)可列交的可测性:设?si??是一列可测集合,则?si也是可测集合;i?18)递增的可测集列的极限的测度:设?si?是一列递增的可测集合:s1?s2???sn?,?令s=?s? 则ms?limi?1ilimn??snn??msn9)递减的可测集列的极限的测度:设?si?是一列递减的,可测集合: s1?s2???sn ??令s??i?1si?limn??sn,则当它ms1<∞时,ms?limn??msn.三基本题目1、试述l外测度的定义.(答案见第三章1定义1) 2、试给l测度的定义(答案见第三章2定义1)3、设点集e?rn,m*e?0,证明e是可测集,并求me.证:只须证明卡氏条件成立,即对?t?rn,有m*t?m*(t?e)?m*(t?ce)∵t?(t?e)?(t?ce)∴m*t≤m*(t?e)?m*(t?ce) (外测度的次可数可加性)①另一方面:∵(t?e)?e,∴m*(t?e)≤m*e(单调性)∵已知m*e?0,m*(t?e)≥0,∴0≤m*(t?e)≤0,必有m*(t?e)=0 又:t?(t?ce) ∴m*t≥m*(t?ce)(单调性)∴m*t≥m*(t?ce)+m*(t?ce) ②由①、②可知:m*t=m*(t?ce)+m*(t?ce),此即卡氏条件成立;∴ e是可测的,∴ me?m*e?0.n4、证明可数点集e?r的外测度m*e?0iii证明:e为可数点集,∴e??e1,e2,e3,?,em,? ?,其中ei?(e1i,e2,e3,?,en)?rn,i?1,2,3,?,m,?对于任意给定的?>0,不妨设? 1,作开区间????ii??(x1,x2,x3,?,xn)eij?i?1ij<eij?i?1,j?1,2,3,?,n?22??ii?(因?2)n?i?2i,i?1,2,3,?,n?ii?1?i??ei?e,由外测度的单调性及次可列可加性得:i?1?1??m*e?m*(?ii)??m*ii??ii??i????1i?1i?1i?1i?121?2???又由ε的任意性及m*e≥0得:m*e=0,得证.注:本题可当作定理.5、设q为有理数集合,求m*q,mq. 解:∵q为一可数集合,∴m*q=0. 对于?t,∵t?(t?q)?(t?cq)∴m*t?m*(t?q)?m*(t?cq) (外测度的次可列可加性)①另一方面,∵(t?q)?q,∴m*(t?cq)?m*q?0(单调性),m*(t?q)?0,∴m*(t?q)?0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实变函数证明大全(期末复习)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March1、设',()..E R f x E a e ⊂是上有限的可测函数,证明:存在定义在'R 上的一列连续函数{}n g ,使得lim ()()..n n g x f x a e →∞=于E 。
证明:因为()f x 在E 上可测,由鲁津定理是,对任何正整数n ,存在E 的可测子集n E ,使得1()n m E E n-<, 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥⊂-由此可得1[||]()n n mE f g n m E E n-≥≤-<,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ⇒,由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞=,..a e 于E2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 是可测函数。
证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >是直线上的开集,设11[](,)n n n E f c αβ∞=>=,其中(,)n n αβ是其构成区间(可能是有限个,n α可能为-∞n β可有为+∞)因此222211[()][]([][])n n n n n n E f g c E g E g E g αβαβ∞∞==>=<<=><因为g 在2E 上可测,因此22[],[]n n E g E g αβ><都可测。
故[()]E f g c >可测。
3、设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。
证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞,0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E Eδδ∈∈⊂就有所以是开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞=≥,即0x E ∈,因此E 是闭集。
4、(1)设2121(0,),(0,),1,2,,n n A A n n n-==求出集列{}n A 的上限集和下限集证明:lim (0,)n n A →∞=∞设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即2n x A ∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得lim n n x A →∞∈,又显然lim (0,),lim (0,)n n n n A A →∞→∞⊂∞=∞所以lim n n A φ→∞=若有lim n n x A →∞∈,则存在N ,使任意n N >,有n x A ∈,因此若21n N ->时,211,0,00n x A x n x n -∈<<→∞<≤即令得,此不可能,所以lim n n A φ→∞=(2)可数点集的外测度为零。
证明:证明:设{|1,2,}i E x i ==对任意0ε>,存在开区间i I ,使i i x I ∈,且||2i iI ε=所以1i i I E ∞=⊃,且1||i i I ε∞==∑,由ε的任意性得*0m E =5、设}{n f 是E 上的可测函数列,则其收敛点集与发散点集都是可测的。
证: 显然,{}n f 的收敛点集可表示为0[lim ()lim ()]n n x x E E x f x f x →∞→∞===11[lim lim ]n n x x k E f f k ∞→∞→∞=-<∏.由n f 可测lim n x f →∞及lim n x f →∞都可测,所以lim lim n n x x f f →∞→∞-在E 上可测。
从而,对任一自然数k ,1[lim lim ]n n x x E f f k→∞→∞-<可测。
故011[lim lim ]n n x x k E E f f k ∞→∞→∞==-<∏可测。
既然收敛点集0E 可测,那么发散点集0E E -也可测。
6、设q R E ⊂,存在两侧两列可测集{n A }, {n B },使得n A ⊂ E ⊂n B 且m(n A -n B )→0,(n→∝)则E 可测.证明:对于任意i ,i n n B B ⊂∞=1,所以 E B E B i n n -⊂∞=-1又因为 E A i ⊂ ,i i i A B E B -⊂-所以对于任意i ,)(**1E B m E B m i n n -≤-∞=)( )(*i i A B m -≤)(i i A B m -=令i →∝ ,由)(i i A B m -→0 得0*1=-∞=)(E B m n n 所以E B n n -∞=1是可测的又由于n B 可测,有n n B ∞=1也是可测的所以)(11E B B E n n n n --=∞=∞= 是可测的。
7、设在E 上()()n f x f x ⇒,而()()n n f x g x =..a e 成立,1,2n =,则有()()n g x f x ⇒设[]n n n E E f g =≠,则110n n n n m E mE ∞∞==⎛⎫≤= ⎪⎝⎭∑。
0σ∀>1n n n n E f g E E f f σσ∞=⎛⎫⎡-≥⎤⊂⎡-≥⎤ ⎪⎣⎦⎣⎦⎝⎭所以1n n n n n mE f g m E mE f f mE f f σσσ∞=⎛⎫⎡-≥⎤≤+⎡-≥⎤=⎡-≥⎤ ⎪⎣⎦⎣⎦⎣⎦⎝⎭因为()()n f x f x ⇒,所以0lim lim 0n n n nmE f g mE f f σσ≤⎡-≥⎤≤⎡-≥⎤=⎣⎦⎣⎦ 即 ()()n g x f x ⇒8、证明:()A B A B '''⋃=⋃。
证明:因为A A B ⊂⋃,B A B ⊂⋃,所以,()A A B ''⊂⋃,()B A B ''⊂⋃,从而()A B A B '''⋃⊂⋃反之,对任意()x A B '∈⋃,即对任意(,)B x δ,有(,)()((,))((,))B x A B B x A B x B δδδ⋂⋃=⋂⋃⋂为无限集,从而(,)B x A δ⋂为无限集或(,)B x B δ⋂为无限集至少有一个成立,即x A '∈或x B '∈,所以,x A B ''∈⋃,()A B A B '''⋃⊂⋃。
综上所述,()A B A B '''⋃=⋃。
9、证明:若()()n f x f x ⇒,()()n f x g x ⇒(x E ∈),则()()f x g x =..a e 于E 。
证明:由于11[()()][]n E x f x g x E x f g n∞=≠=-≥,而 111[][][]22n n E x f g E x f f E x f g k k k-≥⊂-≥⋃-≥,所以,111[][][]22n n mE x f g mE x f f mE x f g k k k-≥≤-≥+-≥,由()()n f x f x ⇒,()()n f x g x ⇒(x E ∈)得1lim []02n n mE x f f k →∞-≥=,1lim []02n n mE x f g k→∞-≥=。
所以,1[]0mE x f g k-≥=,从而[()()]0mE x f x g x ≠=,即()()f x g x =..a e 于E 。
10、、证明:若()()n f x f x ⇒,()()n g x g x ⇒(x E ∈),则()()()()n n f x g x f x g x ±⇒±(x E ∈)。
证明:对任意0σ>,由于()()[()()]()()()()n n n n f x g x f x g x f x f x g x g x ±-±≤-+-,所以,由()()[()()]n n f x g x f x g x σ±-±≥可得,1()()2n f x f x σ-≥和1()()2n g x g x σ-≥至少有一个成立。
从而11[[]][][]22n n n n E x f g f g E x f f E x g g σσσ±-±≥⊂-≥⋃-≥,所以,11[[]][][]22n n n n mE x f g f g mE x f f mE x g g σσσ±-±≥≤-≥+-≥。
又由()()n f x f x ⇒,()()n g x g x ⇒(x E ∈)得,1lim []02n n mE x f f σ→∞-≥=,1lim []02n n mE x g g σ→∞-≥=。
所以,lim [[]]0n n n mE x f g f g σ→∞±-±≥=,即()()()()n n f x g x f x g x ±⇒±(x E ∈)。
11、若()()n f x f x ⇒(x E ∈),则()()n f x f x ⇒(x E ∈)。
证明:因为()()()()n n f x f x f x f x -≥-,所以,对任意0σ>,有[][]n n E x f f E x f f σσ-≥⊂-≥,[][]n n mE x f f mE x f f σσ-≥≤-≥。
又由()()n f x f x ⇒(x E ∈)得,lim []0n n mE x f f σ→∞-≥=。
所以,lim []0n n mE x f f σ→∞-≥=,即()()n f x f x ⇒(x E ∈)。
12、证明:1R 上的连续函数必为可测函数。
证明:设()f x 是1R 上的连续函数,由连续函数的局部保号性,对任意实数a ,11[]{(),}R x f a x f x a x R >=>∈是开集,从而是可测集。