吸湿排汗剂,长效防霉驱螨剂,地毯防火剂,亲水易去污整理剂,面料用抗菌剂
3m吸湿排汗助剂说明书

3m吸湿排汗助剂说明书
3M吸湿排汗助剂是一种用于纺织品的功能性添加剂,旨在提高纺织品的吸湿排汗性能。
这种助剂通常用于运动服装、户外服装和内衣等产品中,以提供舒适的穿着体验。
以下是对3M吸湿排汗助剂的一般说明:
1. 产品特性:
3M吸湿排汗助剂采用先进的技术,能够有效吸收和排出汗液,保持穿着者的干爽舒适。
该助剂具有优异的透气性能,有助于加快汗液的蒸发,减少穿着者的不适感。
3M吸湿排汗助剂经过耐久性测试,具有较好的持久效果,能够在多次清洗后仍保持优秀的性能。
2. 使用方法:
3M吸湿排汗助剂通常在纺织品生产过程中添加,可以与纤
维材料充分混合,确保助剂均匀分布。
在使用过程中,建议按照3M的指导和建议进行正确的添加
和混合,以确保最佳的效果。
3. 注意事项:
在使用3M吸湿排汗助剂时,建议遵循相关的安全操作规程,避免接触皮肤和眼睛,避免吸入助剂粉尘。
3M吸湿排汗助剂应储存在干燥通风的环境中,避免阳光直
射和潮湿环境,以确保产品质量。
4. 应用范围:
3M吸湿排汗助剂适用于各类纺织品制品,特别适用于运动
服装、户外服装、内衣等需要提高吸湿排汗性能的产品。
总的来说,3M吸湿排汗助剂是一种功能性添加剂,能够有效提
高纺织品的吸湿排汗性能,为穿着者带来舒适的穿着体验。
在使用时,需要注意正确的添加方法和安全操作规程,以确保产品的最佳
效果和使用安全。
纺织布面料吸湿排汗剂,排汗吸水剂,吸汗快干整理剂,吸湿快干助剂,吸湿排汗剂

吸湿排汗纤维产品的性能及生产方法简介一、吸湿排汗纤维沟槽舒适性染色性能近年来,人们对服装面料的舒适性、健康性、安全性和环保性等要求越来越高,随着人们在户外活动时间的增加,休闲服与运动服相互渗透和融为一体的趋势也日益受广大消费者的青睐,这类服装的面料,既要求有良好的舒适性,又要求在尽情活动时,一旦出现汗流浃背情况,服装不会粘贴皮肤而产生冷湿感。
于是对面料的纤维提出了吸湿排汗功能新要求。
众所周知:天然纤维以棉为例,其吸湿性能好,穿着舒适,但当人的出汗量稍大时,棉纤维会因吸湿膨胀,其运气性下降并粘贴在皮肤上,同时,水份发散速度也较慢,从而给人体造成一种冷湿感;合成纤维以涤纶为例,其吸水性小,透湿性能差,由于其静电积累而容易引起穿着时产生纠缠的麻烦,尤其在活动时容易产生闷热感。
在满足社会日益增长衣着方面,合成纤维早就担负起了重要角色,其中以涤纶为主,涤纶自工业化以来,从未间断进行涤纶改性研究,当然,提高涤纶吸水和透湿是各国涤纶生产和科研部门最为关心的研发方向。
近两年的国内纺织品市场上,对吸湿排汗纺织品需求呼声逐渐高涨,已引起业界人士的关注。
据去年去台湾考察团的反映,这类产品的市场已相当火爆,国内一些合纤研究机构和生产企业,对这类纤维的开发也做出了一些工作,如仪征的Coolbst,全纺的Coolnice等,但迄今未见有关系统报导,为配合各界开发吸湿排汗纺织品的需要,兹根据现有零星资料整理成文,介绍于后,供参考。
二、吸湿排汗纤维的吸水和放水性能纤维的吸湿排汗性能取决于其化学组成和物理结构形态。
从皮肤表面蒸发的气态水分首先被纤维材料吸收(即吸湿),然后经由材料表面放湿;而皮肤表面的液态水分由纤维内部的孔洞(毛细孔、微孔、沟槽)以及纤维之间的空隙所产生的毛细效应使水分在材料间表面的吸附、扩散和蒸发(即放湿)。
两种作用的结果导致水分发生了迁移,前一种作用主要与纤维大分子的化学组成有关,后一种作用则与纤维的物理结构形态有关。
涂料抗菌剂,家纺防螨剂,地毯阻燃剂,吸汗速干整理剂,紫外线屏蔽剂

抗菌防臭整理剂ATB9800结构或组分:天然甲壳质改性高分子化合物;用途及应用方法:适用于处理直接与皮肤接触的纤维素纤维和含有胺基纤维的纺织品,也可以处理腈纶等织物的抗菌处理;1、浸轧工艺:〈1〉用量:10~40g/L〈2〉工艺流程:织物→浸轧抗菌溶液(浸轧温度10~30℃;轧液率60~90%,工作槽液量要小) →烘干(100~120℃) →高温拉幅(140~150℃×20~30s)2、浸渍工艺:〈1〉用量:2~5%(o.w.f)〈2〉浴比:1:10〈3〉处理温度:40~60℃〈4〉处理时间:30~40min包装贮存:25kg、120kg塑料桶包装,贮存在0℃以上的仓库中,稳定期储存一年。
韩笑新型抗菌剂壳聚糖双胍盐酸盐的制备及其抑菌性能研究李秀丽1,董朝红1,朱平1、2,翟海群11、青岛大学“纤维新材料及现代纺织”国家重点实验室培育基地,山东青岛26607l;2、武汉科技学院“新型纺织材料绿色加工及其功能化”教育郑重点实验室,湖北武汉430073作者简介:李秀丽(1982-)女,山东寿光人,在读硕士研究生,研究方向为新型纺织化学品制备及应用【摘要】以壳聚糖和双氰胺为原料,合成了一种新型抗菌剂——壳聚糖双胍盐酸盐,合成路线简单,成本低:用FTIR表征了其结构,同时进行了抑菌实验,结果表明壳聚糖双胍盐酸盐具有比壳聚糖更强的抑菌性:【关键词】壳聚糖;壳聚糖双胍盐酸盐;抗菌性【中图分类号】TSl95.26文献标识码:A文章编号:1005-9350(2009)08-0001-04壳聚糖(Chitosan)是甲壳素脱乙酰后的产物,是一种天然碱性多糖,具有优良的生物亲和性和生物可降解性,容易制成各种衍生物。
因其来源极其丰富,无毒,能溶解在醋酸和其它有机酸中,已被广泛应用于工业和医药领域[1]。
尤其是抗菌性,近年来,壳聚糖作为一种天然抗菌剂受到了人们的广泛关注,但是,与传统的抗菌剂相比壳聚糖的抗菌活性低,且壳聚糖不溶于水,只能溶于某些稀酸溶液,因而限制其在很多方面的应用[2]。
吸水排汗助剂吸湿快干剂吸湿快干助剂吸水速干剂吸湿速干剂纺织品面料排汗吸水剂四防整理剂

涤纶织物亲水性及SR性整理工艺研究顾浩 ( 常熟市福亿印花炼染有限公司 )原载:六届论文集;144-149(lq029)【摘要】采用亲水SR整理剂对涤纶织物进行与染色同浴或染后浸轧法的加工整理,使原本疏水性的涤纶转变为具有耐久的亲水性,赋于了产品吸汗、导湿、易去污、防沾污、抗静电、柔软等特性, 用于生产各式针织运动服饰、睡衣/休闲服、毛巾/袜子、制服及宾馆饭店用布、家庭装饰用品效果十分理想。
产品经检测,质量达到客户需求,从而使涤纶织物的应用范围更为广阔, 产品档次更高。
【叙词】涤纶织物亲水SR整理剂整理工艺效果检测1 前言涤纶纤维与天然纤维相比, 强度高、布面质感好、色泽艳丽、价格适宜、易处理加工,但由于该纤维属于疏水性纤维,尽管纤维制造商对纤维形态结构作了不断的改进,但很难达到透气透湿, 吸水速干之性能, 而且抗污渍沾污性、抗静电性差, 在穿着时极易吸附灰尘、加之摩擦产生的静电使衣物紧贴皮肤,给人以不爽之感。
随着染整后整理水平的提高, 亲水SR整理剂的问世, 使上述问题有了很好的解决方法, 该整理剂可以将人体排出的汗液吸收至衣物表面, 并快速蒸发,体人体保持干爽、舒适的感觉,同时还具有易去污、防沾污、抗静电等特性, 可保持衣物长久的光洁如新。
22亲水SR加工的机理亲水SR加工整理剂, 主要成分为特殊聚酯类高分子树脂, 由疏水性聚酯成份和亲水性聚氧化烷撑酰胺而构成, 可象染料一样在一定的工艺条件下, 被涤纶纤维所吸收,其聚酯结构,对涤纶纤维有较强的亲和力,因而具有耐久的亲水性。
其结构形态和亲水状态如图一所示:图一所以亲水SR加工, 首先就是赋于予疏水性涤纶纤维表面具有耐久的亲水性, 亲水效果及耐久性优劣可通过坯布的吸水高度和水滴在织物表面消失时间的快慢,及多次洗涤后效果是否依旧来判断。
SR性表现为去污性、防沾性、耐久性,从图二试验过程可以看到, (A)把污渍或重油人工沾污到已经过SR整理的织物上, (B)将该织物泡入水中,(C)SR整理剂的亲水成份可促使水分子进入油污和纤维之间, 使大块油污面产生缩聚成为大小不一的油珠, (D)继而呈卷离状态脱离织物, 如果此时在水中加入洗涤剂并施于机械洗涤条件,污渍脱离织物的速度更快和效果更佳。
纺织布面料吸湿排汗剂,纺织防霉助剂,抗菌加工剂,防紫外整理剂

吸湿速干整理剂HMW8871吸湿速干整理剂HMW8871是针对涤纶、锦纶及其他化学纤维织物研发的高效持久型吸湿排汗快干剂。
经过整理织物具有良好的吸汗性、毛细管透水透气性,可迅速将汗水吸尽并将其和湿气导离皮肤表面,克服织物燥身、不吸汗或潮湿衣物粘身,不易干等现象,使人们在夏季等高湿热环境下穿着具有清凉感。
试验表明,整理后织物的毛细管效应﹥12cm,水滴扩散时间﹤1.5s。
HMW8871广泛用于coolmax等纤维的开发及运动服,职业装,休闲服(T恤、衬衣、帽等),内衣,袜子,毛巾等。
国家棉纺织产品质量监督检验中心等测试中心一致证明:HMW8871具有良好耐久的吸湿性及快干性。
HERST公司主要产品有:防紫外整理剂、抗紫外线整理剂、抗菌整理剂、抗菌助剂、纺织抗菌剂、纳米银抗菌处理剂、吸湿排汗整理剂、吸汗速干加工剂、纳米香味微胶囊整理剂、香味加工剂、织物面料抗菌剂、纳米维生素微胶囊加工剂、阻燃整理剂、防火整理剂、纺织阻燃剂、阻燃涂层胶剂、阻燃助剂、甲壳素整理剂、防螨抗菌整理剂、抗菌防霉防螨整理剂、皮革防霉抗菌剂、防霉整理剂、抗静电整理剂、防静电剂、防蚊加工剂、防虫加工剂、防油防水整理剂,含氟拒油拒水防污整理剂、芦荟丝素胶原保湿剂、无甲醛免烫整理剂、纳米银抗菌剂、羽绒抗菌除臭剂、纺织品防霉剂、纳米负离子加工剂、纳米远红外加工剂、远红外负离子发生剂、高发泡印花浆、珠光印花浆、金粉印花浆、银粉印花浆、仿活性印花粘合剂、富锗整理剂、天然物(丝素蛋白、绿茶、艾蒿、卵磷脂、仙人掌)整理剂、舒适性(凉感、调温、唐辛子暖感、自发热)整理剂等精细化工产品。
韩笑三种不同吸湿速干整理剂工艺的探讨王阳(西安工程大学纺织与材料学院,陕西西安710048)方蓓(广东溢达纺织有限公司,广东东莞528500)【摘要】以分别用水分散性聚酯、环氧树脂、有机硅三元共聚物为主成分的三种不同组分的吸湿速干整理剂,对涤纶织物和涤棉织物的整理工艺进行了研究。
吸湿速干整理剂

吸湿速干整理剂【产品用途】聚酯等合成纤维疏水性强,易带静电,污垢的沉积也就变多,而且油性污垢也会牢固地附着在织物上,导致污垢难以除去和洗净。
如果具有耐久的吸水排汗性能和防静电能力,保证人体穿衣时的舒适感受,那么其适用范围将会更加广泛。
纤维素纤维由于经过树脂、柔软整理,其亲水性降低,甚至变成了拒水性。
若使之具有亲水性,且难以沾附油污或者沾上去的污迹容易洗掉,那么纺织品的服用性和舒适度将大有提高。
吸湿速干整理剂为本公司开发的用于聚酯纤维、聚酰胺纤维、T/C和毛/涤织物的耐洗型吸水SR(SR∶Soil-Release)剂。
具有的持久保护功能可使织物历久如新,即使经过洗涤功效依然可以保持,同时也不会改变织物的天然外观和手感。
【基本性状】外观乳白色液体离子性非离子性PH 值 5~7溶解性易分散于水密度 1.04闪点 >100℃【特性与优点】特性优点1.优异的吸汗速干性整理织物具有良好的吸汗性、毛细管透水透气性,迅速将汗水和湿气导离皮肤表面,克服合成纤维织物燥身和不吸汗的缺点, 柔软舒适、服用性好2.易去污(SR∶Soil-Release)性使疏水性的聚酯等合成纤维具有亲水性,特别是防止油性污垢的附着,即使沾污也易洗涤去除3. 亲水抗静电性经本品整理的织物亲水性优异,抗静电性能良好、静电效应小、不易吸尘、具有防污性4.环保,不影响织物性能对人体安全,不影响织物的色泽和强力5.对涤纶纤维等具有亲和性能自身或与纤维材料发生牢固的交联或键合反应6.相溶性好能与防紫外线整理、阻燃整理、抗菌整理、树脂整理同浴,浴液的切变稳定性高【应用方法】我们推荐浸轧工艺使用吸湿速干整理剂。
1.用量:吸湿速干整理剂 30~60g/L2.工艺操作:浸轧(轧液率70~80% )→烘干(80~110℃)→高温拉幅(180~190℃×30s或150℃×2~3min)【注意事项】可以在分散染料染色时添加并用,对染色效果无不良影响:浸渍吸湿速干整理剂:3~6%(o.w.f),浴比1:10,130℃×30~60min]→烘干。
三防整理剂,四防整理剂,纺织防水剂,亲水易去污整理剂,衣料拒油拒水整理剂,拒油拒水整理剂,防油防水整理剂

PFOS的禁用与含氟防护整理的动向杨栋樑全国染整新技术应用推广协作网原载:第七届全国印染后整理论文集(2008.12);一、问题的由来美国杜邦公司是最早企图利用含氟聚合物赋予纺织品新的防护(拒水、拒油-防污和易去污)功能的尝试,而3M公司(Minnesota Mining Monufactering)则是首先实现含氟共聚物成为防护功能整理(Scotchgard Protector)商品化。
据称:这类防护功能整理剂的开发创意,来源于一个偶然现象。
即在1953年某一天,年轻的化学家Petery Sherman不小心将某种氟化合物液体洒在新买的网球鞋上,随后发现网球鞋在穿用过程中不易被沾污;3M公司对这一发现的现象进行了深入的研究。
由Petery Sherman 和Sam Smith共同研究,终于在1956年研发成Scotchgard Protector商品,此后,其应用范用逐渐向皮革,造纸等领域推广。
由应用含氟化合物的面影响生态环境受到指责的,最早在氟烷烃(即氟利昂)使臭氧层出现空洞,并不断扩大而引起世界各国的极大关注。
从上世纪90年代起,由于禁用氟利昂使家用冰箱的制冷技术逐步向无氟制冷技术方向发展。
进入二十一世纪以来,美国环境保护署基于对环境管理以及对人体键康考虑,中止了全氟辛基磺酸化合物(Perfluorooctane Sulfonates PFOS C8F17SO3-)的生产和使用,并注意到美国杜邦公司生产的不沾锅中,含有可能使人体致癌的有机氟化合物问题。
随后,各国对PFOS的毒理性与生态性进行了深入的研究。
欧洲议会,于2006年12月27日发布"限制全氟辛基磺酸化合物(PFOS)销售及使用的指令"(2006/122/EC),并重申欧洲议会于2006年10月25日通过的有关PFOS的限量规定,将于2007年12月27日前成为各成员国的国家法律,同时,2008年6月27日起实施。
吸湿排汗的一匹“黑马”--Supercool

随着现代人们生活水平的逐渐提高,老百姓对自身穿着的要求也越来越高,人们不再简单的追求衣服的款式美观,而是逐步趋向于对服饰的功能性要求上来。
舒适更添自信,吸湿排汗系列产品在这方面可谓屡见报端。
在较大的市场需求下催生了大批纺织经营者开始投入生产这类产品,然而这些经营者却逐渐发现,美味的鸭子并非那么容易到嘴,有时甚至眼看着在自己的眼前飞走。
他们选用的无论是杜邦的COOLMAX还是台湾的COOLPLUS,或者其它类型的吸湿排汗产品,一旦面料的亲水后整理没做好,面料的吸湿排汗功能便会大打折扣,从而影响产品的验收。
而有的客户对面料功能要求极高,他们会发现一些吸湿排汗面料在做完助剂整理后,虽然可以吸湿,但是面料却干的不快,这对舒适度影响很大,这一系列问题让经营者甚为头痛。
而对于近年来市面上出现的另外一种新型的吸湿排汗产品—Supercool,大多数人开始都以为这只不过是所有cool系列中的普通一员,没有什么特别,而当他们见识到了它所开发的一系列面料时,惊讶之前溢于言表,甚至有人说Supercool的面料吸湿吸的“很恐怖”,是什么原理使Supercool有如此魅力,使它与其它的吸排产品效果反差如此之大呢?让我们从原料的吸湿开始说起,对于市面上现有的吸湿排汗产品,无论是十字型截面的COOLMAX、COOLPULS或是其它蜂窝状截面的吸湿排汗纤维,其材料本身都是普通的涤纶,并不具备吸湿功能,故其必须在面料上做下亲水助剂整理方可解决吸湿的问题。
而对于Supercool,其是通过在高分子链上接枝共聚亲水基团,从原料上改变了涤纶不吸水的缺陷,使产品可以不做任何亲水后整理而达到近乎棉的吸湿效果。
而对于另一功能---排汗,Supercool也有众多优势。
首先对于吸湿排汗的“排”而言,众多这类型的纤维大同小异,皆是靠异形截面的沟槽形成毛细管效应,使汗液经过吸湿、传导而成的一系列芯吸作用。
而Supercool却不仅如此,其奥秘在于纤维的异形截面能够形成众多密密麻麻的小沟槽,类似于粗糙的树皮,加速了排汗速度,汗液可以迅速得到扩散蒸发,从而保持了人体的舒适性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吸湿速干整理剂HMW8871吸湿速干整理剂HMW8871是针对涤纶、锦纶及其他化学纤维织物研发的高效持久型吸湿排汗快干剂。
经过整理织物具有良好的吸汗性、毛细管透水透气性,可迅速将汗水吸尽并将其和湿气导离皮肤表面,克服织物燥身、不吸汗或潮湿衣物粘身,不易干等现象,使人们在夏季等高湿热环境下穿着具有清凉感。
试验表明,整理后织物的毛细管效应﹥12cm,水滴扩散时间﹤1.5s。
HMW8871广泛用于coolmax等纤维的开发及运动服,职业装,休闲服(T恤、衬衣、帽等),内衣,袜子,毛巾等。
国家棉纺织产品质量监督检验中心等测试中心一致证明:HMW8871具有良好耐久的吸湿性及快干性。
HERST公司主要产品有:防紫外整理剂、抗紫外线整理剂、抗菌整理剂、抗菌助剂、纺织抗菌剂、纳米银抗菌处理剂、吸湿排汗整理剂、吸汗速干加工剂、纳米香味微胶囊整理剂、香味加工剂、织物面料抗菌剂、纳米维生素微胶囊加工剂、阻燃整理剂、防火整理剂、纺织阻燃剂、阻燃涂层胶剂、阻燃助剂、甲壳素整理剂、防螨抗菌整理剂、抗菌防霉防螨整理剂、皮革防霉抗菌剂、防霉整理剂、抗静电整理剂、防静电剂、防蚊加工剂、防虫加工剂、防油防水整理剂,含氟拒油拒水防污整理剂、芦荟丝素胶原保湿剂、无甲醛免烫整理剂、纳米银抗菌剂、羽绒抗菌除臭剂、纺织品防霉剂、纳米负离子加工剂、纳米远红外加工剂、远红外负离子发生剂、高发泡印花浆、珠光印花浆、金粉印花浆、银粉印花浆、仿活性印花粘合剂、富锗整理剂、天然物(丝素蛋白、绿茶、艾蒿、卵磷脂、仙人掌)整理剂、舒适性(凉感、调温、唐辛子暖感、自发热)整理剂等精细化工产品。
韩笑吸湿排汗(快干)产品加工中有关问题的探讨杨栋樑全国染整新技术应用推广协作网一、前言人们对服装面料的功能性和舒适性要求中,吸湿排汗(快干)性能越来越受到快节奏生活的广大消费者的青睐。
即希望织物具有吸水(湿)和快干性,如何将人体散发的气、液态汗水尽快排出服装,是提高穿着舒适性的关键之一。
汗液经织物传导到外界空间的通道有二种形式:一是人体皮肤上的汗水直接由织物或纤维间的缝隙(或称毛细管)扩散迁移到外层空间;二是人体散发的水蒸汽,由织物中纤维的微孔或在纤维表面凝结成水,经纤维的微孔或纤维间缝隙的毛细管作用传递到织物表面,再蒸发到外界空间[1]。
由此可知其过程是:吸水——保水——蒸发。
因而,无论是天然纤维或是合成纤维单独都不具备这方面的性能,以致早期的吸湿快干织物是由二种或二种以上不同纤维织成二层或三层结构的织物来担当此项任务的。
自二十世纪八十年代开发吸湿排汗技术以来,情况就完全改观。
传统的合成纤维,尤其是聚酯纤维的分子化学结构中缺乏亲水性基团,吸湿性很差,在服用过程中,人体散发的湿气很难通过聚酯织物传递出去,容易产生闷热不舒适感。
棉纤维有亲水性基团(每个单元结构上有三个羟基),吸湿和吸水性很强,保水性也很好,但其刚性较小,尤其吸湿(水)后会粘贴在皮肤上,使人感觉不爽,以及随着棉纤维的吸湿(水)量增加而纤维的膨胀,诱发产生闷热问题。
吸湿快干技术针对上述穿着时的情况,选择以合成纤维为基材,提高纤维的表面积,增强纤维的吸湿和快干的潜在能力;在纺织物理性加工中,进一步改进集合体的传导效果;在染整化学加工时,再赋以纤维表面的亲水化,最终实现吸湿快干功能。
吸湿排汗纤维有聚酯,聚酰胺和聚丙烯等品种,以聚酯纤维为大宗。
其中以美国杜邦公司独家研发的Coolmax为最著名,它是具有四沟槽的异形聚酯纤维,利用这些沟槽型的纤维成纱和织造后,纤维和纤维之间可形成更多的毛细管通道,更好地发挥芯吸作用(毛细管效应)产生吸湿排汗功能。
在物理改性的吸湿排汗聚酯纤维中,有异形、中空、细旦和微孔化等不同的品种,其中异形为多。
异形化中又有三叶、多叶(五-八叶)、三角,十字,W和Y型等断面的纤维可供设计产品选用。
约四年前,作者曾写过一篇关于产品开发的文章[2],其后陆续作过些补充,今将其整理成文,再次就教于诸同好,请校正。
二、理论分析织物的吸湿排汗(快干)性能,实质上是湿气和水在织物中传递问题,为此可作些理论上的探讨。
(一)一般的传递模式织物的吸湿排汗性能,是(湿)气和水等物质在纺织品中传递现象。
这类现象在化学工程中早就进行过系统的基础研究,并已建立了相关的理论模式。
对织物而言,是其两面(内外两侧)的压力差,使(湿)汽和水等流体的移动。
可简单地说,是差力差(△P)和(移动或传递)流速的关系问题。
织物是纤维的一种特殊集合体形式而已,具有无数弯曲的微细管状通道,属多孔膜传递模式,流体在其间以层流传递(移动)的,为此可以Kozney—Carman方程式可由(1)式表示之:其中:U 流体通过多孔体(膜)的速度△P 压力损失ε 空隙率r 单根纤维的半径f 小管道的实际长度/织物的厚度ιu 流体的粘度q 形状系数,传递系统提供的适当值。
此外,若织物纱线间的小缝隙部分可视作单独的小园管通道的话,还可以单独小园管传递模式来描述。
如小园管的当量半径为r。
,那末流体的流速可由(2)式所示:对织物说来,纱线部位可以多孔体传递模式计算其流量,纱线间缝隙部分可以单独小园管模式来计算。
只要不是高密织物,影响织物的流动性的主要因素就是此缝隙部分了。
由此可知,织物结构的主要因素是:一是纱线的撼度系数;二是织物的覆盖系数或紧度;三是纱线的毛羽(或光洁度)等。
通过的流体是空气(或湿气)和水时,会因其粘度差,而使压力产生很大的差异,但结构因素的影响,可视为相同的。
(二)润湿与渗透——毛细管效应当液体(一般指水)接触织物表面时,如能润湿液体会自发地沿毛细管渗透到织物内部,即产生芯吸现象。
假设织物中的毛织管为理想状态,毛细管压力(吸附力)可用Laplac方程式表示之[4-5]P=(2δLC COSθ)/r a(3)式中:p 毛细管(pa)r a毛细管当量半径(cm)θ接触角(°)δLC液体界面张力(水为71.96dyne/cm)毛细管上升高:h=(2δLC COSθ)/g p r a(4)式中:h 毛细管上升高度(cm)g 重力加速度(980cm/sec2)p 液体密度(水为0.977g/cm3)毛细管中液体的流量通常由posinuille定律描述,流量是与沿毛细管的有效压力梯度成正比:q=(πr a 2/8 η)(△P/L (5)式中:q 流量(cm0/Sec)η液体粘滞系数(水为0.01cm/g·Sec)L 吸水的毛细管长度(cm)则单位时间的线速度为υυ=dL/dt=q/πr a 2=(πr a 2/8 η)△P/L =(πr a 2/8 η)(P/L-ρg) (6)由此可推导液体在水平方向(L)和垂直方向(Ln)随时间的线速度表式L2=(r aδLC COSθ/2η)·t (7)式中t时间(sec)由上述公式可知:只有毛细管压力为正时,液体才能在毛细管内自动流动,即要求Cos θ为正值,即织物具有可湿性才是产生芯吸作用必要的前提。
毛细管的有效半径越小,毛细管压力越大,芯吸高度越高;可是,液体流动速度也越小,要达到芯吸的平衡时间也越长。
此外,接触角的大小也对毛细管中液体流动速度有很大影响。
吸湿排汗的异形纤维与普通的园形纤维比,使液态水的传导面积增大,气态水的蒸发面积也增大。
其次,异形纤维之间形成的毛细管数量也比相同纤度的园形纤维的要增加许多,且毛细管当量半径也小些。
总的说,由于异形纤维束(指纱线)的毛细管数量增加,整个织物的表面积增大,致使织物对液态水的传导速度和气态水的蒸发速度都得到了明显的提高。
(三)水蒸气(湿气)扩散水蒸气(水的气体分子)在纺织品中的扩散,可以在织物内部(或纱线间)缝隙部分进行,有时也可以在纤维内部进行吸收和扩散的传递方式[3]。
在纱线间的扩散,可按一般扩散方程式如(9)式表示上式中C a表示该气体分子在空气中浓度,D a表示在空气中气体分子的扩散系数。
在纤维表面则因吸湿而成立如下二个平衡关系式:上式中,D f表示单根纤维内的水分子扩散系数,C f表示单根纤维内的水分子浓度。
该表面的C a系表示对应于表面C f的蒸汽压。
若单根纤维内部会产生扩散现象则其扩散方程式如(11)式所示按理,应用上述(7)、(8)、(10a 10b)和(11)式,加入平衡系统的边界条件即可求得结果。
可是这种计算不仅麻烦,事实上没有这样需要。
三、织物的影响吸湿排汗(快干)纺织品,除了吸湿排汗(快干)纤维本身结构性能外,其集合体状态无疑也会对其宏观效果以深远的影响。
为了适应不同环境、用途和款式的服装要求,织物的质地、风格、外观、厚度和结构紧度等方面有很大变化,以致织物的组织结构,甚至纱线结构也有很大的不同的。
而且,这些对吸湿排汗(快干)性能来说都是至关重要的,今简述于后。
(一)不同纤维织物的干燥性能[6-7]不同纤维的18.8tex纱的针织汗布,润湿后的自然干燥性能(即残留水份)的实验结果如表1所示。
表1、不同纤维织物的水份残留率表l的织物也基本能干燥,从一些试验资料看来,吸湿排汗短纤与其它短纤的混纺,为保证吸湿排汗功能其比例不宜低于60%。
(二)成纱的撼度[6-7]50cm长的16.5tex/34f吸湿排汗聚酯长丝(Coolbst)进行不同程度的加捻后,其毛细管效应的测定结果如表2表示,由吸湿排汗短纤(Coolbst,1.56dtex×38mm)加捻成28tex纱,不同加捻程度时对纱线芯吸速率的实验测定结果,如表3所示。
表表3、不同捻度的短纤纱的芯吸速率16.5tex×34f长丝以30捻/lOcm为宜,而28tex短纤纱以40捻/10cm为佳。
不同纱号的吸湿排汗特性可能有些变化,但其总体规律是一致的。
(三)织物的结构1、针织物针织物上应用吸湿排汗(快干)纤维时,其组织结构的影响国内已有相当研究,拟从中选择一个较能全面规律性的试验结果[8]供参考。
由14.5tex(40s)、18tex(32s)和22.7 tex(26s)三种棉纱,18tex(32s)莫代尔纱和8.3tex(75d/38f)Coolnise长丝为原料,编织成四种类型织物:(Ⅰ)是全部由Coo1nise长丝的双面针织物(#1和#2);(Ⅱ)是Coolnise长丝与14.5tex棉纱或18tex莫代尔交织的单面针织物(#3-#8);(Ⅲ)是由Coolnise长丝与棉纱或莫代尔纱交织的双面针织物(#8-#10);(IV)是14.5 tex和18tex编成纬平针(18tex#11)和1+1罗纹针织物(14.5tex,#12);共12块织物用烧杯法测定其导湿率,从中查明其组织规格的影响,试验试样的工艺参数和测定结果如表4所示[8]。
注:透湿性测定时温度为37℃(模拟人体):Coolnise为十字形聚酯由表4可知:Coolnise长丝及其交织织物试样(#1—#10)的透湿率均优于两种纯棉试样(#1l和#12),这是纯棉织物吸湿后,棉纤维膨胀堵塞了毛细管所致。