八年级升九年级-列方程解决实际问题,带答案

合集下载

【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)

【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)

人教版八年级上册第2课时列分式方程解决实际问题(348)1.某公司在工程招标时,接到甲、乙两个工程队的投标书.甲工程队每施工一天,需付工程款1.5万元,乙工程队每施工一天,需付工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需多少天;(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得选哪一种施工方案划算?请说明理由.2.某轻轨工程指挥部,要对某轻轨路段工程进行招标,接到了甲、乙两个工程队的投标书.根据投标书知,甲队单独完成这项工程所需天数是乙队单独.若由甲队先做20天,剩下的工程再由甲、乙两队完成这项工程所需天数的23合作60天可完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)已知甲队每天的施工费用为9.2万元,乙队每天的施工费用为6.8万元.工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,那么预算的施工费用是否够用?若不够用,需追加预算多少万元?3.小明准备利用暑假从距上海2160千米的某地去“上海迪斯尼乐园”参观游览,如图是他在火车站咨询得到的信息,根据图中信息,求小明乘坐城际直达动车到上海所需的时间.4.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.5.为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)6.“郁郁林间桑葚紫,茫茫水面稻苗青”说的就是味甜汁多,酸甜适口的水果——桑葚.4月份,水果店的小李用3000元购进了一批桑葚,随后的两天他很快以高于进价40%的价格卖出150千克,到了第三天,他发现剩余的桑葚卖相已不太好,于是果断地以低于进价20%的价格将剩余的全部售出,小李一共获利750元,设小李共购进桑葚x千克.(1)根据题意完成下表:(用含x的式子表示)(2)求小李共购进多少千克的桑葚.7.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.8.某乡镇对公路进行补修,甲工程队计划用若干天完成此项目,甲工程队单独工作了3天后,为缩短完成的时间,乙工程队加入此项目,且甲、乙两工程队每天补修的工作量相同,结果提前3天完成,则甲工程队计划完成此项目的天数是()A.6B.7C.8D.99.哈尔滨市政府欲将一块地建成湿地公园,动用了一台甲型挖土机,4天挖完了这块地的13,后又加一台乙型挖土机,两台挖土机同时工作,结果又用两天就挖完了整片地,那么乙型挖土机单独挖完这块地需要天.10.园林部门计划在一定时间内完成植树任务,甲队独做正好按期完成,乙队独做则要误期3天.现两队合作2天后,余下任务由乙队独做,正好按期完成任务.则原计划多少天完成植树任务?11.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x km/h,则根据题意可列方程为()A.180x −180(1+50%)x=1 B.180(1+50%)x−180x=1C.180x −180(1−50%)x=1 D.180(1−50%)x−180x=112.某村电路发生断电,该地供电局组织电工进行抢修.供电局距离该村15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达.已知吉普车速度是抢修车速度的1.5倍,则抢修车的速度是13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.400x =300x−30B.400x−30=300xC.400x+30=300xD.400x=300x+3014.某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.参考答案1(1)【答案】解:设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得4x +4x+5+x−4x+5=1,解得x=20.经检验,x=20是原分式方程的解且符合题意.x+5=25.答:甲队单独完成此项工程需20天,乙队单独完成此项工程需25天.(2)【答案】解:选方案③划算.理由如下:这三种施工方案需要的工程款:方案①:1.5×20=30(万元);方案②:1.1×(20+5)+5×0.3=29(万元);方案③:1.5×4+1.1×20=28(万元).∵30>29>28,∴方案③最节省工程款.2(1)【答案】解:设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意,得2023x+60(123x+1x)=1,解得x=180.经检验,x=180是原分式方程的解且符合题意.2 3x=23×180=120.答:甲、乙两队单独完成这项工程分别需120天和180天. (2)【答案】解:设甲、乙两队合作完成这项工程需要y天.则y(1120+1180)=1,解得y=72.需要施工费用:72×(9.2+6.8)=1152(万元).∵1152>1000,∴预算的施工费用不够用,需追加预算152万元.3.【答案】:解:设小明乘坐城际直达动车到上海需要x 小时. 根据题意,得2160x=2160x+6×1.6,解得x =10.经检验,x =10是原方程的根且符合题意. 答:小明乘坐城际直达动车到上海需要10小时.4.【答案】:解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品. 依题意得1200x−12001.5x=10,解得x =40.经检验,x =40是原方程的根,且符合题意.1.5x =60.答:甲工厂每天加工40件新产品,乙工厂每天加工60件新产品.5.【答案】:解:设例子中的A 4厚型纸每页的质量为x 克. 由题意,得400x=2×160x−0.8,解得x =4.经检验,x =4为原方程的解,且符合题意. 答:例子中的A 4厚型纸每页的质量为4克. 6(1)【答案】3000(1+40%)x;3000(1−20%)x;x −150(2)【答案】解:根据题意,得150·3000(1+40%)x+(x −150)·3000(1−20%)x−3000=750解得x =200.经检验,x =200是原方程的解且符合题意. 答:小李共购进200千克桑葚. 7(1)【答案】解:设每本软面笔记本花费x元,则每本硬面笔记本花费(x+1.2)元.由题意,得12 x =21x+1.2,解得x=1.6.此时121.6=211.6+1.2=7.5(不符合题意),所以小明和小丽不能买到相同数量的笔记本.(2)【答案】解:存在.设每本软面笔记本花费m元(1≤m≤12,且m为整数),则每本硬面笔记本花费(m+a)元.由题意,得12m =21m+a,解得a=34m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,128=2114=1.5(不符合题意).∴a的值为3或9.8.【答案】:D【解析】:设甲工程队计划完成此项目的天数为x天,由题意,得x−3x +x−6x=1,解得x=9,经检验,x=9是原分式方程的根,且符合题意.故选D9.【答案】:4【解析】:∵一台甲型挖土机4天挖完了这块地的13,∴甲型挖土机12天全部挖完这块地,故甲1天完成总工作量的112,设乙型挖土机单独挖这块地需要x天,根据题意可得13+212+2x=1,解得x=4.经检验,x=4是原方程的根,且符合题意.∴乙型挖土机单独挖完这块地需要4天10.【答案】:解:设原计划x天完成植树任务,则乙队单独完成植树任务的时间是(x+3)天.由题意,得2(1x +1x+3)+x−2x+3=1,解得x=6.经检验,x=6是原方程的解且符合题意.答:原计划6天完成植树任务11.【答案】:A12.【答案】:20千米/时【解析】:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意,得15 x −151.5x=1560,解得x=20.经检验,x=20是原方程的解且符合题意.则抢修车的速度为20千米/时13.【答案】:A14.【答案】:解:设骑车学生的速度为x km/h,则汽车的速度为2x km/h.根据题意,得10x =102x+2060,解得x=15.经检验,x=15是原方程的解且符合题意,2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15km/h,30km/h.。

实际问题与一元二次方程-(含答案)

实际问题与一元二次方程-(含答案)

实际问题与一元二次方程-(含答案)实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似。

都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。

在利用一元二次方程解决实际问题时,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性。

主要研究下列两个内容:1.列一元二次方程解决实际问题。

一般情况下,列方程解决实际问题的一般步骤为:审、设、列、解、验、答六个步骤。

找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。

2.一元二次方程根与系数的关系。

一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。

知识链接点击一:列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力。

列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程。

概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案。

一般情况下列方程解决实际问题的一般步骤如下:1) 审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系。

2) 设:是在理清题意的前提下,进行未知量的假设(分直接与间接)。

3) 列:是指列方程,根据等量关系列出方程。

4) 解:就是解所列方程,求出未知量的值。

5) 验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去。

6) 答:即写出答案,不要忘记单位名称。

总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。

点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。

一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。

数学全国版教案 八升九-11一元二次方程的实际应用

数学全国版教案 八升九-11一元二次方程的实际应用

《动态数学思维》教案(3)解这个方程,得:_______________;(4)检验:_____________;(5)答:比赛组织者应邀_______个队参赛. 答案:(1)x-1,28;(2)12x(x-1)=28;(3)x1=8,x2=-7;(4)x2=-7<0(舍去);(5)8.学生独立完成,并请一名学生讲解.以渔得鱼(学生独立完成,并指定基础薄弱的学生回答)学校组织“运动让生活更美好”篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队有多少支?答案:解:设参赛球队有x支,则12x(x-1)=21,解得:x1=7,x2=-6.因为-6<0,所以舍去.答:参赛球队有7支. 总结:1.单循环赛制问题符合“线段条数”的几何模型,如图所示,线段数为()12n n-.从而单循环比赛的场次=()2⨯队伍数队伍数-1.2.双循环赛制问题符合“射线条数”的几何模型,n个点之间有n(n-1)条射线. 从而双循环比赛的场次=队伍数×(队伍数-1).三、知识检验若经过两轮传播后数值为n,则有方程m(1+x)2=n.3.单循环赛制问题符合“线段条数”的几何模型,如图所示,线段数为()12n n-.从而单循环比赛的场次=()2⨯队伍数队伍数-1.4.双循环赛制问题符合“射线条数”的几何模型,n个点之间有n(n-1)条射线. 从而双循环比赛的场次=队伍数×(队伍数-1).如图所示,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?(2)围成鸡场的面积可能达到200平方米吗?答案:(1)解:设鸡场的宽为x米,则长为(33-2x+2)米.则x(35-2x)=150,解得:x1=10,x2=7.5.当x=10时,35-2×10=15,15<18,符合题意.当x=7.5时,35-2×7.5=20,20>18,不符合题意.答:鸡场的长为15米,宽为10米.(2)解:设鸡场的宽为x米,则长为(33-2x+2)米.则x(35-2x)=200,整理得:2x2-35x+200=0.因为 =b2-4ac=(-35)2-4×2×200=-375<0,所以该方程无实数根.答:围成鸡场的面积不能达到200平方米.总结:①应用一元二次方程解决图形面积问题时,首先确定图形边长的数量关系,然后由图形面积建立一元二次方程并求解;②注意所求结果需满足实际情况.拓展延伸:2.等腰△ABC的直角边AB=BC=10cm,点P,Q分别从A,C两点同时出发,均以1cm/s的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S 关于t 的函数关系式; (2)当点P 运动几秒时,S △PCQ =S △ABC ?答案:(1)解:①当t <10s 时,P 在线段AB 上,此时CQ =t ,PB =10-t . 所以S =12t (10-t )=-12t 2+5t . ②当t >10s 时,P 在线段AB 的延长线上,此时CQ =t ,PB =t -10.所以S =12t (t -10)=12t 2-5t . (2)解:因为S △ABC =12AB ·BC =50.①当t <10s 时,S =-12t 2+5t =50. 整理得t 2-10t +100=0无解. ②当t >10s 时,S =12t 2-5t =50. 整理得t 2-10t -100=0,(2)若该酒店希望每天净利润为14000元且能吸引更多的游客.......,则每件客房的定价应为多少元?答案: (1) 60-10x ;200+x ;20(60-10x). (2)解:由题意可得:(200+x -20)(60-10x)=14000. 整理得:x 2-420x +32000=0, 解得:x 1=100,x 2=320.当x =100时,200+100=300(元),60-10010=50(间). 当x =320时,200+320=520(元),60-32010=28(间). 所以当x =100时,能吸引更多的游客. 答:每间客房的定价应为300元. 总结:①应用一元二次方程解决销售利润问题,可由该结构图表示:②注意所求结果需满足题意要求.拓展延伸:1.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但是商店为了适当增加销售,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元.(1)第二周单价降低x 元后,这周销售的销量为 (用x 的关系式表示).(2)求这批旅游纪念品第二周的销售价格.答案:(1)200+50x ;(2)由题意得:4×200+(4-x )(200+50x )+(4-6)(600-200-200-50x )=1250. 整理得:x 2-2x +1=0. 解得:x 1=x 2=1. 10-1=9(元).答:这批旅游纪念品第二周的销售价格为9元.三、知识检验6.如图所示,小华要将一幅长120cm ,宽20cm 的书法进行装裱,装裱后的矩形面积是5600cm 2,并使上、下、左、右边衬的宽度相同,那么四周边衬的宽度是多少厘米?7.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个.定价每增加1元,销售量将减少10个.(1)商店若准备获得利润6000元,并且使进货量较少......,则每个定价为多少元?(2)当每个小家电定价为多少元时,商店可获得的利润最大.8.某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图①、图②和图③所示(阴影部分为草坪).请你根据这一问题,在每种方案中都只列出方程不解.①甲方案设计图纸为图①,设计草坪的总面积为600平方米;②乙方案设计图纸为图②,设计草坪的总面积为600平方米;③丙方案设计图纸为图③,设计草坪的总面积为540平方米.拓展创新:如图,在Rt△ABC中,∠BCA=90°,AC=6cm,BC=8cm.有一动点P从B点出发,在射线BC方向移动,速度是2cm/s,在P点出发2秒后另一个动点Q从A点出发,在射线AC方向移动,速度是1cm/s.若设P出发后时间为t 秒.连接AP,PQ,求使△APQ面积为3cm2时相应的t的值.答案:解:①当0≤t≤2时,如图所示,点Q与点C重合.由题可知PC=8-2t,QC=6.S△PCQ=12PC·QC=12(8-2t)×6=3,整理得7-2t=0,解得t=3.5.∵3.5>2,∴当0≤t≤2时,△PCQ面积不能为3cm2 .②当2<t≤4时,如图所示.由题可知PC=8-2t,QC=6-(t-2)=8-t.S△PCQ=12PC·QC=12(8-2t)(8-t)=3,.整理得t2-12t+29=0,解得t1=6+7(舍),t2=6-7. ∴当t=6-7秒时,△PCQ面积为3cm2 .③当4<t≤8时,如图所示.由题可知PC=2t-8,QC=6-(t-2)=8-t.S△PCQ=12PC·QC=12(2t-8)(8-t)=3,整理得t2-12t+35=0,解得t1=5,t2=7.∴当t为5秒或7秒时,△PCQ面积为3cm2 .④当t>8时,如图所示.由题可知PC=2t-8,QC=(t-2)-6=t-8.S△PCQ=12PC·QC=12(2t-8)(t-8)=3,整理得t2-12t+29=0,解得t1=6+7,t2=6-7(舍).∴当t =6+7秒时,△PCQ面积为3cm2 .综上所述,当t为6-7秒、5秒、7秒、6+7秒时,△PCQ面积为3cm2 .四、课堂小结1.传播问题:设平均每轮每个传播的数值为x.初始值第一轮第二轮m m+mx(m+mx)+(m+mx)x若经过两轮传播后数值为n,则有方程m(1+x)2=n.2. 赛制问题符合“线段条数”的几何模型,如图所示,线段数为()12n n-.从而单循环比赛的场次=()2⨯队伍数队伍数-1.双循环(分主客场)比赛的场次=队伍数×(队伍数-1).3.平均增长(下降)率问题:设平均增长(下降)率为x.原始值第一次增长(下降)第二次增长(下降)a a±ax(a±ax)±(a±ax)x若经过两次相同百分率的变化后数值为b,则有方程a(1±x)2=b.4. 应用一元二次方程解决销售利润问题,可由该结构图表示:5. 注意所求结果需满足题意要求.知识检验答案2. D3. 94. 405.解:(1)设每年的平均增长率为x,则2500(1+x)2=3600,解得:x1=0.2,x2=-2.2(舍).0.2=20%.答:每年的平均增长率为20%.(2)3600×(1+0.2)=4320(万元)答:2017年该县投入的教育经费为4320万元.6.解:设四周边衬的宽度为x cm,则(120+2x)(20+2x)=5600,解得:x1=10,x2=-80(舍).答:四周边衬的宽度是10cm.7.解:(1)设定价为x元,则销售量为[400-10(x-50)]元,由题意可得:(x-40)[400-10(x-50)]=6000,解得:x1=60,x2=70,当x=60时,进货量为400-10×10=300(个);当x=70时,进货量为400-10×20=200(个).所以当x=20时,进货量较少.答:每个定价为70元,可获得利润6000元,并且使进货量较少.(2)设定价为x元,利润为W元,则:W=(x-40)[400-10(x-50)]=-10x2+1300x-36000=-10(x-65)2+6250所以当x=65时,W最大为6250.答:即每个定价为65元,获得的利润最大,最大利润为6250元.8.解:设道路宽度都为x m,①(35-2x)(20-2x)=600;②(35-x)(20-x)=600;③(35-2x)(20-x)=540.拓展创新:①当0≤t≤2时,如图所示,点Q与点C重合.由题可知PC=8-2t,QC=6.S△PCQ=12PC·QC=12(8-2t)×6=3,整理得7-2t=0,解得t=3.5.∵3.5>2,∴当0≤t≤2时,△PCQ面积不能为3cm2 .②当2<t≤4时,如图所示.由题可知PC=8-2t,QC=6-(t-2)=8-t.S△PCQ=12PC·QC=12(8-2t)(8-t)=3,.整理得t2-12t+29=0,解得t1=6+7(舍),t2=6-7. ∴当t=6-7秒时,△PCQ面积为3cm2 .③当4<t≤8时,如图所示.由题可知PC=2t-8,QC=6-(t-2)=8-t.S△PCQ=12PC·QC=12(2t-8)(8-t)=3,整理得t2-12t+35=0,解得t1=5,t2=7.∴当t为5秒或7秒时,△PCQ面积为3cm2 .④当t>8时,如图所示.由题可知PC=2t-8,QC=(t-2)-6=t-8.S△PCQ=12PC·QC=12(2t-8)(t-8)=3,整理得t2-12t+29=0,解得t17,t2=67(舍).∴当t 7△PCQ面积为3cm2 .综上所述,当t为67秒、5秒、7秒、7秒时,△PCQ面积为3cm2 .。

初三解方程练习题及答案

初三解方程练习题及答案

初三解方程练习题及答案解方程是数学中关于未知数的一个重要内容,也是初中数学的基础知识之一。

在初三阶段,解方程的练习对于提高数学能力和解题技巧非常重要。

本文将提供一些初三解方程的练习题,并附上详细的解答,帮助同学们更好地理解和掌握解方程的方法。

一、一元一次方程1. 解下列方程:(1) 2x + 5 = 13(2) 3x - 7 = 8(3) 4(x + 2) - 3x = 10答案解析:(1) 2x + 5 = 13首先将方程转化为等式形式,得到2x = 13 - 5,即2x = 8。

然后将方程两边同除以2,得到x = 4。

(2) 3x - 7 = 8首先将方程转化为等式形式,得到3x = 8 + 7,即3x = 15。

然后将方程两边同除以3,得到x = 5。

(3) 4(x + 2) - 3x = 10首先将方程进行化简,得到4x + 8 - 3x = 10。

然后将同类项合并,得到x + 8 = 10。

最后将方程两边同时减去8,得到x = 2。

二、一元二次方程1. 解下列方程:(1) x^2 + 5x + 6 = 0(2) 2x^2 - 3x - 2 = 0(3) 3(x^2 - 4) = 7x答案解析:(1) x^2 + 5x + 6 = 0使用因式分解法,将方程改写成(x + 2)(x + 3) = 0。

由乘积为0的性质可得:x + 2 = 0 或 x + 3 = 0。

解得x = -2 或 x = -3。

(2) 2x^2 - 3x - 2 = 0使用求根公式,根据公式x = (-b ± √(b^2 - 4ac))/(2a)。

将a、b、c的值代入公式得:x = (3 ± √(9 + 16))/4。

化简后解得x = (3 ± 5)/4,即x = 2 或 x = -1/2。

(3) 3(x^2 - 4) = 7x首先将方程进行化简,得到3x^2 - 12 = 7x。

然后将方程转化为等式形式,得到3x^2 - 7x - 12 = 0。

初二解方程练习题及答案

初二解方程练习题及答案

初二解方程练习题及答案解方程是初中数学中的重要内容之一,在学习中起到了培养学生逻辑思维和解决实际问题的能力。

为了帮助初二学生更好地掌握解方程的方法和技巧,以下是一些解方程练习题及其答案。

第一节:一步方程1. 3x + 4 = 19解:首先,我们将常数项4移到等号右边,得到方程3x = 19 - 4。

进一步计算,得到3x = 15。

最后,将系数3移到等号右边,并计算得到x = 5。

2. 2(x + 3) = 16解:首先,我们将括号内的式子展开得到2x + 6 = 16。

然后,将常数项6移到等号右边,得到2x = 16 - 6。

进一步计算,得到2x = 10。

最后,将系数2移到等号右边,并计算得到x = 5。

第二节:二步方程3. 2x + 5 = 3x - 1解:首先,我们将含有变量x的项移到等号左边,将常数项移到等号右边,得到2x - 3x = -1 - 5。

进一步计算,得到-x = -6。

由于系数为-1,我们可以将方程两边同时乘以-1,得到x = 6。

4. 3(x - 2) = 2(4 - x)解:首先,我们将括号内的式子展开得到3x - 6 = 8 - 2x。

然后,将常数项和含有变量x项移到等号左边,得到3x + 2x = 8 + 6。

进一步计算,得到5x = 14。

最后,将系数5移到等号右边,并计算得到x = 2.8。

第三节:复杂方程5. 2(x + 3) - 3(2x - 1) = 4 - (x + 2)解:首先,我们将括号内的式子展开得到2x + 6 - 6x + 3 = 4 - x - 2。

然后,将常数项和含有变量x项移到等号左边,得到2x + 6 - 6x + x = 4 - 2 - 3。

进一步计算,得到-3x + 2x = -1。

最后,将系数整理并计算得到-x = -1,再将方程两边乘以-1,得到x = 1。

6. 2(x - 1) = 3(x + 2) + 4解:首先,我们将括号内的式子展开得到2x - 2 = 3x + 6 + 4。

初三解方程及答案

初三解方程及答案

初三解方程及答案1. 一次方程1.1 一元一次方程在数学学科中,一元一次方程是指形式为ax+b=0的数学表达式。

其中,a和b是已知的常数,x是未知数。

解一元一次方程的基本思路是通过逐步运用逆运算的原则来求得未知数的值。

下面我们通过一个实例来演示解一元一次方程的过程:假设一个一元一次方程为2x+3=7,那么根据解方程的步骤,我们可以进行如下计算:2x+3=7(原方程)2x=7−3(减去3)2x=4(得到等式) $x = \\frac{4}{2}$(除以2)x=2(得到未知数的值)因此,这个方程的解即为x=2。

1.2 一元一次方程实例我们来看另一个例子:3x−4=11。

解法如下:3x−4=113x=11+43x=15 $x = \\frac{15}{3}$ x=5因此,这个方程的解是x=5。

2. 二次方程2.1 一元二次方程一元二次方程是形如ax2+bx+c=0的方程,其中a、b和c是已知的常数,x是未知数。

解一元二次方程的一般步骤是先使用配方法将方程转化为标准形式,然后使用求根公式得到方程的解。

下面通过一个例子展示解一元二次方程的过程:假设我们有一个一元二次方程:x2+6x+9=0。

解法如下:x2+6x+9=0(x+3)2=0(因为x2+6x+9=(x+3)2)x+3=0(开平方)x=−3因此,这个方程的解为x=−3。

2.2 一元二次方程实例让我们来看另一个一元二次方程的例子:x2−4x+4=0。

解法如下:x2−4x+4=0(x−2)2=0(因为x2−4x+4=(x−2)2)x−2=0(开平方)x=2因此,这个方程的解为x=2。

3. 小结本文介绍了初中阶段解一元一次方程和一元二次方程的基本方法和步骤,并通过实例演示了解方程的过程。

方程是数学中重要的研究对象,通过掌握解方程的基本技巧,同学们可以更好地理解和应用数学知识。

希望本文对初中阶段学习者解方程有所帮助。

欢迎大家在学习过程中勤学苦练,不断提升数学水平。

九年级解方程练习题带答案

九年级解方程练习题带答案

九年级解方程练习题带答案解方程是数学学科中的基础内容之一,对于九年级的学生来说,掌握解方程的方法和技巧是非常重要的。

下面将给出几道九年级解方程的练习题,并附上详细的解析,希望能够帮助同学们更好地理解和应用解方程的知识。

练习题一:1. 解方程:2x + 5 = 172. 解方程:3(x + 4) = 273. 解方程:4x - 7 = 9x + 24. 解方程:2(x - 3) + 5 = 3(x + 1)练习题二:1. 解方程:5x - 3 = 2(x + 1) + 72. 解方程:3(2x - 1) = 4(x + 3) - 53. 解方程:2(x + 5) - 3x = 4(3x - 1) + 54. 解方程:6(x + 2) + 4x = 5(2x - 3) + 2(x + 4)练习题三:1. 解方程:4(x - 2) - 5(2x + 1) = 102. 解方程:3(2x + 1) - 2(3 - x) = 7x - 3(2x + 1)3. 解方程:2(x - 5) + 3(2x - 1) = 3(2x + 3) + 2(x - 4)4. 解方程:5(x + 2) + 7(2 - x) = 4(3x + 1) - 6(x + 2)答案及解析:练习题一:1. 解方程:2x + 5 = 17答案:x = 6解析:将方程两边都减去5,得到2x = 12;再将方程两边都除以2,得到x = 6。

2. 解方程:3(x + 4) = 27答案:x = 5解析:将方程中的括号内的式子乘以3,得到3x + 12 = 27;再将方程两边都减去12,得到3x = 15;最后将方程两边都除以3,得到x = 5。

3. 解方程:4x - 7 = 9x + 2答案:x = -3解析:将方程中的4x和9x合并,得到-5x - 7 = 2;再将方程两边都加上7,得到-5x = 9;最后将方程两边都除以-5,得到x = -3。

初三数学解方程练习题及答案

初三数学解方程练习题及答案

初三数学解方程练习题及答案解方程是初中数学中的重要内容,它是培养学生逻辑思维和解决问题的能力的重要方法之一。

下面是一些初三数学解方程的练习题及答案,供同学们参考和练习。

1. 问题:解方程$x - 2 = 6$。

解答:将方程两边加上2,得到$x = 8$。

所以方程的解为$x = 8$。

2. 问题:解方程$3x + 5 = 20$。

解答:将方程两边减去5,得到$3x = 15$。

再将方程两边除以3,得到$x = 5$。

所以方程的解为$x = 5$。

3. 问题:解方程$2(3x - 1) = 4x + 2$。

解答:首先展开方程得到$6x - 2 = 4x + 2$。

将方程两边加上2,得到$6x = 4x + 4$。

再将方程两边减去4x,得到$2x = 4$。

最后将方程两边除以2,得到$x = 2$。

所以方程的解为$x = 2$。

4. 问题:解方程$4(2x - 3) = 6 - 2(5 - x)$。

解答:首先展开方程得到$8x - 12 = 6 - 10 + 2x$。

将方程两边合并同类项,得到$8x - 12 = -4 + 2x$。

将方程两边减去2x,得到$6x - 12 = -4$。

将方程两边加上12,得到$6x = 8$。

最后将方程两边除以6,得到$x =\frac{4}{3}$。

所以方程的解为$x = \frac{4}{3}$。

5. 问题:解方程$2(x - 1) + 3(x + 2) = 5(x - 3)$。

解答:首先展开方程得到$2x - 2 + 3x + 6 = 5x - 15$。

将方程两边合并同类项,得到$5x + 4 = 5x - 15$。

将方程两边减去5x,得到$4 = -15$。

无解。

因此,方程无解。

以上是一些初三数学解方程的练习题及答案,希望能对同学们的数学学习有所帮助。

解方程需要掌握一定的基本方法和技巧,但更重要的是培养逻辑思维和分析问题的能力。

在学习过程中,同学们需要通过反复练习和多做题来提高自己的解方程能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主 题 列方程解决实际问题
教学内容
1.会列出分式方程(组)、无理方程、二元二次方程组求解简单的实际问题;
2.经历“实际问题—建立方程—方程求解—解释应用”的过程,体会方程思想.
(此环节设计时间在10-15分钟)
案例:《中华人民共和国道路交通安全法实施条例》中规定:超速行驶属违法行为.为确保行车安全,一段高速公路全程限速110千米/时(即任一时刻的车速都不能超过110千米/时.以下是张师傅和李师傅行驶完这段全程为400千米的高速公路时的对话片断.张:“你的车速太快了,平均每小时比我多跑20千米,少用我一个小时就跑完了全程,还是慢点.”李:“虽然我的时速快,但最大时速不超过我平均时速的0010,可没有超
速违法啊.”李师傅超速违法吗?为什么?
参考答案:
解:设李师傅的平均速度为x 千米/时,则张师傅的平均速度为(20)x -千米/时,
根据题意,得400400120x x
-=-, 去分母,整理,得22080000x x --= 12100,80x x ==-,
经检验,12100,80x x ==-都是所列方程的根,但280x =-不符合题意,舍去.
所以100x = x =100; 李师傅的最大时速是:100(1+10%)=110
所以李师傅行驶途中的最大时速在限速范围内,他没有超速违法.
列方程(组)解应用题的步骤和注意事项:
步骤:
(1)设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;
(2)列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺
各个量之间的关系;
(3)列出方程:根据题目中明显的或者隐含的相等关系列出方程;
(4)解方程并检验;
(5)写出答案.
注意事项:由于列方程解应用题是对实际问题的解答,所以检验时除从数学方面进行检验外,还应考虑题目
中的实际情况,凡不符合条件的一律舍去.
(此环节设计时间在50-60分钟)
例题1:某中学在庆祝“六一”儿童节期间举办“2015,我读过的图书”展示活动.已知下列信息:(1)甲班提供图书320本,(2)乙班提供图书310本,(3)乙班有30名学生,(4)这两个班人均提供图书比甲班人均提供图书多1本.
依据上述信息,你可以确定甲班的学生人数吗?若可以,请给出解答过程;若不可以,请简述理由.
参考答案:
解:可以确定甲班的学生人数,具体解答过程如下:
设甲班学生有x 人,根据题意,可列出方程
320310320130x x
+-=+ 两边同时乘以(30)x x +,再整理,得228096000x x -+=
解得 1240x =,240x =
经检验,1240x =,240x = 都是原方程的根,但某中学一个班级的人数不可能为240,所以取40x = 答:甲班学生有40人
试一试:某校学生在获悉青海玉树地震后,纷纷拿出自己的零花钱,参加赈灾募捐活动.(1)班学生共募捐840元,(2)班学生共募捐1000元,(2)班学生的人均捐款数比(1)班学生的人均捐款数多5元,且人数比
(1)班少2名,求(1)班和(2)班学生的人数.
参考答案:
解:设(1)班学生人数为x 人,则(2)班学生人数为(2)x -人.
根据题意,得
100084052x x
-=-. 化简整理后,得 2343360x x -+=. 解得 1242,8x x ==-.
经检验:1242,8x x ==-是原方程的根,28x =-不合题意,舍去. 所以,原方程的根是42x =.
当42x =时,240x -=.
试一试:一个工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.甲、乙两车单独完成任务分别需要多少天? 参考答案:
解:设甲车单独完成任务需要x 天,乙单独完成需要y 天,
由题意可得:1110()115x y y x ⎧+=⎪⎨⎪-=⎩
, 解得:1530x y =⎧⎨=⎩,
经检验:1530x y =⎧⎨=⎩
是原方程的解,也符合题意. 答:甲车单独完成需要15天,乙车单独完成需要30天.
例题4:轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。

求这艘轮船在静水中的速度和水流速度.
参考答案:
解:设船在静水中的速度为x 千米/小时,水流速度为y 千米/小时.
由题意,得8042740707x y x y x y
x y ⎧+=⎪+-⎪⎨⎪+=⎪+-⎩ 解得:173x y =⎧⎨=⎩ 经检验:173
x y =⎧⎨=⎩是原方程组的解,也符合题意.
答:水流速度为3千米/小时,船在静水中的速度为17千米/小时.
试一试:轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度。

参考答案:
解:设船在静水中速度为x 千米/时,则顺水航行速度为(2)x +千米/时,逆水航行速度为(2)x -千米/时,
依题意,得 302022
x x =+- ; 解得:10x =. 经检验,10x =是所列方程的根.
答:船在静水中的速度是10千米/时.
此环节设计时间在30分钟左右(20分钟练习+10分钟互动讲解)。

5折售完.请你通过计算,说明这一天的水果买卖是否赚钱?如果赚钱,赚了多少元?如果不赚钱,那么赔了多少元?
答案:(1)设甲种水果购进了x 千克,则乙种水果购进了(10)x +千克.
根据题意,得1001001102
x x -=+.整理后,得21020000x x +-=, 解得 140x =,250x =-(不合题意,舍去).
经检验:40x =原方程的根,且符合题意. ∴10401050x +=+=.
答:甲种水果购进了40千克,乙种水果购进了50千克.
(2)乙种水果的利润:150 2.810040w =⨯-=(元).
甲种水果的利润:23240 2.840 2.850%10010.455
w =⨯⨯+⨯⨯⨯-=-(元).
所以,甲、乙两种水果的总利润:1229.6w w w =+=(元).
所以,由0w >,得这一天的水果买卖共赚了29.6元.
(此环节设计时间在5-10分钟内)
让学生回顾本节课所学的重点知识,以学生自我总结为主,学科教师引导为辅,为本次课做一个总结回顾
【巩固练习】
1.A 、B 两地相距24千米,甲乙两人同时从A 地出发步行到B 地,甲比乙每小时少走1千米,结果比乙晚到
2小时,求甲、乙两人步行的速度。

解:设甲步行的速度是每小时x 千米,
由题意得 242421
x x -=+ 整理,得2120x x +-=; 解得123,4x x ==-
经检验123,4x x ==-都是原方程的解,但24x =-,不合题意,舍去.
答:甲步行的速度是每小时3小时,乙步行的速度是每小时4千米.
2.高速公路有一次抢修任务,竞标资料显示:若由甲队或乙队单独施工,那么甲队比乙队少用5天施工时间,
但甲队每天的工作费用比乙队多300元;若由甲乙两队合作施工,6天可以完成,共需工程费用10200元。

问(1)甲乙单独施工各需多少天? (2)应选择哪个队施工经费较少?
解:(1)设甲队单独施工需x 天,
由题意得 6615
x x +=+; 解得:1210,3x x ==- 经检验:1210,3x x ==-都是方程的根,但23x =-不符合题意,舍去
10,515x x =+=
答:甲队单独施工需10天,乙队单独需15天.
(2)设甲队每天工作费用为a 元.
由题意得 66(300)10200a a +-=, 解得:1000a =
甲队费用:10001010000⨯=元,乙队费用:7001510500⨯=元
答:应选择甲队施工经费较少.
3.某校八年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班比1班的人数少5人.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程.
解法一:求两个班人均捐款各多少元?。

相关文档
最新文档