复变函数第三章习题答案

合集下载

复变函数第三章答案

复变函数第三章答案

��� 在 C +1, 0 上,所以
∫ ∫ 1
1
���� C +1,0
1+
z2
dz
=
2i
1 ( ����

1
)dz = 1 (2π i) = π ,
C+1,0 z − i z + i
2i
同理如果 C 仅围绕 i 按顺时针转一周,有
∫ ∫ 1
1
���� C +1,0
1+
z2
dz
=
2i
( ���� 1 − 1 )dz = 1 (−2πi) = −π ,
dz = 1 ⋅( z −1)1−n 1− n
3 =
1
2 1− n
21−n −1
=
1 n−
1 ⎛⎜⎝1

1 2n−1
⎞ ⎟


所以,
⎧k ⋅(±2π i) + ln 2, n =1
In
=

⎨ ⎪⎩
n
1 −1
⎛⎜1 ⎝

1 2n−1
⎞ ⎟
,


n ≠1
6. 设 C = 0�,1是不过点 ±i 的简单光滑曲线,证明:
���
���
显然 C + 3, 2 构成简单闭曲线,并且1在 C + 3, 2 的内部,所以
∫ ���� 1 dz = 2π i ,
C+3,2 z −1 同理如果 C 仅围绕1按顺时针转一周,有
于是
∫ ���� 1 dz = −2π i ,
C+3,2 z −1
∫ ∫ ∫ ∫ I1 =
1 dz =

复变函数 高等教育出版社 课后习题详解 第三章

复变函数 高等教育出版社 课后习题详解 第三章

G
0
’ ( ## #C A ( ) -"
& $ ,
$ 1
& $ ,
& $ ,
&
& $ ,
& $ ,
$ 1
0
& $ ,
& $ ,
&
小结 ! 找出实部虚部分别计算 % 8.%利用在单位圆周上#C ! 的性质 ! 及柯西积分公式说明 # A #C # 0
G
其中 0 为正向单位圆周 F ! $ #FC !% & $ 解 ! 注意到复积分 -" 在 ## # 中积分变量# 始终限制在; 上变化 ! A
.
5 6 ! C4 1 " , 7 8 1 " C6
$ 1 $ )A 1 5 6 ?4 " # 1 1B$ 1 6 6 7 8 2 1 4 5 6 C$ 4 ?5 1 A 1D 4 1 1 A 1C $ $" , 6 6 6 7 8 C$ 4 ?5 ?5 ( $ * +’ ## #C 6 8 1 $ )A 1 A -" G ?7 8 4 5 6 81 1 1 A 1D 6 A 1 CD$ $" , C$ 6 ?7 ?7
复变函数 西安交通大学 第四版 高等教育出版社 课后答案
-$ 7 & 沿下列路线计算积分? #% 8!% , #A # 自原点至 -$ $ 的直线段 & !
课后习题全解 !!!
& # 自原点沿实轴至 -! 再由 - 沿直向上至 -$ $ & 自原点沿虚轴至$ 再由$ 沿水平方向向右至 -$ # ! $ % 解 !! 所给路线的参数方程为 % 起点参数1 # # ! -$ ## " $ 1 1 # ,( (!! 由复积分计算公式 % 终点参数1 #!% ,!

复变函数习题解答(第3章)

复变函数习题解答(第3章)
显然,f’(z(t))z’(t)在[,]上是连续的,所以f(z(t))C1
[,].
因为f(z)于区域D内是单叶的,即f(z)是区域D到的单射,而z(t)是[,]到D内的单射,故f(z(t))是[,]到内的单射.
因在D内有f’(z)0,故在[,]上,|f’(z(t))z’(t) |= |f’(z(t)) | ·|z’(t) |
x2
=v
y2
,v
x2
=u
y2,故w
xx+w
yy= 2 (u
x2
+v
x2
+u
y2
+v
y2
) = 4 (u
x2
+v
x2
) = 4 |f(z) |2;即(2
/x2
+2
/y2
) |f(z) |2
= 4 |f’(z) |2.
18.设函数f(z)在区域D内解析,且f’(z)
0.试证ln |f’(z) |为区域D内的调和函数.
xx+v
yy)v= 0;
由于u,v满足Cauchy-Riemann方程,故u
x2
=v
y2
,v
x2
=u
y2
,u
xv
x+u
yv
y= 0,因此(u
xu+v
xv)2
+ (u
yu+v
yv)2
=u
x2
u2
+v
x2
v2
+ 2u
xuv
xv+u
y2
u2
+v
y2
v2
+ 2u
yuv

复变函数习题答案第3章习题详解

复变函数习题答案第3章习题详解

第三章习题详解1. 沿下列路线计算积分⎰+idz z 302。

1) 自原点至i +3的直线段;解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3()()()⎰⎰+=⎥⎦⎤⎢⎣⎡+=+=+131033233023313313i t i dt t i dz z i2) 自原点沿实轴至3,再由3铅直向上至i +3;解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz =3303323233131=⎥⎦⎤⎢⎣⎡==⎰⎰t dt t dz z连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz =()()()331031023323313313313-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+i it idt it dz z i()()()333310230230233133********i i idt it dt t dz z i+=-++=++=∴⎰⎰⎰+ 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。

解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz =()()310312023131i it idt it dz z i=⎥⎦⎤⎢⎣⎡==⎰⎰连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz =()()()33103102323113131i i i t dt i t dz z ii-+=⎥⎦⎤⎢⎣⎡+=+=⎰⎰+()()333332023021313113131i i i i dz z dz z dz z iiii+=-++=+=∴⎰⎰⎰++ 2. 分别沿x y =与2x y =算出积分()⎰++idz iy x102的值。

解:x y =Θ ix x iy x +=+∴22()dx i dz +=∴1()()()()()⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴⎰⎰+i i x i x i dx ix x i dz iy x i213112131111023102102 2x y =Θ ()22221x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴()()()()()⎰⎰⎪⎭⎫⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=++=+∴+1104321022131142311211i i x i x i dx x i x i dz iy xi而()i i i i i 65612121313121311+-=-++=⎪⎭⎫⎝⎛++3. 设()z f 在单连通域B 内处处解析,C 为B 内任何一条正向简单闭曲线。

复变函数习题答案第3章习题详解.docx

复变函数习题答案第3章习题详解.docx

第三章习题详解1・沿下列路线计算积分J;' z2dz o1)自原点至3 + i的直线段;解:连接自原点至34-1的直线段的参数方程为:z =(3+》0<r<l dz =(3 + i)dt2)自原点沿实轴至3,再由3铅直向上至3 +八解:连接自原点沿实轴至3的参数方程为:z = t 0</<1 dz = dt3 1=-33 «3连接自3铅直向上至3 +,的参数方程为:z = 3 + ir O<Z<1 dz = idt J J z2dz = £(3 + it)2 idt = -(34-17)3=-(3 + i)3彳" 3 n 3・・・ f z2dz = £t2dt 4- £(3 + it)2id/ = 133 4-1(3 4-1)3 - i33 = |(3 + i)33)自原点沿虚轴至i,再由i沿水平方向向右至3+i。

解:连接自原点沿虚轴至i的参数方程为:z = it 0</<1 dz = idtJ:Z2dz = J;(it)2 idt = | (i/)3= * 尸连接自i沿水平方向向右至3 + i的参数方程为:z = t^i 0<^<1 dz = dtr*edz=jo edz+广eaz=y+敦+厅-|/3=|(1+厅2.分别沿y =兀与y =兀2算出积分J;'(兀2 + iy^dz的值。

解:•/ j = x x2 + iy = x2 + ix ••• dz = (1 + i)dx・・・『(x2 + iy)dz = (1+ (x2 + ix)dx = (1 +•/ y = x2A x2 + iy = x2 4- ix2 = (1 + i)x2:. rfz = (1 + ilx)dxf 衣=[(3+03&二(3+讥♦3+i0=(3 + 厅0 d^ed Z=[\2dt=护而(W 宙討…T + 一 11.1.11 5. i = 1—i3 3 2 26 6/(z) =1 _ 1 z 2+2z + 4~ (z + 2)2在c 内解析,根据柯西一古萨定理,$匹J z 2 + 2z + 4/. £1+,(x 2+ iy)dz = (1 + /)£ * (1 + ilx)dx = (14-彳+ 设/(z)在单连通域〃内处处解析,C 为B 内任何一条正向简单闭曲线。

《复变函数》第四版习题解答第3章

《复变函数》第四版习题解答第3章

-1-
∫ ∫
C
Re[ f (z )]dz = Im[ f (z )]dz =
∫ ∫

0 2π
Re e iθ de iθ = cos θ (− sin θ + i cos θ )dθ = π i ≠ 0
[ ]


0
C
0
Im e iθ deiθ = sin θ (− sin θ + i cos θ )dθ = −π ≠ 0
3.设 f ( z ) 在单连域 D 内解析,C 为 D 内任何一条正向简单闭曲线,问


C
Re[ f (z )]dz =

C
Im[ f (z )]dz = 0
是否成立,如果成立,给出证明;如果不成立,举例说明。 未必成立。令 f ( z ) = z , C : z = 1 ,则 f ( z ) 在全平面上解析,但是
e z dz v ∫C z 5 , C :| z |= 1
= 2πe 2 i

(1)由 Cauchy 积分公式, ∫ 解 1: ∫ 解 2: ∫
C
ez dz = 2π i e z z−2
z =2
(2)
C
1 dz 1 = ∫ z + a dz = 2π i 2 2 C z−a z+a z −a
2
=
z =a
=0
(8)由 Cauchy 积分公式, (9)由高阶求导公式, ∫
v ∫
C
sin zdz = 2π i sin z |z =0 = 0 z
2
sin z
C
π⎞ ⎛ ⎜z − ⎟ 2⎠ ⎝
dz = 2π i(sin z )'

复变函数答案 钟玉泉 第三章习题全解

复变函数答案 钟玉泉 第三章习题全解

即 Φ′(x) = 0, Φ( x) = C ,故
f (z) = e x (x cos y − y sin y) + i( xex sin y + e x y cos y + C)
又因 f (0) = 0, 故 f (0) = iC = 0 ⇒ C = 0 ,所以
f (z) = ex ( x cos y − y sin y) + i(xex sin y + e x y cos y)
′(
x)
= 0.
所以ϕ( x) = C ,故
x
y
f (z) = − x2 + y2 + C + i x2 + y2
又因为 f (2) = 0 ,所以 C = 1 ,故 2
x1
y
f (z) = − x2 + y2 + 2 + i x2 + y2
17.证明:设 f (z ) = u + iv ⇒ 4 f ′( z) 2 = 4(ux2 + vy2 )
∫ 2z 2 − z +1dz = 2πi(2z 2 − z +1) = 4πi
z ≤2 z −1
z =1
(2)可令 f (z) = 2z 2 − z +1,则由导数的积分表达式得
∫ 2z 2 − z +1dz = 2πif ′(z) = 6πi
z =2 (z − 1) 2
z =1
sin π zdz
∫ v = (xex cos y − e x y sin y + e x coy)dy
∫ = xex sin y + e x sin y − e x y sin ydy

复变函数经典习题及答案

复变函数经典习题及答案

于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C

O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章柯西定理柯西积分掌握内容:1.柯西积分定理:若函数()f z 在围线C 之内是处处解析的,则()Cf z dz =⎰0 。

2.柯西积分定理的推广:若函数()f z 在围线C 之内的,,...n z z z 12点不解析,则()()()...()nCC C C f z dz f z dz f z dz f z dz =+++⎰⎰⎰⎰12,其中,,...nC C C 12是分别以,,...n z z z 12为圆点,以充分小的ε为半径的圆。

3.若在围线C 之内存在不解析点,复变函数沿围线积分怎么求呢?——运用柯西积分公式。

柯西积分公式:若函数z 0在围线C 之内,函数()f z 在围线C 之内是处处解析的,则()()Cf z dz if z z z π=-⎰002 4.柯西积分公式的高阶求导公式:若函数z 0在围线C 之内,函数()f z 在围线C 之内是处处解析的,则()()()()!n n Cf z i dz f z z z n π+=-⎰0102习题:1.计算积分⎰++-idz ix y x 102)(积分路径是直线段。

解:令iy x z +=,则idy dx dz += 积分路径如图所示:在积分路径上:x y =,所以313121212131211032223211211211210102102102i x ix y i x ix x dxix x i iydy xdx dx ix x dy ix x i iydy ydx dx ix x idy dx ix y x dz ix y x ii+-=-+--+=++--+=++--+=++-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++)()()()()())(()(2.计算积分⎰-iidz z 。

积分路径分别是:(1)直线段,(2)右半单位圆,(3)左半单位圆。

解:(1)令z x i y =+,则z dz xd idy ==+,在积分路径上,0x =,所以11iiz dz iydy iydy i--=-+=⎰⎰⎰(2)令i z re θ=,在积分路径上:,1i z r dz ie d θθ===//222i i iz dz ie d i πθπθ--==⎰⎰(3)令i z re θ=,在积分路径上:,1i z r dz ie d θθ===//2322ii iz dz ie d i πθπθ-==⎰⎰5.不用计算,证明下列分之值为零,其中为单位圆。

(1)cos C dz z ⎰,(2)222C dz z z ++⎰,(3)256zCe dz z z ++⎰,解:(1)因为函数cos 1z 在单位圆所围的区域内解析,所以cos 0Cdzz =⎰。

(2)因为函数2122z z ++在单位圆内解析,所以2022Cdzz z =++⎰。

C(3)因为函数()()215623ze z z z z =++++的不解析点不包含在单位围线之内,所以由柯西积分定理有:2056zCe dz z z =++⎰6.计算1z dz z =⎰,1z dz z =⎰,||1z dz z =⎰,||1z dzz =⎰。

解:(1)由柯西积分公式:()()002Cf z dz if z z z π=-⎰,其中,0z 在围线内。

()1f z =,所以()1202z dzif i z ππ===⎰(2)被积函数1z在复平面上不是解析函数,所以不能用柯西积分定理和柯西积分公式,其积分值与积分路径有关。

根据积分路径1z =,令i z e θ=,则210i z dzied z πθθ===⎰⎰(3)被积变量为dz ,根据积分路径1z =,令i z e θ=,则:()i i dz d e ie d d θθθθ===|||i i z dz e e d z i θπθπθ--===-=⎰⎰22001(4)根据积分路径1z =,令i z e θ=,||z dzd zπθπ===⎰⎰2012 7.由积分2C dz z +⎰之值,证明cos cos 2012054d πθθθ+=+⎰,其中C 取单位圆。

证明:因为被积函数的奇点在积分围道外,故,现令,则在上,, 2z =-1z =02cdzz =+⎰i z re θ=1z =cos sin i z e i θθθ==+()cos sin i dz ie d i i d θθθθθ==+比较可得:8.计算:(1)22121(:)Cz z dz C z z -+=-⎰。

解: 。

10.设表圆周223x y +=,371()d Cf z z ξξξξ++=-⎰,求(1)f i '+。

解:设2371()g ζζζ=++,它在复平面内解析,故当z C ∈时,则由柯西积分公式有:所以。

11.求积分从而证明:。

解:由于:1C z =,函数()/z f z e z =在0z =处不解析2c dz z =+⎰()20cos sin 2cos sin i i d i πθθθθθ+++⎰()()()()cos sin 2cos sin 2cos sin 2cos sin i i d i i πθθθθθθθθθ++-+++-⎰20-=()202sin 2cos 154cos i d πθθθθ-++=+⎰202sin 054cos d πθθθ=+⎰202cos 154cos d πθθθ+=+⎰222122112(2)111c c c z z z z z z dz dz z dz z z z -+-++-+==+---⎰⎰⎰11(21)(2)11cc c c z dz z dz dz dzz z =++=++--⎰⎰⎰⎰002(1)2if i ππ=++=C ()()()2237122371c cg f d dz ig z i z z Z z ζζζζππζζ++⎡⎤====++⎣⎦--⎰⎰z ()()21123712671226z i z if i z z i z iππππ=+=+''⎡⎤=++=+=-+⎣⎦1+i (),:1,zc e dz C z z=⎰cos cos(sin )e d πθθθπ=⎰00(2)2z zz c e dz ie i z ππ===⎰令则故所以即13.设2z z f =)(,利用本章例5验证柯西积分公式⎰-=Cz d f i z f ζζζ)()(π21以及柯西求导公式⎰+-=Cn n z d f i n z f 1π2)()(!)()(ζζζ 提示:把)(ζf 写成222z z z z +-+-)()(ζζ。

证明:设2222z z z z f +-+-==)()()(ζζζζ, 则式的右边为可写为:⎰⎰-+-+-=-=C C dz zz z z z i z d f i z f ζζζζζζ222π21π21)()()()( 由柯西积分定理有:所以右边,i i z e dz ie d θθθ==[]cos sin 22cos 00cos(sin )sin(sin )2z i i i c e e d ie d i e i d i z e θθππθθθθθθθθπ+==+=⎰⎰⎰22cos cos 0cos(sin )sin(sin )2e d e i d ππθθθθθθπ+=⎰⎰cos 02cos(sin )2e d πθθθπ=⎰cos cos(sin )e d πθθθπ=⎰()2122c c z z z d d i z ζζζππζ-++⎡⎤⎣⎦-⎰⎰ 1=2i ()1202c z z d iζζπ-+=⎡⎤⎣⎦⎰即左边=右边。

再由式子可知当时成立。

假设当时等式成立。

则当时成立。

所以14.求积分(1)⎰-C dz z z 51)(cos π,(2)⎰+Czdz z e 221)(,其中)(:1>=a a z C 解:(1)被积函数有奇点,该奇点在积分围道内,由柯西积分求导公式有:(2)先用柯西积分定理的推广式,把对围线C 的积分变成对围线C 1和围线C 2的积分,然后再用柯西积分公式的高阶求导。

22211222c z d z i z i z iζππζπ===-⎰ 1n =()()()()21122c c f f f z d d i z i z ζζζζπζπζ'⎡⎤'==⎢⎥--⎣⎦⎰⎰ n k =1!()()2()k k c k f d f z i z ζζπζ+=-⎰1n k =+()121!()()2()k k c k f d f z i z ξξπξ+++=-⎰()()()()1!2n n c f n f z d i z ζζπζ+=-⎰ 1z =()5cos 1c zdz z π-⎰[]()45244122cos 1cos 4!4!12z i d i z i dz ππππππ===-=-''2222222212()()(2):22(1)()()()()z zz z z c c c z i z i e e e e e z i z i dz dz dz i i z z i z i z i z i ππ==-⎡⎤⎡⎤+-=+=+⎢⎥⎢⎥+-++-⎣⎦⎣⎦⎰⎰⎰(1)(1))224i i i e i e i πππ-=--+=-。

相关文档
最新文档