专题03 “用好零点”,证明函数不等式-2020年高考数学压轴题之函数零点问题(原卷版)

合集下载

专题02 “构造函数”,巧求参数范围-2020年高考数学压轴题之函数零点问题(原卷版)

专题02 “构造函数”,巧求参数范围-2020年高考数学压轴题之函数零点问题(原卷版)

专题二“构造函数”,巧求参数范围函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕高考压轴题中求参数范围问题,构造函数,例题说法,高效训练.【典型例题】第一招参变分离,构造函数例1.【2019届高三第一次全国大联考】若函数恰有三个零点,则的取值范围为( ) A.B.()C.D.()第二招根据方程做差,构造函数例2.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数(为自然对数的底数),.(1)当时,求函数的极小值;(2)若当时,关于的方程有且只有一个实数解,求的取值范围.第三招求导转化,构造函数例3.【山东省菏泽市2019届高三下学期第一次模拟】已知函数.(1)设,求函数的单调区间;(2)若函数在其定义域内有两个零点,求实数的取值范围.第四招换元转化,构造函数例4.【四川省高中2019届高三二诊】已知.求的极值;若有两个不同解,求实数的取值范围.【规律与方法】构造函数的几种常用的构造技巧:1.通过作差构造函数:作差构造新的函数,通过研究新函数的性质从而得出结论.当然,适合用这个方法解的题目中,构造的函数要易于求导,易于判断导数的正负.2.利用“换元法”构造函数,换元的目的是简化函数的形式.3.先分离参数再构造函数,将方程变形为m=h(x),构造函数h(x),研究h(x)的性质来确定实数m的取值范围.4.根据导函数的结构,构造函数.【提升训练】1.【福建省2019届备考关键问题指导适应性练习(四)】已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( )A.B.C.D.2.【河北省唐山市2019届高三下学期第一次模拟】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.3. 【山东省济宁市2019届高三第一次模拟】已知当时,关于的方程有唯一实数解,则所在的区间是( )A.(3,4) B.(4,5) C.(5,6) D.(6.7)4.【天津市和平区2019届高三下学期第一次调查】已知函数,若关于的方程恰有三个不相等的实数解,则的取值范围是A.B.C.D.5.【安徽省合肥市2019届高三第二次检测】设函数,若函数有三个零点,则实数的取值范围是()A.B.C.D.6.【江西省南昌市2019届高三第一次模拟】已知函数(为自然对数的底数),,直线是曲线在处的切线.(Ⅰ)求的值;(Ⅱ)是否存在,使得在上有唯一零点?若存在,求出的值;若不存在,请说明理由.7.【山东省青岛市2019届高三3月一模】已知函数,,为自然对数的底数.(1)当时,证明:函数只有一个零点;(2)若函数存在两个不同的极值点,,求实数的取值范围.8.【陕西省咸阳市2019年高考模拟检测(二)】已知函数.(1)当,求证;(2)若函数有两个零点,求实数的取值范围.9.【湖南省怀化市2019届高三3月第一次模拟】设函数.(1)若是的极大值点,求的取值范围;(2)当,时,方程(其中)有唯一实数解,求的值.10.【普通高中2019届高三质量监测(二)】已知函数.(1)讨论的单调性;(2)若方程有两个实数根,求实数的取值范围.11.【广东省汕头市2019年普通高考第一次模拟】已知.(1)讨论的单调性;(2)若存在3个零点,求实数的取值范围.12.【山东省淄博市2019届高三3月模拟】已知函数.(1)若是的极大值点,求的值;(2)若在上只有一个零点,求的取值范围.。

2020年高考数学压轴题专题复习: 函数的图象与性质及其应用【解析版】

2020年高考数学压轴题专题复习: 函数的图象与性质及其应用【解析版】

专题 函数的图象与性质及其应用纵观近几年的高考命题,函数图象和性质及其应用问题,常常出现在压轴题的位置,考查的类型主要有: 1.分段函数的图象与性质问题,往往通过分类讨论,将函数在不同定义域内的图象进行刻画或讨论,有时借助导数这一工具进行研究;2.函数的零点问题,根据函数的零点情况,讨论参数的范围是高考的重点和难点.函数零点问题常常涉及零点个数问题、零点所在区间问题及零点相关的代数式取值问题,解决的途径常以数形结合的思想,通过化归与转化灵活转化问题;3.抽象函数问题,由于抽象函数表现形式抽象,对学生思维能力考查的起点较高,使得此类问题成为函数内容的难点之一,解决此类问题时,需要准确掌握函数的性质,熟知我们所学的基本初等函数,将抽象函数问题转化为具体函数问题;4. 函数性质的综合应用问题,函数性质包括奇偶性、单调性、对称性、周期性等,对函数性质的熟练掌握与刻画是解决函数综合题目的必然要求;5.函数与不等式的综合问题,主要有解不等式、及根据不等式确定参数(范围)问题.函数的图象与不等式,往往涉及数形结合思想、转化与化归思想;6.函数中的新定义问题.【压轴典例】例1.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.例2.【2016·全国卷Ⅱ】已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m【答案】B 【解析】法一:利用函数的对称性由f (-x )=2-f (x ),知f (-x )+f (x )=2,所以点(x ,f (x ))与点(-x ,f (-x ))连线的中点是(0,1),故函数f (x )的图象关于点(0,1)成中心对称.(此处也可以这样考虑:由f (-x )=2-f (x ),知f (-x )+f (x )-2=0,即[f (x )-1]+[f (-x )-1]=0,令F (x )=f (x )-1,则F (x )+F (-x )=0,即F (x )=f (x )-1为奇函数,图象关于点(0,0)对称,而F (x )的图象可看成是f (x )的图象向下平移一个单位得到的,故f (x )的图象关于点(0,1)对称).又y =x +1x =1+1x的图象也关于点(0,1)对称,所以两者图象的交点也关于点(0,1)对称,所以对于每一组对称点x i +x i ′=0,y i +y i ′=2,所以∑i =1m(x i +y i )=∑i =1mx i +∑i =1my i =0+2×m2=m ,故选B.法二:构造特殊函数由f (-x )=2-f (x ),知f (-x )+f (x )-2=0, 即[f (x )-1]+[f (-x )-1]=0. 令F (x )=f (x )-1,则F (x )为奇函数, 即f (x )-1为奇函数,从而可令f (x )-1=x , 即f (x )=x +1,显然该函数满足此条件. 此时y =f (x )与y =x +1x的交点分别为(1,2)和(-1,0), 所以m =2, i =1m(x i +y i )=1+2+(-1)+0=2,结合选项可知选B. 答案:B 【思路点拨】(1)由于题目条件中的f (x )没有具体的解析式,仅给出了它满足的性质f (-x )=2-f (x ),即f (x )(x ∈R)为抽象函数,显然我们不可能求出这些点的坐标,这说明这些交点坐标应满足某种规律,而这种规律必然和这两个函数的性质有关. (2)易知函数y =x +1x关于点(0,1)成中心对称,自然而然的让我们有这样的想法:函数f (x )(x ∈R)的图象是否也关于点(0,1)成中心对称?基于这个想法及选择题的特点,那么解题方向不外乎两个:一是判断f (x )的对称性,利用两个函数的对称性求解;二是构造一个具体的函数f (x )来求解. 例3. 【安徽省肥东县高级中学2019届8月调研】已知定义在上的函数满足条件:①对任意的,都有;②对任意的且,都有;③函数的图象关于轴对称,则下列结论正确的是 ( ) A . B . C . D .【答案】C 【解析】 ∵对任意的,都有;∴函数是4为周期的周期函数, ∵函数的图象关于轴对称 ∴函数函数)的关于对称,∵且,都.∴此时函数在上为增函数, 则函数在上为减函数, 则,,,则, 即,故选C . 【规律总结】1.先研究清楚函数的奇偶性、对称性和周期性等性质,这样函数就不再抽象了,而是变得相对具体,我们就可以画出符合性质的草图来解题.2.解决抽象函数问题常用的结论 (1)函数y =f(x)关于x =2a b对称⇔f(a +x)=f(b -x)⇔f(x)=f(b +a -x). 特例:函数y =f(x)关于x =a 对称⇔f(a +x)=f(a -x)⇔f(x)=f(2a -x); 函数y =f(x)关于x =0对称⇔f(x)=f(-x)(即为偶函数).(2)函数y =f(x)关于点(a ,b)对称⇔f(a +x)+f(a -x)=2b ⇔f(2a +x)+f(-x)=2b. 特例:函数y =f(x)关于点(a,0)对称⇔f(a +x)+f(a -x)=0⇔f(2a +x)+f(-x)=0; 函数y =f(x)关于点(0,0)对称⇔f(x)+f(-x)=0(即为奇函数).(3)y =f(x +a)是偶函数⇔函数y =f(x)关于直线x =a 对称;y =f(x +a)是奇函数⇔函数y =f(x)关于(a,0)对称.(4)对于函数f(x)定义域内任一自变量的值x : ①若f(x +a)=-f(x),则T =2a ; ②若f(x +a)=1()f x ,则T =2a ; ③若f(x +a)=-1()f x ,则T =2a ;(a>0) ④若f(x +a)=f(x +b)(a≠b),则T =|a -b|;⑤若f(2a -x)=f(x)且f(2b -x)=f(x)(a≠b),则T =2|b -a|.(5)奇偶函数在对称区间上的单调性:奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.例4.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】【解析】分类讨论:当时,方程即,整理可得:,很明显不是方程的实数解,则,当时,方程即,整理可得:,很明显不是方程的实数解,则,令,其中,,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.【方法总结】本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.例5.【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .【答案】12,34⎡⎫⎪⎢⎪⎣⎭【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--的图象与1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1),(0,2]f x x x =--∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为1,可得2|3|11k k =+,解得2(0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =, ∴1234k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为1234⎡⎫⎪⎢⎪⎣⎭,. 例6.【2016年高考四川理数】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,平面曲线C 上所有点的“伴随点”所构成的曲线'C 定义为曲线C 的“伴随曲线”.现有下列命题:①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”'C 关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是_____________(写出所有真命题的序列). 【答案】②③ 【解析】试题分析:对于①,若令(1,1)P ,则其伴随点为11(,)22P '-,而11(,)22P '-的伴随点为(1,1)--,而不是P ,故①错误;对于②,设曲线(,)0f x y =关于x 轴对称,则(,)0f x y -=与方程(,)0f x y =表示同一曲线,其伴随曲线分别为2222(,)0y x f x y x y -=++与2222(,)0y xf x y x y --=++也表示同一曲线,又曲线2222(,)0y x f x y x y -=++与曲线2222(,)0y xf x y x y --=++的图象关于y 轴对称,所以②正确;③设单位圆上任一点的坐标为(cos ,sin )P x x ,其伴随点为(sin ,cos )P x x '-仍在单位圆上,故②正确;对于④,直线y kx b =+上任一点P (,)x y 的伴随点是'P 2222(,)y xx y x y -++,消参后点'P 轨迹是圆,故④错误.所以正确的为序号为②③.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.本题新概念“伴随”实质是一个变换,一个坐标变换,只要根据这个变换得出新的点的坐标,然后判断,问题就得以解决.例7.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤, 可得()2222364233a t t -≤++-≤, 即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解.【压轴训练】1.【2018·全国卷Ⅰ】设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【答案】D【解析】法一:分类讨论法①当⎩⎪⎨⎪⎧ x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D.2.【2018年全国卷II 理】已知是定义域为的奇函数,满足.若,则( )A .B .C .D .【答案】C 【解析】 因为是定义域为的奇函数,且, 所以,因此,因为,所以,,从而,选C.3.【2018年理新课标I 卷】已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 【答案】C【解析】分析:首先根据g (x )存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.4.【甘肃省兰州市第一中学2019届9月月考】已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有,则的值是()A. 0 B. C. 1 D.【答案】A【解析】若,则,可得,若,,则有,取,则有:∵是偶函数,则,由此得,于是,,故选A.5.若直角坐标系内A、B两点满足:(1)点A、B都在f(x)的图像上;(2)点A、B关于原点对称,则称点对(A,B)是函数f(x)的一个“姊妹点对”(点对(A,B)与(B,A)可看作一个“姊妹点对”。

2025高考数学必刷题 第25讲、函数的零点问题(学生版)

2025高考数学必刷题  第25讲、函数的零点问题(学生版)

第25讲函数的零点问题知识梳理1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.2、函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.3、求函数的零点个数时,常用的方法有:一、直接根据零点存在定理判断;二、将()f x 整理变形成()()()f x g x h x =-的形式,通过()(),g x h x 两函数图象的交点确定函数的零点个数;三、结合导数,求函数的单调性,从而判断函数零点个数.4、利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图像;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题;(3)利用导数研究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数研究.必考题型全归纳题型一:零点问题之一个零点例1.(2024·江苏南京·南京市第十三中学校考模拟预测)已知函数()ln f x x =,()21212g x x x =-+.(1)求函数()()()3x g x f x ϕ=-的单调递减区间;(2)设()()()h x af x g x =-,a R ∈.①求证:函数()y h x =存在零点;②设0a <,若函数()y h x =的一个零点为m .问:是否存在a ,使得当()0,x m ∈时,函数()y h x =有且仅有一个零点,且总有()0h x ≥恒成立?如果存在,试确定a 的个数;如果不存在,请说明理由.例2.(2024·广东·高三校联考阶段练习)已知函数()e sin 1x f x a x =--,()()22cos sin 2e xx a g x a x x ++=-+-+,()f x 在()0,π上有且仅有一个零点0x .(1)求a 的取值范围;(2)证明:若12a <<,则()g x 在(),0π-上有且仅有一个零点1x ,且010x x +<.例3.(2024·全国·高三专题练习)已知函数()1ln e xx f x a x -=+.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0a ≥时,()f x 有且只有一个零点;(3)若()f x 在区间()()0,1,1,+∞各恰有一个零点,求a 的取值范围.变式1.(2024·广东茂名·高三统考阶段练习)已知0a >,函数()e xf x x a =-,()ln g x x x a =-.(1)证明:函数()f x ,()g x 都恰有一个零点;(2)设函数()f x 的零点为1x ,()g x 的零点为2x ,证明12x x a =.题型二:零点问题之二个零点例4.(2024·海南海口·统考模拟预测)已知函数2()e x f x x +=.(1)求()f x 的最小值;(2)设2()()(1)(0)F x f x a x a =++>.(ⅰ)证明:()F x 存在两个零点1x ,2x ;(ⅱ)证明:()F x 的两个零点1x ,2x 满足1220x x ++<.例5.(2024·甘肃天水·高三天水市第一中学校考阶段练习)已知函数2()ln (21)f x x ax a x =+++.(1)讨论函数()f x 的单调性;(2)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,两个零点互为倒数.例6.(2024·四川遂宁·高三射洪中学校考期中)已知函数2()ln (21)f x x ax a x =+++.(1)若函数()f x 在1x =处取得极值,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)讨论函数()f x 的单调性;(3)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,且两个零点互为倒数.变式2.(2024·全国·高三专题练习)已知函数()ln x f x e x a =--.(1)若3a =.证明函数()f x 有且仅有两个零点;(2)若函数()f x 存在两个零点12,x x ,证明:121222x x x x e e e a >++-.变式3.(2024·湖南长沙·高三长沙一中校考阶段练习)已知函数()ln ()f x x ax a R =-∈在其定义域内有两个不同的零点.(1)求a 的取值范围;(2)记两个零点为12,x x ,且12x x <,已知0λ>,若不等式()21ln 1ln 10λ-+->x x 恒成立,求λ的取值范围.变式4.(2024·江苏·高三专题练习)已知函数()4212f x ax x =-,,()0x ∈+∞,()()()g x f x f x '=-.(1)若0a >,求证:(ⅰ)()f x 在()f x '的单调减区间上也单调递减;(ⅱ)()g x 在(0,)+∞上恰有两个零点;(2)若1a >,记()g x 的两个零点为12,x x ,求证:1244x x a <+<+.题型三:零点问题之三个零点例7.(2024·山东·山东省实验中学校联考模拟预测)已知函数()21ln ln 1ex ax f x x a -=---有三个零点.(1)求a 的取值范围;(2)设函数()f x 的三个零点由小到大依次是123,,x x x .证明:13e e x x a >.例8.(2024·广东深圳·校考二模)已知函数1()ln 1x f x a x x -=-+.(1)当1a =时,求()f x 的单调区间;(2)①当102a <<时,试证明函数()f x 恰有三个零点;②记①中的三个零点分别为1x ,2x ,3x ,且123x x x <<,试证明22131(1)(1)x x a x >--.例9.(2024·广西柳州·统考三模)已知()3()1ln f x x ax x =-+.(1)若函数()f x 有三个不同的零点,求实数a 的取值范围;(2)在(1)的前提下,设三个零点分别为123,,x x x 且123x x x <<,当132x x +>时,求实数a 的取值范围.变式5.(2024·贵州遵义·遵义市南白中学校考模拟预测)已知函数()32113f x x ax bx =+++(a ,b ∈R ).(1)若0b =,且()f x 在()0+∞,内有且只有一个零点,求a 的值;(2)若20a b +=,且()f x 有三个不同零点,问是否存在实数a 使得这三个零点成等差数列?若存在,求出a 的值,若不存在,请说明理由.变式6.(2024·浙江·校联考二模)设e 2a <,已知函数()()()22e 22x f x x a x x =---+有3个不同零点.(1)当0a =时,求函数()f x 的最小值:(2)求实数a 的取值范围;(3)设函数()f x 的三个零点分别为1x 、2x 、3x ,且130x x ⋅<,证明:存在唯一的实数a ,使得1x 、2x 、3x 成等差数列.变式7.(2024·山东临沂·高三统考期中)已知函数ln ()xf x x=和()e x ax g x =有相同的最大值.(1)求a ,并说明函数()()()h x f x g x =-在(1,e )上有且仅有一个零点;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.题型四:零点问题之max ,min 问题例10.(2024·湖北黄冈·黄冈中学校考三模)已知函数()()2sin cos ,lnπxf x x x x axg x x =++=.(1)当0a =时,求函数()f x 在[]π,π-上的极值;(2)用{}max ,m n 表示,m n 中的最大值,记函数()()(){}max ,(0)h x f x g x x =>,讨论函数()h x 在()0,∞+上的零点个数.例11.(2024·四川南充·统考三模)已知函数21()sin cos 2f x x x x ax =++,()ln πxg x x =.(1)当0a =时,求函数()f x 在[,]-ππ上的极值;(2)用max{,}m n 表示m ,n 中的最大值,记函数()max{(),()}(0)h x f x g x x =>,讨论函数()h x 在(0,)+∞上的零点个数.例12.(2024·四川南充·统考三模)已知函数()2e 2x ax x f x x =+-,()ln g x x =其中e 为自然对数的底数.(1)当1a =时,求函数()f x 的极值;(2)用{}max ,m n 表示m ,n 中的最大值,记函数()()(){}max ,(0)h x f x g x x =>,当0a ≥时,讨论函数()h x 在()0,∞+上的零点个数.变式8.(2024·广东·高三专题练习)已知函数()ln f x x =-,31()4g x x ax =-+,R a ∈.(1)若函数()g x 存在极值点0x ,且()()10g x g x =,其中10x x ≠,求证:1020x x +=;(2)用min{,}m n 表示m ,n 中的最小值,记函数()min{()h x f x =,()}(0)g x x >,若函数()h x 有且仅有三个不同的零点,求实数a 的取值范围.变式9.(2024·全国·高三专题练习)已知函数2()e (R)x f x ax a =-∈,()1g x x =-.(1)若直线()y g x =与曲线()y f x =相切,求a 的值;(2)用{}min ,m n 表示m ,n 中的最小值,讨论函数()min{(),()}h x f x g x =的零点个数.变式10.(2024·山西朔州·高三怀仁市第一中学校校考期末)已知函数()()31,1ln 4f x x axg x x x =++=--.(1)若过点()1,0可作()f x 的两条切线,求a 的值.(2)用{}min ,m n 表示,m n 中的最小值,设函数()()(){}min ,(01)h x f x g x x =<<,讨论()h x 零点的个数.题型五:零点问题之同构法例13.已知函数1()()2(0)x axf x x ln ax a e -=+-->,若函数()f x 在区间(0,)+∞内存在零点,求实数a 的取值范围例14.已知2()12a f x xlnx x =++.(1)若函数()()cos sin 1g x f x x x x xlnx =+---在(0,]2π上有1个零点,求实数a 的取值范围.(2)若关于x 的方程2()12x a a xe f x x ax -=-+-有两个不同的实数解,求a 的取值范围.例15.已知函数()(1)1x f x ae ln x lna =-++-.(1)若1a =,求函数()f x 的极值;(2)若函数()f x 有且仅有两个零点,求a 的取值范围.题型六:零点问题之零点差问题例16.已知关于x 的函数()y f x =,()y g x =与()(h x kx b k =+,)b R ∈在区间D 上恒有()()()f x h x g x .(1)若2()2f x x x =+,2()2g x x x =-+,(,)D =-∞+∞,求()h x 的表达式;(2)若2()1f x x x =-+,()g x klnx =,()h x kx k =-,(0,)D =+∞,求k 的取值范围;(3)若42()2f x x x =-,2()48g x x =-,342()4()32(0||h x t t x t t t =--+<,[D m =,][n ⊂,,求证:n m-例17.已知函数32()(3)x f x x x ax b e -=+++.(1)如3a b ==-,求()f x 的单调区间;(2)若()f x 在(,)α-∞,(2,)β单调增加,在(,2)α,(,)β+∞单调减少,证明:6βα->.例18.已知函数221()2x f x ae x ax =--,a R ∈.(1)当1a =时,求函数2()()g x f x x =+的单调区间;(2)当4401a e <<-,时,函数()f x 有两个极值点1x ,212()x x x <,证明:212x x ->.题型七:零点问题之三角函数例19.(2024·山东·山东省实验中学校考一模)已知函数()()sin ln 1f x a x x =-+.(1)若对(]1,0x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln2n k k =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,试判断方程()1eln 10x m x +--+=实数根的个数,并说明理由.例20.(2024·全国·高三专题练习)设函数()πsin2x f x x =-.(1)证明:当[]0,1x ∈时,()0f x ≤;(2)记()()ln g x f x a x =-,若()g x 有且仅有2个零点,求a 的值.例21.(2024·广东深圳·红岭中学校考模拟预测)已知1()sin (1)1f x a x x x x =-+>-+,且0为()f x 的一个极值点.(1)求实数a 的值;(2)证明:①函数()f x 在区间(1,)-+∞上存在唯一零点;②22111sin 121n k n k =-<<+∑,其中*N n ∈且2n ≥.变式11.(2024·山东济南·济南市历城第二中学校考二模)已知()sin n f x x =,()ln e x g x x m =+(n 为正整数,m R ∈).(1)当1n =时,设函数()()212h x x f x =--,()0,πx ∈,证明:()h x 有且仅有1个零点;(2)当2n =时,证明:()()()e 12x f x g x x m '+<+-.题型八:零点问题之取点技巧例22.已知函数()[2(1)]2(x x f x e e a ax e =-++为自然对数的底数,且1)a .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.例23.已知函数2()(1)()x f x xe a x a R =++∈.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.例24.已知函数211()(()22x f x x e a x =-++.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.变式12.已知函数1()()(1)2x x f x e a e a x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围。

2020届高考数学二轮复习专题《用零点、极值解决不等式问题》

2020届高考数学二轮复习专题《用零点、极值解决不等式问题》

所以f(x)在
-∞,1-
a 3
单调递增,在
1-
a3,1+
a 3
单调递减,在
1+ a3,+∞单调递增 因为f(x)存在极值点,所以a>0,且x0≠1.
由题意得f′(x0)=3(x0-1)2-a=0,即(x0-1)2=
a 3
,而f(x0)=(x0-1)3-ax0-b=(x0-
1)2(-2x0-1)-b. f(3-2x0)=(2-2x0)3-3(x0-1)2(3-2x0)-b=(x0-1)2[8-8x0-9+6x0]-b=(x0-
用零点、极值解决不等式问题
在导数的综合应用中,经常涉及到与函数零点与极值点有关的一些问题.处理这类 问题,我们需要通过零点与极值点的概念,通过构造方程或方程组,简化函数或方程的 表达式,从而解决与零极值点有关的等式与不等式问题.考查函数与方程思想,转化与 化归思想,同时考查抽象概括、综合分析问题和解决问题的能力.
明.
求得f(x)的导数,可得极值点满足的方程,运用分析法化简整理,即可得到证
已知函数f(x)=x2-x-xlnx,证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2. f(x)=x2-x-xlnx,f′(x)=2x-2-lnx. 设h(x)=2x-2-lnx,则h′(x)=2-1x. 当x∈ 0,12时,h′(x)<0;当x∈ 12,+∞时,h′(x)>0.所以h(x)在 0,12单调递减,在 12,+∞单调递增.
1)2(-2x0-1)-b
∴f(3-2x0)=f(x0)且3-2x0≠x0,由题意知,存在唯一实数x1满足f(x1)=f(x0),且
x1≠x0,因此x1=3-2x0,所以x1+2x0=3.
(2019·全国卷)已知函数f(x)=lnx-xx+ -11. (1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;

2020年最新高考数学--以函数零点或方程的根为背景的解答题(解析版)

2020年最新高考数学--以函数零点或方程的根为背景的解答题(解析版)

专题二 压轴解答题第9关 以函数零点为背景的解答题【名师综述】以函数零点为背景的解答题主要考察函数与方程思想,不仅要研究单调性,确定至多一解,而且要考虑零点存在定理,确定至少有一解,从两方面确保解的个数的充要性.【典例解剖】类型一 零点个数问题典例1.(2020·上海嘉定区上学期期中)已知函数()2sin()f x x ω=,其中0>ω. (1)令1ω=,判断函数()()2F x f x f x π⎛⎫=++⎪⎝⎭的奇偶性,并说明理由;(2)令2ω=,1()21222h x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的最大值为A ,函数2)1y x x θ=-+在区间[,]A A -上单调递增函数,求θ的取值范围; (3)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()g x 的图像,对任意a ∈R ,求()y g x =在区间],10[a a π+上零点个数的所有可能值.【答案】(1)非奇非偶函数,理由见解析;(2)arctan,282k k πθππ⎡⎫-∈++⎪⎢⎪⎣⎭;(3)见解析 【解析】【分析】(1)特值法:ω=1时,写出f (x )、F (x ),求出F (4π)、F (4π-),结合函数奇偶性的定义可作出正确判断;(2)当2ω=时,利用诱导公式、两角和的正弦公式展开及辅助角公式求得h (x ),进而求得h (x )的最大值A ,由题意可知:对称轴θ≥,解得tan θ,即可求得θ的取值范围;(3)根据图象平移变换求出g (x ),令g (x )=0可得g (x )可能的零点,而[a ,a +10π]恰含10个周期,分a 是零点,a 不是零点两种情况讨论,结合图象可得g (x )在[a ,a +10π]上零点个数的所有可能值. 【详解】(1)当1ω=时,f (x )=2sinx , ∴F (x )=f (x )+f (x 2π+)=2sinx +2sin (x 2π+)=2(sinx +cosx ),F (4π)=F (4π-)=0,F (4π-)≠F (4π),F (4π-)≠﹣F (4π),所以,F (x )既不是奇函数,也不是偶函数.(2)当2ω=时,1()21222h x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭12sin 22sin 221222x x ππ⎡⎤⎡⎤⎛⎫⎛⎫=⨯++⨯+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 2sin 26x x π⎛⎫=+- ⎪⎝⎭2cos 2sin 1212x ππ⎛⎫=+⋅ ⎪⎝⎭212x π⎛⎫=+ ⎪⎝⎭∵cos 2[1,1]12x π⎛⎫+∈- ⎪⎝⎭,∴max ()2h x -=,由题意,2)1y x x θ=-+在区间22⎡---⎢⎣⎦上单调递减,∴抛物线对称轴2x θ-=≥,即tan 28θ-≥,∴arctan ,282k k πθππ⎡⎫∈++⎪⎢⎪⎣⎭. (3)f (x )=2sin 2x ,将y =f (x )的图象向左平移6π个单位,再向上平移1个单位后得到y =2sin 2(x 6π+)+1的图象,所以g (x )=2sin 2(x 6π+)+1. 令g (x )=0,得x =kπ512π+或x =kπ34π+(k ∈z ),因为[a ,a +10π]恰含10个周期,所以,当a 是零点时,在[a ,a +10π]上零点个数21,当a 不是零点时,a +kπ(k ∈z )也都不是零点,区间[a +kπ,a +(k +1)π]上恰有两个零点,故在[a ,a +10π]上有20个零点.综上,y =g (x )在[a ,a +10π]上零点个数的所有可能值为21或20. 【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.典例2.(2020·上海七宝中学月考)设集合Ω表示具有下列性质的函数()f x 的集合:①()f x 的定义域为()1,1-;②对任意(),1,1x y ∈-,都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭(1)若函数()f x ∈Ω,证明()f x 是奇函数;并当21m n f mn +⎛⎫= ⎪+⎝⎭,11m n f mn -⎛⎫= ⎪-⎝⎭,求()f m ,()f n 的值;(2)设函数2()lg 1x g x a x ⎛⎫=-⎪+⎝⎭(a 为常数)是奇函数,判断()g x 是否属于Ω,并说明理由; (3)在(2)的条件下,若()(1,1)()(0)1(1,1)g x x h x k k x x ∈-⎧=≥⎨+∉-⎩,讨论函数[()]2y h h x =-的零点个数. 【答案】(1)见解析,3()2f m =,1()2f n =;(2)()g x ∈Ω,证明见解析;(3)k 0<或112k <≤时,3个零点;0k =或1k >时,1个零点;0k <≤5个零点. 【解析】【分析】(1)利用赋值法和奇函数的定义证明函数是奇函数,由题得(),()f m f n 的方程组,解方程组即得解;(2)先求出a 的值,再利用Ω的定义证明;(3)令h(x)=t ,则h(t)=2,再分类讨论数形结合分析得解. 【详解】(1)令0x y ==得()(0)(0)0,(0)0f f f f +=∴=.令y x =-,()()()00,()()f x f x f f x f x +-==∴-=-,所以函数()f x 是奇函数.2,()()21m n f f m f n mn +⎛⎫=∴+= ⎪+⎝⎭,1,()()1,()()11m n f f m f n f m f n mn -⎛⎫=∴+-=∴-= ⎪-⎝⎭解上面关于(),()f m f n 的方程组得3()2f m =,1()2f n =. (2)因为函数2()lg 1x g x a x ⎛⎫=-⎪+⎝⎭(a 为常数)是奇函数, 所以1(0)0,1()lg 1xg a g x x -=∴=∴=+,,满足函数g(x)是奇函数. 设(),1,1x y ∈-,所以111()+()lglg lg 111x y x y xyg x g y x y x y xy ----+=+=+++++, 因为111()lg lg ()()1111x yx y x y xy xyg g x g y x y xy x y xy xy+-+--++===++++++++,所以()g x ∈Ω.(3)令[()]2=0[()]2y h h x h h x =-∴=,. 令h(x)=t ,则h(t)=2,所以函数1lg(1,1)()(0)11(1,1)xx h x k x k x x -⎧∈-⎪=≥+⎨⎪+∉-⎩, 当k=0时,1lg(1,1)()11(1,1)xx h x x x -⎧∈-⎪=+⎨⎪∉-⎩,则199lg =2,1101x x x -∴=-+,此时只有一个解,一个零点; 当k 0<时,只有一个10t -<<,对应三个零点;当01k <≤时,112k <+≤,此时12311,10,1t t t k<--<<=≥,21111(k k k k k k k k +-+-==,1k <≤,11k k +>,三个t 各对应一个零点,共三个零点;当102k <<,11k k +≤,三个t 各对应一个,一个,三个零点,共五个零点;当1k >时,h(t)=2只有一个解,10t -<<,对应一个零点. 综合得k 0<或112k <≤时,3个零点;0k =或1k >时,1个零点;102k <≤时,5个零点. 【举一反三】已知二次函数的导函数的图像与直线平行,且在处取得极小值.设.如何取值时,函数存在零点,并求出零点. 【答案】当时,函数有一零点;当(),或()时,函数有两个零点;当时,函数有一零点. 【解析】()y g x =2y x =()y g x =1x =-1(0)m m -≠()()g x f x x=()k k R ∈()y f x kx =-1k =()y f x kx =-2mx =-11k m >-0m >11k m <-0m <()y f x kx =-1)1(11---±=k k m x 11k m =-()y f x kx =-m k x -=-=11由(),得 当时,方程有一解,函数有一零点;当时,方程有二解, 若,,函数有两个零点,即 ;若,,函数有两个零点,即;类型二 由零点个数确定参数取值范围问题典例3.(2020·上海莘庄中学月考)1(),1f x ax a R x =+∈+ (1)当1a =时,求不等式()1(1)f x f x +<+的解集; (2)若()f x 在[]1,2x ∈时有零点,求a 的取值范围. 【答案】(1)()2,1-- (2)11,26⎡⎤--⎢⎥⎣⎦ 【解析】 【分析】(1)直接利用转换关系,解分式不等式即可.()()120my f x kx k x x =-=-++=0≠x ()2120k x x m -++=()*1k =()*2m x =-()y f x kx =-2mx =-1k ≠()*()4410m k ⇔∆=-->0m >11k m >-()y f x kx =-)1(2)1(442k k m x ---±-=1)1(11---±=k k m x 0m <11k m <-()y f x kx =-)1(2)1(442k k m x ---±-=1)1(11---±=k k mx(2)利用分离参数法和函数的值域的应用求出参数的范围. 【详解】解:(1)1()()1f x ax a R x =+∈+. 当1a =时,1()1f x x x =++. 所以:()1(1)f x f x +<+转换为:111112x x x x ++<++++, 即:1112x x <++, 解得:21x -<<-. 故:{|21}x x -<<-. (2)函数1()1f x ax x =++在[]1,2x ∈时,()f x 有零点, 即函数在该区间上有解, 即:1(1)a x x =-+,令()1(1)g x x x =-+即求函数()g x 在[]1,2x ∈上的值域, 由于:(1)x x +在[]1,2x ∈上单调递增, 故:[](1)2,6x x +∈, 所以:111,(1)26x x ⎡⎤-∈--⎢⎥+⎣⎦,故:11,26a ⎡⎤∈--⎢⎥⎣⎦【名师点睛】利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.典例4.(2020·上海洋泾中学月考)已知函数()()sin f x x ωϕ=+(0>ω,0ϕπ<<)的周期为π,图象的一个对称中心为,04π⎛⎫⎪⎝⎭将函数()f x 图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所有图象向右平移2π个单位长度后得到函数()g x 的图象. (1)求函数()f x 与()g x 的解析式;(2)当1a ≥,求实数a 与正整数n ,使()()()F x f x a g x =+⋅在()0,n π恰有2019个零点. 【答案】(1)()cos 2f x x =;()sin g x x =;(2)1a =,1346n =. 【解析】【分析】(1)依题意,可求得2ω=,2ϕπ=,利用三角函数的图象变换可求得()sin g x x =; (2)将()sin cos 20(sin 0)F x a x x x =+=≠转化为cos 2sin x a x =-,设()2cos xsin xm x -=,通过判断导数的增减性,确定()m x a =所对应交点个数,推出a 值,再通过()()()F x f x a g x =+⋅在()0,n π恰有2019个零点反推出n 值即可.【详解】(1)Q 函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,22Tπω∴==, 又曲线()y f x =的一个对称中心为,04π⎛⎫⎪⎝⎭,(0,)ϕπ∈,故sin 2044f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,得2ϕπ=,所以()cos 2f x x =,将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x=的图象向右平移12π个单位长度后得到函数1()cos()2g x x π=-的图象,()sin g x x ∴=. (2)由于cos 2()sin cos 20sin 0sin x F x a x x x a x =+=≠∴=-Q ,设()2cos xsin xm x -=,可得cos 21()2sin sin sin x m x x x x -==-,可得()m x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,,2ππ⎛⎫ ⎪⎝⎭与3,2ππ⎛⎫⎪⎝⎭上单调递减,3,22ππ⎛⎫⎪⎝⎭上单调递增,根据图像可知1a =时,()m x a =在(0,)(,2)πππ⋃有3解,1a >时()m x a =在(0,)(,2)πππ⋃有2解(舍),而20193673÷=,得67321346n =⨯=,从而存在1a =,1346n =时,()F x 有2019个零点.【举一反三】设函数21()()ln 2f x x a b x ab x =-++(其中e 为自然对数的底数,,a e b R ≠∈),曲线()y f x =在点(,())e f e 处的切线方程为212y e =-.(1)求b ;(2)若对任意1[,)x e∈+∞,()f x 有且只有两个零点,求a 的取值范围.【答案】(1)b e =;(2)实数a 的取值范围为2212(]2(1+)e e e --∞,. 【解析】(2)由(1)得21()()ln 2f x x a e x ae x =-++,()()()x a x e f x x --'=, ①当1a e≤时,由()>0f x '得x e >,由()0f x '<得1x e e <<,此时()f x 在1(,)e e 上单调递减,在()e +∞,上单调递增,∵2211()()ln 022f e e a e e ae e e =-++=-<,242221112()()2(2)(2)(2)()0222f e e a e e ae e e e a e e e e=-++=--≥-->(或当x →+∞时,()0f x >亦可)∴要使得()f x 在1[,)e+∞上有且只有两个零点,则只需2111()ln 2a e f ae e e e e +=-+222(12)2(1)02e e e ae --+=≥,即22122(1+)e a e e -≤,6分 ②当1a e e<<时,由()>0f x '得1x a e <<或x e >;由()0f x '<得a x e <<.此时()f x 在(,)a e 上单调递减,在1(,)a e 和()e +∞,上单调递增,此时222111()ln ln 0222f a a ae ae a a ae ae e a =--+<--+=-<,∴此时()f x 在[)e +∞,至多只有一个零点,不合题意,9分③当a e >时,由()0f x '>得1x e e<<或x a >,由()0f x '<得e x a <<,此时()f x 在1(,)e e 和()a +∞,上单调递增,在(,)e a 上单调递减,且21()02f e e =-<,∴()f x 在1[,)e+∞至多只有一个零点,不合题意.综上所述,实数a 的取值范围为2212(]2(1+)e e e --∞,.12分 类型三 由零点条件证明不等式问题典例5.已知f(x)=|x 2−1|+x 2+kx . (1)若k =2,求方程f(x)=0的解;(2)若关于x 的方程f(x)=0在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明1x 1+1x 2<4.【答案】(1)x =−1−√32或x =−12;(2)k 的取值范围为(−72,−1),证明见解析.【解析】(1)当k=2时,,①当,即x≥1或x≤-1时,方程化为,解得,因为,舍去,所以;②当,即-1<x <1时,方程化为2x+1=0,解得:;由①②得,当k=2时,方程f(x)=0的解为x =−1−√32或x =−12.(2)不妨设,因为,所以f(x)在(0,1]是单调函数,故f(x)=0在(0,1]上至多一个解, 若,则<0,故不符题意,因此;由,得,所以k≤-1;由,得,所以;故当时,方程f(x)=0在(0,2)上有两个解;因为,所以,,消去k ,得,即,因为x2<2,所以.【名师点睛】利用导数证明不等式常见类型及解题策略(1) 构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数. 【举一反三】已知函数f(x)=ax 4-12x 2,x ∈(0,+∞),g(x)=f(x)-f′(x).若a >1,记g(x)的两个零点为x 1,x 2,求证:4<x 1+x 2<a +4. 证明: g(x)=f(x)-f′(x)=ax 4-12x 2-(4ax 3-x)=ax 4-4ax 3-12x 2+x ,因为φ′(x)对称轴为x =43,所以φ′⎝⎛⎭⎫83=φ′(0)=-12<0, 所以x 0>83>73,所以φ(x 0)=-329ax 0-13⎝⎛⎭⎫x 0-73<0. 又φ(x)=ax 3-4ax 2-12x +1=12ax 2(x -8)+12x(ax 2-1)+1,设1a,8中的较大数为M ,则φ(M)>0, 故a >1时,g(x)在(0,+∞)上恰有两个零点x 1,x 2,不妨设x 1<x 2,因为φ(0)=1>0,φ⎝⎛⎭⎫12=18(6-7a)<0,所以0<x 1<12. 因为φ(4)=-1<0,φ⎝⎛⎭⎫92=18(81a -10)>0,所以4<x 2<92,所以4<x 1+x 2<12+92=5<a +4.【精选名校模拟】1.(2020·上海四中高三期中)设函数2()log (1)=+f x x ,(1)x >-. (1)求其反函数1()f x -; (2)求函数()1()47x fx ---的零点.【答案】(1)1()21x f x -=-(2)2log 3. 【解析】【分析】(1)先求原函数值域,再根据对数式与指数式关系求反函数;(2)设2x t =,将方程转化为一元二次方程,再求解,最后解指数方程得结果.【详解】(1)1x >-∴Q 2()log (1)f x y x R ==+∈.2log (1)1221y y y x x x =+∴+=∴=-Q ,因此1()21x f x -=-.(2)设2x t =,则2173t t t -=-∴=(负值舍去),223log 3x x ∴==,.2.(2020·上海中学高三期中)已知2()||f x x a x b =--,其中0,0a b >>.(1)若2,1a b ==,写出()f x 的单调区间:(2)若函数()f x 恰有三个不同的零点,且这些零点之和为-2,求a 、b 的值; (3)若函数()f x 在[2,2]-上有四个不同零点1234,,,x x x x ,求1234x x x x +++的最大值.【答案】(1)(,1]-∞-递减,[1,)-+∞递增;(2)4,1a b ==;(3)4【解析】【分析】(1)由2,1a b ==,得出函数的解析式2222,1()22,1x x x f x x x x ⎧-+≥⎪=⎨+-<⎪⎩,再做出图像可得函数()f x 的单调区间;(2)令2()||0f x x a x b =--=,即20x ax ab -+=或20x ax ab +-=,再由0,0a b >>,可得方程20x ax ab +-=中有两个不等的实根,要使函数()f x 恰有三个不同的零点,且这些零点之和为-2,,则需方程20x ax ab -+=有两个相等的实根,可建立关于的方程,解之可得,a b 的值;(3)由2()||0f x x a x b =--=,即20x ax ab -+=或20x ax ab +-=,设20x ax ab -+=的两根为12,x x ,并且可得121212,0,0,0x x a x x ab x x +=>⋅=>>>,20x ax ab +-=的两根为34,x x ,并且可得3434,0x x a x x ab +=-⋅=-<,所以34,x x 两根中一正一负,再由1234,,,x x x x 均在[2,2]-内,得20x ax ab +-=2≥-,从而可得1234x x x x +++的最大值.【详解】(1)当2,1a b ==时,22222,1()2|1|22,1x x x f x x x x x x ⎧-+≥⎪=--=⎨+-<⎪⎩,做出图像如下图1所示,所以()f x 的单调区间是:在(,1]-∞-上单调递减,在[1,)-+∞上单调递增;(2)令2()||0f x x a x b =--=,即2||x a x b =-,所以()2x a x b =-或()2x a x b =--,整理得20x ax ab -+=或20x ax ab +-=, 因为0,0a b >>,所以方程20x ax ab +-=中240a ab ∆=+>恒成立,也即是20x ax ab +-=一定有两个不等的实根,设这两个实根为56,,x x 并且56x x a +=-,要使函数()f x 恰有三个不同的零点,且这些零点之和为-2, 现需方程20x ax ab -+=有两个相等的实根,设此根为7x ,且72x a=, 所以7256402x a ab x x ∆=-=+=-⎧⎨+⎩,即()0224aa ab a -=-=-⎧⎪⎨+⎪⎩,解得41a b =⎧⎨=⎩,所以,a b 的值为41a b =⎧⎨=⎩. (3)若2()||0f x x a x b =--=,即20x ax ab -+=或20x ax ab +-=, 设20x ax ab -+=的两根为12,x x ,则121212,0,0,0x x a x x ab x x +=>⋅=>>>,20x ax ab +-=的两根为34,x x ,则3434,0x x a x x ab +=-⋅=-<,所以34,x x 两根中一正一负,3434x x x x ∴+==-==,1234,,,x x x x Q 均在[2,2]-内,20x ax ab ∴+-=的负根2a -在[2,2]-内,24a ≥-∴≤,12344x x x x a ∴+++=≤,所以1234x x x x +++的最大值为4.3.(2020·上海金山中学期末考试)已知函数2()21(0)g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1.设()()g x f x x= (1)求,a b 的值(2)若不等式22(log )2log 0f x k x -≥在[]2,4x ∈上有解,求实数k 的取值范围;(3)若2(21)3021xx f k k -+-=-g有三个不同的实数解,求实数k 的取值范围. 【答案】(1)1,0a b ==.(2)(],1-∞(3)(0,)+∞ 【解析】【分析】(1)由函数2()(1)1,0g x a x b a a =-++->,所以()g x 在区间[2,3]上是增函数,故(2)1(3)4g g =⎧⎨=⎩,由此解得a b 、的值;(2)由(1)可得1()2f x x x=+-,所以()22log 2log 0f x k x -≥在[2,4]x ∈上有解,等价于2221log 22log log x k x x +-≥在[2,4]x ∈上有解,即()2221221log log k xx ≤-+在[2,4]x ∈上有解,令21log t x=,则2221k t t ≤-+,即可求得k 的取值范围;(3)原方程可化为221(32)21(21)0x x k k --+⋅-++=,令21xt -=则(0,)t ∈+∞,2(32)(21)0t k t k -+++=有两个不同的实数解12,t t ,其中1201,1t t <<>,或1201,1t t <<=,即可求得实数k 的取值范围.【详解】(1)函数2()(1)1g x a x b a =-++-,Q 0a >,∴ ()g x 在区间[]2,3上是增函数,故:(2)1(3)4g g =⎧⎨=⎩,解得1,0a b ==.(2)由(1)可得1()2f x x x=+-,∴ ()22log 2log 0f x k x -≥在[2,4]x ∈上有解等价于2221log 22log log x k x x+-≥在[2,4]x ∈上有解 即()2221221log log k xx ≤-+在[2,4]x ∈上有解. 令21log t x =,则2221k t t ≤-+,[2,4]x ∈Q ,故1,12t ⎡⎤∈⎢⎥⎣⎦,记2()21t t t ϕ=-+,112t ⎛⎫≤≤ ⎪⎝⎭,max 1()4t ϕ∴=,∴ k 的取值范围为1,8⎛⎤-∞ ⎥⎝⎦.(3)原方程可化为221(32)21(21)0x x k k --+⋅-++=,令21xt -=则(0,)t ∈+∞,2(32)(21)0t k t k -+++=有两个不同的实数解12,t t ,其中1201,1t t <<>,或1201,1t t <<=,记2()(32)(21)h t t k t k =-+++,则210(1)0k h k +>⎧⎨=-<⎩——①,解得0k >,或210(1)032012k h k k ⎧⎪+>⎪=-=⎨⎪+⎪<<⎩——②,不等式组②无实数解,∴实数k 的取值范围为(0,)+∞.4.(2020·上海中学高三期中)已知a 是实数,函数f (x )=2ax 2+2x -3-a ,如果函数y=f (x )在区间[-1,1]上有零点,求a 的取值范围.【答案】][3,52∞∞⎛⎫--⋃ ⎪ ⎪⎝⎭,+ 【解析】试题分析:当a =0时,易得;当a ≠0时,①函数在区间[-1,1]上只有一个零点; ②函数在区间[-1,1]上有两个零点两种情况.试题解析:当a =0时,函数f (x )=2x -3的零点x =∉[-1,1]. 当a ≠0时,函数f (x )在[-1,1]上的零点可能有一个与两个这两种情况. ① 函数在区间[-1,1]上只有一个零点,则有或,解得1≤a ≤5或a =.② 函数在区间[-1,1]上有两个零点,则有或,解得a <或a ≥5.综上,得a 的取值范围是∪[5,+∞).5.(2020·上海南汇中学期末考试)已知函数()()10mf x x x x=+-≠ (1)当2m =时,求证()f x 在(),0-∞上是单调递减函数;(2)若对任意的x ∈R ,不等式()20xf >恒成立,求实数m 的取值范围;(3)讨论函数()f x 的零点个数.【解析】(1)当2m =时,()21f x x x =+-,因为0x <,所以()21f x x x=-+-,设120x x <<,所以121212211212222()()=)x x f x f x x x x x x x x x +-=-++--⋅(, 因为120x x <<,所以1221122)00x x x x x x +->>(,,所以12()()f x f x >,所以()f x 在(),0-∞上是单调递减函数;(2)因为对任意的x ∈R ,不等式()20x f >恒成立,所以2101022xxx xm m +->⇒+->2恒成立, 所以2(2)2x xm >-+恒成立,设2(0xt t =>),所以2m t t >-+在0t >上恒成立, 当t >0时,2t t -+的最大值为14,此时12t =,所以14m >. (3)令()0f x =得||m x x x =-48(3)0(1)(1)(5)(1)0a a f f a a --->⎧⎪⎨-=--≤⎪⎩501112a a -=⎧⎪⎨-≤-≤⎪⎩048(3)01112(1)0(1)0a a a a f f >⎧⎪⎪--->⎪⎪-<-<⎨⎪⎪≥⎪⎪-≤⎩048(3)01112(1)0(1)0a a a a f f <⎧⎪⎪--->⎪⎪-<-<⎨⎪⎪≤⎪⎪-≤⎩所以22(0)(0)x x x m x x x ⎧+<=⎨-+>⎩,令22(0)()(0)x x x g x x x x ⎧+<=⎨-+>⎩,作图得函数()g x 的图象为:当11,22m m <->时,函数有一个零点;当11,,022m m m =-==时,函数有两个零点. 6.(2020·上海洋泾中学月考)设D 是函数()y f x =定义域的一个子集,若存在0x D ∈,使得()00f x x =-成立,则称0x 是()f x 的一个“准不动点”,也称()f x 在区间D 上存在准不动点,已知()()12log 421x x f x a =+⋅-,[]0,1x ∈.(1)若1a =,求函数()f x 的准不动点;(2)若函数()f x 在区间[]0,1上存在准不动点,求实数a 的取值范围. 【答案】(1)00x =;(2)(]0,1. 【解析】【分析】(1)由题意,当1a =时,可得()12()log 421x xf x x =+-=-,[]0,1x ∈,可解得函数()f x 的准不动点;(2)依()f x 在区间[]0,1上存在准不动点,可得4212x x x a +⋅-=在[]0,1上有根.通过分离变量,可转化为1212xxa -=--,令[]21,2xt =∈,只需求出11y t t =--在[]1,2上的值域,即可得112a -≤≤,最后根据4210x x a +⋅->在[]0,1上恒成立,解得0a >,取交集得实数a 的最终范围.【详解】(1)由题意,可得()12()log 421x xf x x =+-=-,即4212x x x +-=,41x ∴=,0x ∴=.故当1a =,函数()f x 的准不动点为00x =.(2)由题意知,()12()log 421x x f x a x =+⋅-=-即4212x x x a +⋅-=在[]0,1上有根, 4212x x x a +⋅-=变形为1212xxa -=--,令[]21,2xt =∈,而11y t t=--在[]1,2上单调递增,所以112y -≤≤,即112a -≤-≤,所以112a -≤≤. 又4210x x a +⋅->在[]0,1上恒成立,所以122xx a >-.令[]21,2x t =∈,而1y t t =-在[]1,2上单调递减,所以max 0y =,即有0a >,综上,01a <≤,即实数a 的取值范围为(]0,1.7.(2020·上海七宝中学高三开学考试)已知函数()243f x x x a =-++,a R ∈;()1若函数()y f x =在[]1,1-上存在零点,求a 的取值范围;()2设函数()52g x bx b =+-,b R ∈,当3a =时,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使得()()12g x f x =,求b 的取值范围.【答案】(1)80a -≤≤(2)112⎡⎤-⎢⎥⎣⎦, 【解析】【分析】(1)()f x 在[1,1]-单调递减且存在零点,根据零点存在定理可得:(1)(1)0f f -≤,即可求得a 的取值范围;(2)对b 进行讨论,判断()g x 的单调性,分别求出()f x ,()g x 在[1,4]的值域,令()g x 的值域为()f x 的值域的子集,列出不等式组,即可得出b 的范围.【详解】(1)()243f x x x a =-++的函数图像开口向上,对称轴为2x =,∴()f x 在[1,1]-上是减函数, Q 函数()f x 在[1,1]-上存在零点,根据零点存在定理可得:(1)(1)0f f -≤ 即:(8)0a a +≤,解得:80a -≤≤.(2)3a =时,()246f x x x =-+,∴()f x 在[1,2]上单调递减,在[2,4]上单调递增,∴ ()f x 在[1,4]上的最小值为(2)2f =,最大值为(4)6f =,即()f x 在[1,4]上的值域为[2,6], 设()g x 在[1,4]上的值域为M ,对任意的1[1,4]x ∈,总存在[]21,4x ∈使得()()12g x f x =,∴[2,6]M ⊆. ①当0b =时,()5g x =,{5}M =符合题意;②当0b >时,()52g x bx b =+-在[1,4]上是增函数,∴[5,52]M b b =-+,∴525260b b b -≥⎧⎪+≤⎨⎪⎩>,解得:102b <≤.③当<0b 时,()52g x bx b =+-在[1,4]上是减函数,∴[52,5]M b b =+-,∴522560b b b +≥⎧⎪-≤⎨⎪⎩<,解得:10b -≤<,综上所述:b 取值范围是112⎡⎤-⎢⎥⎣⎦,.8.(2020·上海南模中学高三开学考试)已知a R ∈,函数()24log .2f x a x ⎛⎫=+⎪-⎝⎭(1)若关于x 的方程()()2log 2175f x a x a ⎡⎤=-+-⎣⎦有两个不同实数根,求a 的取值范围;(2)若关于x 的不等式()()2log 21f x x a -+>对任意[]36x ∈,恒成立,求实数a 的取值范围. 【答案】(1)33114,,,12222⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭U U ;(2)()2,5 【解析】【分析】(1)根据对数相等条件可将方程化为()()42122142a x a x --=-+--;令21a m -=,2x y -=,可将方程进一步整理为()()410my y +-=;当0m =时,可验证知不合题意;当0m ≠时,求得12,y y ,进而得到12,x x ;利用12x x ≠和对数真数大于零的要求可构造不等式求得结果; (2)根据对数函数单调性可将恒成立的不等式可化为4122a x a x -+>--,利用绝对值不等式的解法可得4212x a a x -<-+-且4212x a a x -<-+-对[]3,6x ∈恒成立;利用分离变量法将问题转化为a 与函数最值的大小关系,通过求解函数最值得到结果. 【详解】(1)由题意得:()224log log 21752a a x a x ⎛⎫⎡⎤+=-+- ⎪⎣⎦-⎝⎭, ()421752a a x a x ∴+=-+-- ()()42122152a x a a a x ∴----+=+-, 整理可得:()()42122142a x a x --=-+--, 设21a m -=,2x y -=,则原方程可化为:44my m y=+-,即:()()()244410my m y my y ---=+-=,当0m =,即12a =时,原方程可化为1457222x +=--,不存在两个不等实根,0m ∴≠, ()()410my y ∴+-=的两根为:14y m =-,21y =,即14221x a =--,23x =,若原方程有两个不等实根,则42321a -≠-,解得:32a ≠-且12a ≠, 又402a x +>-,()21750a x a -+->, 40324042221a a a ⎧+>⎪-⎪∴⎨+>⎪--⎪-⎩且()()32175042217501a a a a a ⎧-+->⎪⎨⎛⎫--+-> ⎪⎪-⎝⎭⎩,解得:41a -<<, a ∴的取值范围为33114,,,12222⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭U U . (2)由题意得:()224log log 212a x a x ⎛⎫+-+ ⎪-⎝⎭>对任意[]3,6x ∈恒成立, 4212a x a x ∴+>-+-,即4122a x a x -+>--,4412122a x a a x x ∴--<-<-+--, 由4122a x a x --<--得:4412122a x x x x <+-=-++--, 当[]3,6x ∈时,min42122152x x ⎛⎫-++=++= ⎪-⎝⎭(当4x =时取最小值),5a ∴<, 由4212x a a x -<-+-得:4312a x x >+--, 当[]3,6x ∈时,max417162x x ⎛⎫+-=-= ⎪-⎝⎭(当6x =时取最大值),36a ∴>,即2a >. 综上所述:a 的取值范围为()2,5.9.(2020·上海高桥中学高三开学考试)如果函数()y f x =的定义域为R ,且存在实常数a ,使得对于定义域内任意x ,都有()()f x a f x +=-成立,则称此函数()f x 具有“性质()P a ”.(1)判断函数|1|y x =+是否具有“()P a 性质”,若具有“()P a 性质”,求出所有a 的值的集合,若不具有“()P a 性质”,请说明理由;(2)已知函数()y f x =具有“(0)P 性质”,且当0x ≤时,2()()f x x m =+,求函数()y f x =在区间[0,1]上的值域;(3)已知函数()y g x =既具有“(0)P 性质”,又具有“(2)P 性质”,且当11x -≤≤时,()||g x x =,若函数()y g x =的图像与直线y px =有2017个公共点,求实数p 的值.【答案】(1){}2-;(2)0m ≤,函数()y f x =的值域为22,(1)m m ⎡⎤-⎣⎦;102m <<,函数()y f x =的值域为22[,(1)]m m -;112m ≤≤,函数()y f x =的值域为2[0,]m ;1m >,函数()y f x =的值域为22[(1),]m m -;(3)12017p =±. 【解析】【分析】(1)根据题意可知|1||1|x a x ++=-+,由待定系数法可求得2a =-; (2)由新定义可推出()f x 为偶函数,从而求出()f x 在[0,1]上的解析式,讨论m 与[0,1]的关系判断()f x 的单调性得出()f x 的最值; (3)根据新定义可知()g x 为周期为2的偶函数,作出()g x 的函数图象,根据函数图象得出p 的值. 【详解】(1)假设|1|y x =+具有“()P a 性质”,则|1||1|x a x ++=-+恒成立, 等式两边平方整理得,2222(1)(1)21x a x a x x ++++=-+,因为等式恒成立,所以22(1)2(1)1a a +=-⎧⎨+=⎩,解得2a =-,则所有a 的值的集合为{}2-. (2)因为函数()y f x =具有“(0)P 性质”,所以()()f x f x =-恒成立,()y f x ∴=是偶函数.设01x ≤≤,则0x -≤,22()()()()f x f x x m x m ∴=-=-+=-.①当0m ≤时,函数()y f x =在[0,1]上递增,值域为22,(1)m m ⎡⎤-⎣⎦.②当102m <<时,函数()y f x =在[0,]m 上递减,在[,1]m 上递增, min ()0y f m ==,2max (1)(1)y f m ==-,值域为20,(1)m ⎡⎤-⎣⎦.③当112m ≤≤时,min ()0y f m ==,2max (0)y f m ==,值域为20,m ⎡⎤⎣⎦. ④1m >时,函数()y f x =在[0,1]上递减,值域为22(1),m m ⎡⎤-⎣⎦.(3)()y g x =Q 既具有“(0)P 性质”,即()()g x g x =-,∴函数()y g x =为偶函数,又()y g x =既具有“(2)P 性质”,即(2)()()g x g x g x +=-=,∴函数()y g x =是以2为周期的函数. 作出函数()y g x =的图象如图所示:由图象可知,当0p =时,函数()y g x =与直线y px =交于点(2,0)()k k Z ∈,即有无数个交点,不合题意.当0p >时,在区间[0,2016]上,函数()y g x =有1008个周期,要使函数()y g x =的图象与直线y px =有2017个交点,则直线与函数y =g (x )的图像在每个周期内都应有2个交点,且第2017个交点恰好为(2017,1),所以12017p =,同理,当0p <时,12017p =-. 综上,12017p =±.10.(2020·上海建平中学月考)已知函数()2cos 12f x x π⎛⎫=+⎪⎝⎭,()11sin 22g x x =+. (1)设0x 是函数()y f x =的一个零点,求()0g x 的值; (2)求函数()()()h x f x g x =+在[]0,π上的单调递增区间.【答案】(1)54;(2)0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用倍角公式可得函数1cos(2)6()2x f x π++=,由于0x 是函数()y f x =的一个零点,可得0()0f x =,化为0cos(2)16x π+=-,即可得出02x .进而得出0()g x .(2)利用倍角公式、两角和差的正弦公式及正弦函数的单调性,求出()h x 的单调递增区间,再与区间[]0,π取交集.【详解】(1)函数21cos(2)6()cos ()122x f x x ππ++=+=, 0x Q 是函数()y f x =的一个零点,0011()cos(2)0226f x x π∴=++=,化为0cos(2)16x π+=-,∴0226x k πππ+=+,解得0522()6x k k Z ππ=+∈.∴00115115()1sin 21sin(2)1226224g x x k ππ=+=++=+⨯=.(2)函数21()()()cos ()1sin 2122h x f x g x x x π=+=+++1cos(2)161sin 222x x π++=++ 311(cos 2cos sin 2sin )sin 222662x x x ππ=+-+132sin 242x x =++13sin(2)232x π=++. 由222232k x k πππππ-≤+≤+,解得5()1212k x k k Z ππππ-≤≤+∈. ∴函数()h x 的单调递增区间为5[,]()1212k k k Z ππππ-+∈. Q 5[,]()1212k k k Z ππππ-+∈与区间[]0,π的交集为:0,12π⎡⎤⋃⎢⎥⎣⎦7,12ππ⎡⎫⎪⎢⎣⎭, ∴函数的单调递增区间0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎫⎪⎢⎣⎭.11.(2020·上海吴淞中学期末考试)定义函数()10sgn 0010x x x x >⎧⎪==⎨⎪-<⎩;(1)求方程()231sgn x x x -+=的根;(2)设函数()()()2sgn 22f x x x x =-⋅-⎡⎤⎣⎦,若关于x 的方程()f x x a =+有三个互异的实根,求实数a 的取值范围.【答案】(1)3x =;(2)19(2,0),44⎛⎫-⋃ ⎪⎝⎭. 【解析】【分析】(1)分类讨论计算得到答案;(2)计算函数表达式为()2222,22,022,0x x x f x x x x x x x ⎧-≥⎪=-+<<⎨⎪--≤⎩,转化为2223,2,023,0x x x a x x x x x x ⎧-≥⎪=-+<<⎨⎪--≤⎩,画出图像得到答案.【详解】(1)()10sgn 0010x x x x >⎧⎪==⎨⎪-<⎩,()231sgn x x x -+=,当0x >时:()231sgn 13x x x x -+==∴=或0x =(舍去);当0x =时:()231sgn 0x x x -+==,不成立;当0x <时:()231sgn 11x x x x -+==-∴=或2x =,都舍去.综上所述:3x =.(2)()()()22222,2sgn 222,022,0x x x f x x x x x x x x x x ⎧-≥⎪⎡⎤=-⋅-=-+<<⎨⎣⎦⎪--≤⎩, ()f x x a =+,则原方程转化为:2223,2,023,0x x x a x x x x x x ⎧-≥⎪=-+<<⎨⎪--≤⎩.画出函数图像,数形结合可知: ①2a <-时,原方程有1个实根; ②当2a =-时,原方程有2个实根; ③当20a -<<时,原方程有3个实根; ④当0a =时,原方程有4个实根; ⑤当104a <<时,原方程有5个实根; ⑥当14a =时,原方程有4个实根; ⑦当1944a <<时,原方程有3个实根;⑧当94a =时,原方程有2个实根;⑨当94a >时,原方程有1个实根.综上所述:当(2,0),44a ∈-⋃⎪⎝⎭时,方程()f x x a =+有3个互异的实根. 12.(2020·上海交大附中期中考试)已知函数||()x a f x x -=(0)a >,且满足1()12f =. (1)判断函数()f x 在(1,)+∞上的单调性,并用定义证明; (2)设函数()()f xg x x =,求()g x 在区间1[,4]2上的最大值; (3)若存在实数m ,使得关于x 的方程222()||20x a x x a mx ---+=恰有4个不同的正根,求实数m 的取值范围.【答案】(1)见解析(2) 1=2x 时,max ()=2g x .(3) 1(0,)16【解析】试题分析:(1)根据112f ⎛⎫=⎪⎝⎭确定a .再任取两数,作差,通分并根据分子分母符号确定差的符号,最后根据定义确定函数单调性(2)先根据绝对值定义将函数化为分段函数,都可化为二次函数,再根据对称轴与定义区间位置关系确定最值,最后取两个最大值中较大值(3)先对方程变形得()()2220fx f x m -+=,设()t f x =,转化为方程方程2220t t m -+=在()0,1有两个不等的根12,t t ,根据二次函数图像,得实根分布条件,解得实数m 的取值范围.试题解析:(1) 由112=122af -⎛⎫= ⎪⎝⎭,得1a =或0.因为0a >,所以1a =,所以()|1|x f x x-=.当1x >时,()11=1x f x x x-=-,任取()12,1,x x ∈+∞,且12x x <, 则()()()()1221121212121111=x x x x x x f x f x x x x x ------=- ()()1221221211=x x x x x x --- 1212=x x x x -, 因为121x x <<,则1212<0,0x x x x ->,()()120f x f x -<, 所以()f x 在()1,+∞上为增函数;(2)()()222,141==11,12x f x x x g x x x x x x ≤≤⎪-⎪=⎨-⎪≤<⎪⎩,当14x ≤≤时,()222111111=24x g x x x x x -⎛⎫==---+ ⎪⎝⎭, 因为1114x ≤≤,所以当11=2x 时,()max 1=4g x ; 当112x ≤<时,()222111111=24x g x x x x x -⎛⎫==--- ⎪⎝⎭, 因为112x ≤<时,所以112x <≤,所以当1=2x时,()max =2g x ; 综上,当1=2x 即1=2x 时,()max =2g x .(3)由(1)可知,()f x 在()1,+∞上为增函数,当()1,x ∈+∞时,()()1=10,1f x x-∈. 同理可得()f x 在()0,1上为减函数,当()0,1x ∈时,()()1=10,f x x-∈+∞. 方程()2221120x x x mx ---+=可化为221|1|220x x m x x---+=,即()()2220f x f x m -+=. 设()t f x =,方程可化为2220t t m -+=.要使原方程有4个不同的正根,则方程2220t t m -+=在()0,1有两个不等的根12,t t ,则有211602021120m m m ->⎧⎪>⎨⎪⨯-+>⎩,解得1016m <<,所以实数m 的取值范围为10,16⎛⎫⎪⎝⎭.13.(2020·上海青浦中学月考)已知函数()||f x x x a bx =-+,,a b ∈R . (1)若0a =,判断()f x 的奇偶性,并说明理由; (2)若0b =,3a ≤,求()f x 在[1,3]上的最小值;(3)若0b >,0a ≥,22()3a b f x +=有三个不同实根,求222ab a b +的取值范围. 【答案】(1)奇函数;(2)0;(3)12(,)33. 【解析】【分析】(1)由()()f x f x -=-判断即可得解;(2)由分段函数求值域问题分1a <,13a ≤≤,34a <≤,4a >,讨论即可;(3)由方程与函数的关系可得22()3a b f x +=有三个不同实根,等价于函数()y f x =与直线223a b y +=有三个交点,通过求函数()y f x =的单调性及值域即可得解. 【详解】(1)当0a =时,()||f x x x bx =+,则()()||()()()f x x x b x x x bx f x -=-⋅-+-=-+=-,故()f x 为奇函数.(2)当0b =时,22,(),x ax x af x x x a x ax x a⎧-≥=-=⎨-+<⎩,又[1,3]x ∈,①当1a <时,可得函数2()f x x ax =-在[1,3]为增函数,可得min ()(1)1f x f a ==-;②当3a >时,可得函数2()f x x ax =-+在[1,]2a为增函数,在[,3]2a 为减函数,由(1)(3)1(39)82f f a a a -=---=-,可得当4a >时,(1)(3)f f <,即min ()(1)1f x f a ==-; 当34a <≤时,(1)(3)f f ≥,即min ()(3)39f x f a ==-; ③当13a ≤≤时,由()0f x ≥,可得min ()(0)0f x f ==; 综上可得:当1a <时,函数()f x 在[1,3]上的最小值为1a -; 当13a ≤≤时,函数()f x 在[1,3]上的最小值为0; 当34a <≤时,函数()f x 在[1,3]上的最小值为39a -; 当4a >时,函数()f x 在[1,3]上的最小值为即1a -;(3)因为0b >,且22()3a b f x +=有三个不同实根,则函数()f x 不单调,且22(),()(),x b a x x af x x x a bx x a b x x a⎧+-≥=-+=⎨-++<⎩,因为0a ≥,又2a b a -≤,2a ba +<,所以当x a ≥时,函数为增函数,则x a <时,函数不单调,要使函数22()3a b f x +=有三个不同实根,则22()()32a b a b f a f ++<<,即222()34a b a b ab ++<<,即2236ab a b ab <+<,故2212233ab a b <<+,故222aba b +的取值范围为:12(,)33. 14.(2020·上海闵行七校期中考试)已知22()1x m f x x -=+为定义在实数集R 上的函数,把方程1()f x x =称为函数()f x 的特征方程,特征方程的两个实根α、β(αβ<),称为()f x 的特征根. (1)讨论函数()f x 的奇偶性,并说明理由; (2)已知m 为给定实数,求()()f f βα-的表达式;(3)把函数()y f x =,[,]x αβ∈的最大值记作max ()f x ,最小值记作min ()f x ,研究函数()y f x =,[,]x αβ∈的单调性,令()max ()min ()g m f x f x =-,若()g m ≤λ的取值范围.【答案】(1)非奇非偶函数;理由见解析;(2)()()f f βα-=;(3)2λ≥. 【解析】【分析】(1)当0m =时,判断为奇函数;当0m ≠时,取(1)(1)f f ≠-和(1)(1)f f ≠--,非奇非偶函数,得到答案;(2)根据韦达定理得到,1m αβαβ+==-,代入表达式化简得到答案;(3)先证明()f x 在(,)αβ内单调递增,()()()g m f f βα=-=【详解】(1)当0m =时,2()()()1x f x f x x --==--+,22()1xf x x =+是奇函数, 当0m ≠时,22()1x m f x x -=+,22(1),(1)22m m f f ---=-=, (1)(1)f f ≠-且(1)(1)f f ≠--,()f x ∴是非奇非偶函数,综上所述:0m =时,()f x 为奇函数;0m ≠时,()f x 是非奇非偶函数.(2)221(),1040f x x mx m x=∴--=∴∆=+>恒成立,,1||m αβαββα∴+==-∴-= ()()222222()[()22]()()1111m m m f f βαβααβαββαβαβα---+-+-=-=++++,)224()()4m f f m βα+∴-==+ .(3)先证明(),[,]f x x αβ∈上是递增函数,设12x x αβ≤<≤,()()()()()()21121221212222212122221111x x m x x x x x m x m f x f x x x x x -+-+⎡⎤--⎣⎦-=-=++++ , 由(2)可知:α、β是方程210x mx --=的两个实根,又2212112210,10x x x mx x mx αβ≤<∴--≤--≤≤Q ,()22121220x x m x x ∴+-+-≤,()22221212121212222x x x x x x x x m x x <+∴<+++≤,()1212220x x m x x ∴-+-<,()()21212100x x x x f x f x ><∴-∴->Q ,()f x 在(,)αβ内单调递增,()()()g m f f βα=-=≤恒成立,λ∴≥=2λ∴≥.15.(2020·上海控江中学月考)已知a 是实常数,0a >,21()1f x ax x =-+. (1)当2a =时,判断函数()y f x =在区间[1,)+∞上的单调性,并说明理由;(2)写出一个a 的值,使得()0f x =在区间(0,)+∞上有至少两个不同的解,并严格证明你的结论. 【答案】(1)()y f x =在区间[1,)+∞上的单调递增(2)当14a =时,()0f x =在区间(0,)+∞上有至少两个不同的解,证明见详解. 【解析】【分析】(1)利用函数增减性的判断方法证明即可;(2)当14a =时满足,()0f x =在区间(0,)+∞上有至少两个不同的解,利用零点存在定理分别取123124x ,x ,x ===进行验证即可 【详解】(1)当2a =时,21()21f x x x =-+, 设121x x <<,则()()()()2221212121222221121122x x f x f x x x x x x x x x --=-+-=--()()()2221121222122x x x x x x x x --+=, 其中()()()()()2222222212121211221122212=11x x x x x x x x x x x x x x x x -+-+-=-+-,122110x x ,x x <<∴->Q ,()()22112221110x x x x x x ∴-+->,()()21f x f x ∴>()y f x ∴=在区间[1,)+∞上的单调递增;(2)当14a =时,()0f x =在区间(0,)+∞上有至少两个不同的解,证明如下: 211()14f x x x=-+Q ,()f x 在(0,)+∞函数图像连续,利用零点存在定理,分别令123124x ,x ,x ===,。

2020高考数学热点难点微专题含参函数的零点问题(3页)

2020高考数学热点难点微专题含参函数的零点问题(3页)

2020高考数学热点难点微专题含参函数的零点问题含参函数的零点问题常以超越方程、分段函数等为载体,达到考察函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等目的.要注意函数的零点、方程的根、不等式的解集三者之间的关系,进行彼此之间的转化是解决该类题的关键,等价转化是这类问题的难点.解决该类问题的途径往往是根据函数的性质作出示意图,利用数形结合研究分界位置,结合函数、方程、不等式刻画边界位置,其间要注意导数的应用.例1 已知函数f (x )=x 2+ax (a ∈R ),g (x )=⎩⎪⎨⎪⎧f (x ), x ≥0,f ′(x ), x <0.若方程g (f (x ))=0有4个不等的实根,则a 的取值范围是________.点评:例2 (1) 若关于x 的方程|x 4-x 3|=ax 在R 上存在4个不同的实根,则实数a 的取值范围为________.(2) 已知函数f (x )=x 2+|x -a |,g (x )=(2a -1)x +a ln x ,若函数y =f (x )与函数y =g (x )的图象恰好有2个不同的交点,则实数a 的取值范围为________.点评:【思维变式题组训练】1. 已知函数f (x )=⎩⎪⎨⎪⎧ 2x -1, x ≥2,2, 1≤x <2.若方程f (x )=ax +1恰有一个解时,则实数a 的取值范围为________.2. 设函数f (x )=⎩⎨⎧ x -1e x , x ≥a ,-x -1, x <a ,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为________.3. 已知函数f (x )=⎝ ⎛ x -1, 1≤x <2,2f ⎝ ⎛⎭⎪⎫12x , x ≥2,如果函数g (x )=f (x )-k (x -3)恰有2个不同的零点,那么实数k 的取值范围是________.4. 已知k 为常数,函数f (x )=⎩⎪⎨⎪⎧ x +2x +1, x ≤0,|ln x |, x >0,若关于x 的方程f (x )=kx+2有且只有4个不同解,则实数k 的取值构成的取值集合为________.。

2020年高考数学二轮复习高频考点一遍清函数的零点个数问题(7页)

2020年高考数学二轮复习高频考点一遍清函数的零点个数问题(7页)

2020年高考数学二轮复习高频考点一遍清函数的零点个数问题一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)

2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)

专题3 函数及其应用1.关于函数图象的考查: (1)函数图象的辨识与变换;(2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力; 2.关于函数性质的考查:以考查能力为主,往往以常见函数(二次函数、指数函数、对数函数)为基本考察对象,以绝对值或分段函数的呈现方式,与不等式相结合,考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查;3.常见题型,除将函数与导数相结合考查外,对函数独立考查的题目,不少于两道,近几年趋向于稳定在选择题、填空题,易、中、难的题目均有可能出现.,预测2020年将保持对数形结合思想的考查,主要体现在对函数图象、函数性质及其应用的考查,客观题应特别关注分段函数相关问题,以及与数列、平面解析几何、平面向量、立体几何的结合问题.主观题依然注意与导数的结合.一、单选题1.(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,2【答案】C 【解析】311(1)(1)()302f --=--=-<,301(0)0(102f =-=-<,@13211112()()()02228f =-=-<,31111(1)1()10222f =-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C2.(2020届山东省泰安市高三上期末)函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】:()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A3.(2020·河南高三月考(理))已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( )A .2()(2)3-∞+∞,,B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 【答案】D 【解析】》因为(2)f x +是偶函数,所以()f x 关于直线2x =对称; 因此,由(0)0f =得(4)0f =;又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增;所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->, 解得23x <-; 当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<, 解得23x >; 因此,(23)0f x ->的解集是22()()33-∞-+∞,,. 》4.(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞ B .(],4-∞C .()2,4-D .(]2,4-【答案】A 【解析】令()2g x x m =-+,画出()f x 与()g x 的图象,平移直线,当直线经过()1,2时只有一个交点,此时4m =,向右平移,不再符合条件,故4m < 故选:A$5.(2020届山东省烟台市高三上期末)设0.5log 3a =,30.5b =,0.513c -⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】由题,因为0.5log y x =单调递减,则0.50.5log 3log 10a =<=;因为0.5xy =单调递减,则3000.50.51b <=<=;因为3xy =单调递增,则0.50.5013313c -⎛⎫==>= ⎪⎝⎭,所以01a b c <<<<,—故选:A6.(2020届山东省潍坊市高三上期中)函数ln ()xf x x x=-的大致图象为( )A .B .C .D .【答案】A 【解析】函数的定义域为(,0)(0,)-∞+∞,||||()()()ln x ln x f x x x f x x x--=--=--=--,则函数()f x 是奇函数,图象关于原点对称,排除B ,D ,"当0x >且0x →,()f x →+∞,排除C . 故选:A.7.(2020届山东省潍坊市高三上期中)已知3log 2a =,143b =,2ln 3c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b a c >> C .c b a >>D .c a b >>【答案】B 【解析】因为3log 2(0,1)a =∈,1431b =>,203c ln =<,则a ,b ,c 的大小关系:b a c >>.|故选:B.8.(2020届山东省泰安市高三上期末)若()33log 21log a b ab +=+2+a b 的最小值为( )A .6B .83C .3D .163【答案】C 【解析】∵()3log 21a b +=+∴()33log 21log a b ab +=+()3log 3ab =, ∴23a b ab +=,且0a >,0b >,《∴123a b+=, ∴()112223a b a b a b ⎛⎫+=++ ⎪⎝⎭122143b a a b ⎛⎫=+++ ⎪⎝⎭5233b a a b ⎛⎫=++ ⎪⎝⎭5233≥+⋅3=, 当且仅当b aa b =且123a b+=即1a b ==时,等号成立; 故选:C .9.(2020届山东省日照市高三上期末联考)三个数0.87,70.8,0.8log 7的大小顺序是( )A .70.80.8log 70.87<< B .0.870.8log 770.8<<C .70.80.80.87log 7<<D .0.870.870.8log 7<<,【答案】A 【解析】0.871>,700.81<<,0.8log 70<,故70.80.8log 70.87<<.故选A.10.(2020届山东省济宁市高三上期末)若0.1212,ln 2,log 5a b c ===,则( ) A .b c a >> B .b a c >> C .c a b >> D .a b c >>【答案】D 【解析】,0.10221a =>=;0ln1ln 2ln 1b e =<=<=;221log log 105c =<=,即a b c >> 故选:D11.(2020·山东省淄博实验中学高三上期末)“0x <”是“ln(1)0x +<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】由题意得,ln(1)001110x x x +<⇔<+<⇔-<<,故是必要不充分条件,故选B .)12.(2020届山东省滨州市三校高三上学期联考)若a ,b ,c ,满足2log 3a =,25b =,3log 2c =,则( )A .b c a <<B .c a b <<C .a b c <<D .c b a <<【答案】B 【解析】2221log log 3log 242=<<=,故12a <<;又22542b =>=,故2b >; 33log 2log 31c =<=,c a b ∴<<,)故选:B.13.(2020届山东省九校高三上学期联考)若函数()y f x =的大致图像如图所示,则()f x 的解析式可以为( )A .()22x xxf x -=+B .()22x xxf x -=-C .()22x xf x x-+=D .()22x xf x x--=【答案】C 【解析】对四个选项解析式分析发现B ,D 两个均为偶函数,图象关于y 轴对称,与题不符,故排除;(极限思想分析,0,222,022xxx x xx +--→+→→+,A 错误;220,222,x xx xx x-+-+→+→→+∞,C 符合题意.故选:C14.(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x -- D .2x【答案】C 【解析】`0x <时,()2xf x =.当0x >时,0x -<,()2xf x --=,由于函数()y f x =是奇函数,()()2xf x f x -∴=--=-,因此,当0x >时,()2xf x -=-,故选C.15.(2020届山东省德州市高三上期末)已知1232a b -=⋅,()212log 23c b x x -=++,则实数a ,b ,c 的大小关系是( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>【答案】A 【解析】…1232a b -=⋅,1232a b -+∴=>,11a b ∴-+>,则a b >.()2223122x x x ++=++≥,()21122log 23log 21c b x x ∴-=++≤=-,b c ∴>.因此,a b c >>. 故选:A.16.(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15【答案】A 【解析】?因为奇函数的定义域关于原点中心对称 则5120m m -+-=,解得4m =-因为奇函数()f x 当0x >时,()21xf x =-则()()()4442115f f -=-=--=-故选:A17.(2020届山东省临沂市高三上期末)函数()22xf x =-(0x <)的值域是( )A .1,2B .(),2-∞C .()0,2D .1,【答案】A$【解析】0x <,021x ∴<<, 120x ∴-<-<1222x ∴<-<. 即()()2221,xf x =-∈故选:A18.(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( ))A .22a b >B .1b a<C .()10g a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】a 、b 是任意实数,且a b >,如果0a =,2b =-,显然A 不正确;如果0a =,2b =-,显然B 无意义,不正确; 如果0a =,12b =-,显然C ,102lg <,不正确;因为指数函数12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,且a b >,1122ab⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭满足条件,正确.故选:D .~19.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由121x⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“0x <”,反之,不能推出; 因此“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的必要不充分条件. 故选:B.~20.(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值是( ) A .1B .92C .9D .18【答案】A 【解析】奇函数()f x 在R 上单调,()()490f a f b +-=,则()()()499f a f b f b =--=- 故49a b =-即49a b +=()()11111141452451999b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当4b a a b =即3,32a b ==时等号成立 ~故选:A21.(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞ B .[1,)+∞C .(,1)-∞D .(,1]-∞【答案】B 【解析】1x ≥时,()ln 1f x x ==,x e =,所以函数()1y f x =-在1x ≥时有一个零点,从而在1x <时无零点,即()1f x =无解.而当1x <时,21x ->,()(2)f x f x k =-+ln(2)x k =-+,它是减函数,值域为(,)k +∞, 要使()1f x =无解.则1k.|故选:B.22.(2020届山东省潍坊市高三上期末)函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是( )A .B .C .D .【答案】A 【解析】由图象可知()y f x =的图象关于y 轴对称,是偶函数,()y g x =的图象关于原点对称,是奇函数,并且定义域{}0x x ≠,$()()y f x g x ∴=⋅的定义域是{}0x x ≠,并且是奇函数,排除B ,又0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,()0g x <,()()0f x g x ∴⋅<,排除C,D.满足条件的只有A. 故选:A23.(2020届山东省滨州市高三上期末)已知31log 3aa ⎛⎫= ⎪⎝⎭,133log bb =,131log 3cc ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c << C .b c a << D .b a c <<【答案】C 【解析】/在同一直角坐标系内,作出函数13x y⎛⎫= ⎪⎝⎭,3logy x=,3xy=,13logy x=的图像如下:因为31log3aa⎛⎫=⎪⎝⎭,133logb b=,131log3cc⎛⎫=⎪⎝⎭,所以a是13xy⎛⎫= ⎪⎝⎭与3logy x=交点的横坐标;b是3xy=与13logy x=交点的横坐标;c是13xy⎛⎫= ⎪⎝⎭与13logy x=交点的横坐标;由图像可得:b c a<<.故选:C.24.(2020届山东师范大学附中高三月考)函数()312xf x x⎛⎫=- ⎪⎝⎭的零点所在区间为()A.()1,0-B.10,2⎛⎫⎪⎝⎭C.1,12⎛⎫⎪⎝⎭D.()1,2(【答案】C【解析】311(1)(1)()302f--=--=-<,301(0)0()102f=-=-<,13211112()()()022282f=-=-<,31111(1)1()10222f=-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C25.(2020届山东省德州市高三上期末)已知()f x 为定义在R 上的奇函数,当0x ≥时,有()()1f x f x +=-,且当[)0,1x ∈时,()()2log 1f x x =+,下列命题正确的是( )A .()()201920200f f +-=B .函数()f x 在定义域上是周期为2的函数{C .直线y x =与函数()f x 的图象有2个交点D .函数()f x 的值域为[]1,1-【答案】A 【解析】函数()y f x =是R 上的奇函数,()00f ∴=,由题意可得()()100f f =-=, 当0x ≥时,()()()21f x f x f x +=-+=,()()()()()()2019202020192020100f f f f f f ∴+-=-=-=,A 选项正确;当0x ≥时,()()1f x f x +=-,则2616log 555f f ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,2449log 555f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,4462555f f f ⎛⎫⎛⎫⎛⎫∴-≠-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则函数()y f x =不是R 上周期为2的函数,B 选项错误; 若x 为奇数时,()()10f x f ==,%若x 为偶数,则()()00f x f ==,即当x ∈Z 时,()0f x =,当0x ≥时,()()2f x f x +=,若n N ∈,且当()2,21x n n ∈+时,()20,1x n -∈,()()()20,1f x f x n =-∈,当()1,2x ∈时,则()10,1x -∈,()()()11,0f x f x ∴=--∈-,当()21,22x n n ∈++时,()21,2x n -∈,则()()()21,0f x f x n =-∈-, 所以,函数()y f x =在[)0,+∞上的值域为()1,1-,由奇函数的性质可知,函数()y f x =在(),0-∞上的值域为()1,1-, 由此可知,函数()y f x =在R 上的值域为()1,1-,D 选项错误;|如下图所示:由图象可知,当11x -<<时,函数y x =与函数()y f x =的图象只有一个交点, 当1x ≤-或1x ≥时,()()1,1f x ∈-,此时,函数y x =与函数()y f x =没有交点, 则函数y x =与函数()y f x =有且只有一个交点,C 选项错误. 故选:A.26.(2020届山东实验中学高三上期中)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解12341234,,,,x x x x x x x x <<<且,则()3122341x x x x x ⋅++⋅的取值范围是( ) A .(]1,1-B .[]1,1-C .[)1,1- D .()1,1-'【答案】A 【解析】先作()f x 图象,由图象可得12343121,1.2x x x x x ⎡⎫+=-=∈⎪⎢⎣⎭,,因此()31232343112x x x x x x x ⋅++=-+⋅为1,12⎡⎫⎪⎢⎣⎭单调递减函数,从而()(] 31223411,1x x xx x⋅++∈-⋅,选A.二、多选题27.(2020届山东省临沂市高三上期末)若104a=,1025b=,则()…A.2a b+=B.1b a-=C.281g2ab>D.lg6b a->【答案】ACD【解析】由104a=,1025b=,得lg4a=,lg25b=,则lg4lg25lg1002a b∴+=+==,25lg25lg4lg4b a∴-=-=,25lg101lg lg64=>>lg6b a∴->)24lg2lg54lg2lg48lg2ab∴=>=,故正确的有:ACD故选:ACD.28.(2020届山东省日照市高三上期末联考)已知定义在R上的函数()y f x=满足条件()()2f x f x+=-,且函数()1y f x=-为奇函数,则()A.函数()y f x=是周期函数B.函数()y f x=的图象关于点()1,0-对称C .函数()y f x =为R 上的偶函数D .函数()y f x =为R 上的单调函数【答案】ABC 【解析】、因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即4T=,故A 正确;因为函数()1y f x =-为奇函数,所以函数()1y f x =-图像关于原点成中心对称,所以B 正确; 又函数()1y f x =-为奇函数,所以()()11f x f x --=--,根据()()2f x f x +=-,令1x -代x 有()()11f x f x +=--,所以()()11f x f x +=--,令1x -代x 有()()f x f x -=,即函数()f x 为R 上的偶函数,C 正确;因为函数()1y f x =-为奇函数,所以()10f -=,又函数()f x 为R 上的偶函数,()10f =,所以函数不单调,D 不正确. 故选:ABC.29.(2020届山东省潍坊市高三上期中)已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .(3)(2019)3f f -+=-B .()f x 在区间[]4,5上是增函数》C .若方程() 1f x k x =+恰有3个实根,则11,24k ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则()61iii x f x =∑的取值范围是()0,6【答案】BCD 【解析】函数()f x 的图象如图所示:对A ,(3)963f -=-+=-,(2019)(1)(1)1f f f ==-=,所以(3)(2019)2f f -+=-,故A 错误; 对B ,由图象可知()f x 在区间[]4,5上是增函数,故B 正确;对C ,由图象可知11,24k ⎛⎫∈-- ⎪⎝⎭,直线() 1f x k x =+与函数图象恰有3个交点,故C 正确; ]对D ,由图象可得,当函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则01b <<,所以当0b →时,()610i i i x f x =→∑;当1b →时,()616i i i x f x =→∑,所以()61i i i x f x =∑的取值范围是()0,6,故D 正确. 故选:BCD.30.(2020届山东省枣庄、滕州市高三上期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h?【答案】AC 【解析】A.∵,u x =v x =,22u v u vx +-==, 由题意4uv =,4v u=在(0,)+∞上是减函数,A 正确.B.125x t -=+126510u v u v+-=+-,整理得15436t u v =++,B 错误;C.由A 、B 得1615363644t u u =++≥=,16u u =即4u =时取等号,4x =,解得31.52x ==,C 正确;D.4x =时,85t =+,7305t -===>,3t >,D 错. :故选:AC.31.(2020届山东省枣庄市高三上学期统考)下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2xy = B .23y x-=C .1y x x=- D .()2ln 1y x =+【答案】AD 【解析】对于A 选项,2xy =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x -=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意. 对于C 选项,1y x x=-为奇函数,不符合题意. {对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意. 故选:AD.32.(2020届山东省潍坊市高三上期末)把方程1169x x y y+=-表示的曲线作为函数()y f x =的图象,则下列结论正确的有( )A .()y f x =的图象不经过第一象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为3D .函数()()43g x f x x =+不存在零点 【答案】ACD;【解析】当0,0x y >>,方程是221169x y +=-不表示任何曲线,故A 正确;当0,0x y ≥≤ ,方程是221169x y -=-,即221916y x -= ,当0,0x y ≤≥ ,方程是221169x y -+=- ,即221169x y -=,当0,0x y ≤≤ ,方程是221169x y --=-,即221169x y+= ,如图画出图象由图判断函数在R 上单调递减,故B 不正确;、由图判断()y f x =图象上的点到原点距离的最小值点应在0,0x y ≤≤的图象上,即满足221169x y += ,设图象上的点(),P x y2222279191616x PO x y x x ⎛⎫=+=+-=+ ⎪⎝⎭当0x =时取得最小值3,故C 正确; 当()430f x x += ,即()34f x x =-, 函数()()43g x f x x =+的零点,就是函数()y f x = 和34y x =-的交点, 而34y x =-是曲线221916y x -=,0,0x y ≥≤和221169x y -=0,0x y ≤≥的渐近线,所以没有交点,由图象可知34y x =-和221169x y +=,0,0x y ≤≤没有交点,所以函数()()43g x f x x =+不存在零点,故D 正确.<故选:ACD33.(2020届山东省滨州市高三上期末)在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点(),B x y 的轨迹方程是()y f x =,则对函数()y f x =的判断正确的是( )A .函数()y f x =是奇函数B .对任意的x ∈R ,都有()()44f x f x +=-C .函数()y f x =的值域为0,22⎡⎣D .函数()y f x =在区间[]6,8上单调递增【答案】BCD 【解析】由题意,当42x -≤<-时,顶点(),B x y 的轨迹是以点(2,0)A -为圆心,以2为半径的14圆; ,当22x -≤<时,顶点(),B x y 的轨迹是以点(0,0)D 为圆心,以214圆;当24x ≤<时,顶点(),B x y 的轨迹是以点(2,0)C 为圆心,以2为半径的14圆; 当46x ≤<,顶点(),B x y 的轨迹是以点(4,0)A 为圆心,以2为半径的14圆,与42x -≤<-的形状相同,因此函数()y f x =在[]4,4-恰好为一个周期的图像; 所以函数()y f x =的周期是8; 其图像如下:A 选项,由图像及题意可得,该函数为偶函数,故A 错;B 选项,因为函数的周期为8,所以(8)()f x f x +=,因此(4)(4)f x f x +=-;故B 正确;·C 选项,由图像可得,该函数的值域为0,22⎡⎣;故C 正确;D 选项,因为该函数是以8为周期的函数,因此函数()y f x =在区间[]6,8的图像与在区间[]2,0-图像形状相同,因此,单调递增;故D 正确; 故选:BCD.34.(2020届山东师范大学附中高三月考)下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( ) A .3y x = B .2yxC .xy e =D .2lg y x =【答案】CD 【解析】本题主要考查函数的单调性和函数的奇偶性.|A 项,对于函数3y x =,因为()33()()f x x x f x -=-=-≠,所以函数3y x =不是偶函数.故A 项不符合题意.B 项,对于函数2yx ,因为当1x =时,1y =,当2x =,14y =,所以函数2y x 在区间(0,)+∞上不是单调递增的.故B 项不符合题意.C 项,对于函数x y e =,因为定义域为R ,()()x x g x g x e e --===,所以函数xy e =为偶函数,因为函数xy e =,当0x >时,xx y e e ==,而1e >,函数x y e =在R 上单调递增,所以函数xy e =在区间(0,)+∞上为增函数.故C 项符合题意.D 项,对于函数2lg y x =,因为函数()22lg )(l ()g h x x x h x -=-==,所以函数2lg y x =是偶函数.而2yx 在(0,)+∞上单调递增,lg y x =在(0,)+∞上单调递增,所以函数2lg y x =在(0,)+∞上单调递增.故D 项符合题意. 故选:CD.35.(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( )A .12B .2C .2e D【答案】BCD—【解析】令函数21()()2T x f x x =-,因为2()()f x f x x -+=,22211()()()()()()()022T x T x f x x f x x f x f x x ∴+-=-+---=+--=,()T x ∴为奇函数,当0x 时,()()0T x f x x '='-<, ()T x ∴在(],0-∞上单调递减, ()T x ∴在R 上单调递减.存在0{|()(1)}x x T x T x ∈-,/∴得00()(1)T x T x -,001x x -,即012x ,()x g x e a =-;1()2x, 0x 为函数()y g x =的一个零点;当12x时,()0x g x e '=-, ∴函数()g x 在12x 时单调递减,由选项知0a >,取12x =<,又0g ee ⎛-=> ⎝,∴要使()g x 在12x时有一个零点,.只需使102g a ⎛⎫= ⎪⎝⎭, 解得e a, a ∴的取值范围为⎡⎫+∞⎪⎢⎪⎣⎭, 故选:BCD . 三、填空题36.(2020届山东省枣庄市高三上学期统考)若()3,0{1,0x x f x x x≤=>,则()()2f f -=__________. 【答案】9 【解析】《因为21(2)309f --==>,所以1((2))()99f f f -==,应填答案9. 37.(2020届山东省潍坊市高三上期中)已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上是减函数,10,3f ⎛⎫-= ⎪⎝⎭则不等式18log 0f x ⎛⎫> ⎪⎝⎭的解集为__________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】()f x 是定义在R 上的偶函数,且在[0,)+∞上是减函数,1()03f -=,11()()033f f ∴=-=,则不等式18(log )0f x >等价为不等式181(|log |)()3f x f >,即181|log |3x <⇒1811log 33x -<<⇒122x <<,{即不等式的解集为1(,2)2, 故答案为:1(,2)2.38.(2020届山东省九校高三上学期联考)已知[]x 表示不超过x 的最大整数,如[]33=,[]1.51=,[]1.72-=-.令()2x f x x =⋅,[]()()g x f x x =-,则下列说法正确的是__________.①()g x 是偶函数 ②()g x 是周期函数③方程()0g x -=有4个根④()g x 的值域为[]0,2 【答案】②③|【解析】1111()([])()33333g f f =-==,1112()([])()33333g f f -=---== 显然11()()33g g -≠,所以()g x 不是偶函数,所以①错误;[][](1)(11)()()g x f x x f x x g x +=+-+=-=,所以()g x 是周期为1的周期函数,所以②正确; 作出函数y x =的图象和()g x 的图象:根据已推导()g x 是周期为1的周期函数,只需作出()g x 在[0,1)x ∈的图象即可,当[0,1)x ∈时[]()()()2x g x f x x f x x =-==⋅,根据周期性即可得到其余区间函数图象,如图所示:》可得()g x 值域为[0,2),函数y x =()g x 的图象一共4个交点,即方程()0g x x =有4个根, 所以③正确,④错误; 故答案为:②③39.(2020届山东省滨州市三校高三上学期联考)已知定义在R 上的函数满足(3)(3)f x f x -=-+,且()f x 图像关于1x =对称,当(1,2]x ∈时,2()log (21)f x x =+,则8252f ⎛⎫= ⎪⎝⎭________. 【答案】-2 【解析】因为()f x 图像关于1x =对称,则()(2)f x f x =-,()(2)(31)(31)(4)(8)f x f x f x f x f x f x =-=--=-++=-+=+,)故()f x 是以8为周期的周期函数,82511113851443131222222f f f f ff⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=⨯++=+=++=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭23log (21)22=-⨯+=-故答案为:2-.40.(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.【答案】(,1)-∞- 【解析】根据已知条件:当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,得函数()f x 是定义在R 上的减函数,…又因为函数()f x 是定义在R 上的奇函数,所以(2)(2)f f -=-,故(31)(2)0f x f ++>等价于(31)(2)(2)f x f f +>-=-,所以312x +<-,即1x <-. 故答案为:(),1-∞-.41.(2020届山东省济宁市高三上期末)2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足573002tN N -=⋅(0N 表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳14的质量是原来的12至35,据此推测良渚古城存在的时期距今约在________年到5730年之间.(参考数据:22log 3 1.6,log 5 2.3≈≈) 【答案】124011 【解析】当5730t =时,100122N N N -=⋅=∴经过5730年后,碳14的质量变为原来的12令035N N =,则5730325t-= 2223log log 3log 50.757305t ∴-==-≈- 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三“用好零点”,证明函数不等式
函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕高考压轴题中已知零点(零点个数),证明函数不等式问题,例题说法,高效训练.
【典型例题】
类型一设而不求,应用函数零点存在定理
例1.【四川省泸州市2019届高三二诊】已知函数.
(1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围;
(2)求证:时,.
类型二设而不求,应用不等式性质
例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,)
(1)讨论的单调性;
(2)若,是函数的零点,是的导函数,求证:.
类型三代入零点,利用方程思想转化证明零点之间的关系
例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数.
(1)讨论函数的单调性;
(2)若有两个相异零点,求证:.
类型四利用零点性质,构造函数证明参数范围
例4.【山东省临沂市2019届高三2月检测】已知函数.
(1)判断的单调性;
(2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1.
【规律与方法】
应用函数的零点证明不等式问题,从已知条件来看,有两类,一类是题目中并未提及函数零点,二一
类是题目中明确函数零点或零点个数;从要求证明的不等式看,也有两种类型,一类是求证不等式是函数值的范围或参数的范围,二一类是求证不等式是零点或零点的函数值满足的不等关系.
1.由于函数零点存在定理明确的是函数值满足的不等关系,所以,通过设出函数的零点,利用函数零点存在定理,可建立不等关系,向目标不等式靠近,如上述类型一;也可以利用不等式的性质,向目标不等式靠近,如上述类型二,这两类问题突出的一点是“设而不求”.
2. 当求证不等式是零点或零点的函数值满足的不等关系时,则注意将零点代入函数式,构建方程(组),进一步确定零点之间的关系,然后在通过求导、分离参数、构造函数等手段.
【提升训练】
1.【广东省揭阳市2019届高三一模】设函数,
(1)讨论的单调性;
(2)若函数有两个零点、,求证:.
2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点.
求实数a的取值范围;
若函数的两个零点分别为,,求证:.
3.【宁夏银川市2019年高三下学期检测】已知函数.
(1)当时,求函数的单调区间;
(2)当时,证明:(其中为自然对数的底数).
4.已知函数f(x)=lnx+a(x﹣1)2(a>0).
(1)讨论f(x)的单调性;
(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.
5. 已知函数f(x)=3e x+x2,g(x)=9x﹣1.
(1)求函数φ(x)=xe x+4x﹣f(x)的单调区间;
(2)比较f(x)与g(x)的大小,并加以证明.
6. 已知函数f(x)=lnx﹣x+1,函数g(x)=ax•e x﹣4x,其中a为大于零的常数.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2).
7.【山东省济南市2019届高三3月模拟】已知函数,其导函数的最大值
为.
(1)求实数的值; (2)若
,证明:
.
8.【山东省日照市2017届高三下学期一模】设(e 为自然对数的底数),

(I)记,讨论函单调性;
(II)令
,若函数G(x )有两个零点.
(i)求参数a 的取值范围; (ii)设
的两个零点,证明

9.已知函数()()()2
ln 10f x x a x a =+->.
(1)讨论()f x 的单调性;
(2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3
12
0e
x e -
-<<.
10.已知函数()1x
f x e ax =--,其中e 为自然对数的底数, a R ∈ (I )若a e =,函数()()2
g x e x =- ①求函数()()()
h x f x g x =-的单调区间 ②若函数()()(),{
,f x x m F x g x x m
≤=>的值域为R ,求实数m 的取值范围
(II )若存在实数[]
12,0,2x x ∈,使得()()12f x f x =,且121x x -≥,求证: 21e a e e -≤≤-。

相关文档
最新文档