山东省聊城市冠县2020年中考数学一模卷
2020-2021学年最新山东省聊城市中考数学一模试卷及答案

数学中考一模试卷一、单选题1.﹣2的倒数是()A.﹣B.C.﹣2D.2 【答案】A【考点】有理数的倒数【解析】【解答】解:﹣2的倒数是﹣.故答案为:A.【分析】根据乘积为1的两个数叫做互为倒数,即可得出答案。
2.如图,直线l1∥l2,等腰直角△ABC的两个顶点A,B 分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【答案】B【考点】平行线的性质【解析】【解答】如图,∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°-15°=30°,故答案为:B.【分析】根据二直线平行,内错角相等得出∠2=∠3,再根据角的和差即可得出答案。
3.将数据0.0000025用科学记数法表示为()A.25×10﹣7B.0.25×10﹣8C.2.5×10﹣7D.2.5×10﹣6【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10﹣6.故答案为:D.【分析】用科学记数法表示一个绝对值较小的数,一般表示为a×10-n的形式,其中1≤|a|<10,n是原数从左边起第一个非零数字前面的所有0的个数,包括小数点前面的0.4.下面的几何体中,主视图为三角形的是()A. B.C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.【分析】主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.5.在平面直角坐标系中,经过点(4sin45°,2cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交B.相切C.相离D.以上三者都有可能【答案】D【考点】直线与圆的位置关系【解析】【解答】解:设直线经过的点为A.∵点A的坐标为(4sin45°,2cos30°),∴OA=.∵圆的半径为2,∴OA>2,∴点A在圆外,∴直线和圆相交,相切、相离都有可能.故答案为:D.【分析】过点A的直线有无数条,故圆心到这条直线的距离就不可能固定,根据直线与圆的位置关系,必须知道圆心到这条直线的距离,再与该圆的半径比大小,才能做出判断,故直线和圆相交,相切、相离都有可能.6.下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=-3x+2B.y=2x+1C.y=2x2+1D.y=【考点】反比例函数的性质,二次函数的性质,一次函数的性质【解析】【解答】根据一次函数、二次函数和反比例函数的性质可得:只有A选项为减函数,故答案为:A.【分析】根据题意可知:这个函数必须是y随x的增大而减小,根据一次函数、二次函数和反比例函数的性质可得。
2020年聊城市初三模拟考试数学试卷

2020年聊城市初三模拟考试数学试卷亲爱的同学们,祝贺你顺利完成了第二轮复习,通过这次考试检验一下你复习的效果如何?请你在答卷之前仔细阅读以下说明:1.试题由第Ⅰ卷和第Ⅱ卷组成,共6页。
第Ⅰ卷为选择题,48分;第Ⅱ卷为非选择题,102分。
共150分。
考试时间为120分钟。
2.答第Ⅰ卷前,请你将姓名、准考证号、考试科目涂写在答题卡上。
每小题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑。
如需改动必须用橡皮擦干净,再改涂其它答案。
3.将第Ⅱ卷试题的答案宜接写在答卷上,考试结束后,答题卡、答卷一并交回。
4.可以使用科学计算器。
愿你放松心情,缜密思维,充分发挥,争取交一份圆满答卷。
第Ⅰ卷(选择题,共48分)一、选择题(本题共12个小题,每小题4分。
在每小题给出的四个选项中.只有一项符合题目要求)1.计算33-1的值是A.一9 B.9 C.—27 D.272.如图1是由一个正方体,将其沿一组对面的对角线切去一半,得到的一个立体图形,对于这一立体图形,其左视图、俯视图正确的一组是A .a 、bB .b 、dC a 、cD .a 、d3.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群之中,再第二次捕捞鱼共200条,有10条做了记号,则估计湖里有( )条鱼.A .400B .500C 800D .1000 4.如图2所示,若AB ∥CD ,∠ABE=120°, ∠DCE=35°,则∠BEC=A .90°B .60°C .95°D .85°5.已知a>b>0,则下列不等式不一是成立的是A .2ab b >B .c b c a +>+C .ba 11< D .bc >ab6.用边长为1的正方形纸板,做成一副七巧板,如图3,将它拱成“小天鹅”图案,如图4,其中阴影部分的面积为A .83B .21C .167D .437.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶,行驶到距A 地18千米的B 地,他们离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系的图象如图5所示,根据图中提供的信息,符合图象描述的说法是A.甲在行驶过程中休息了一会儿B.乙比甲先到达B地C.乙在行驶过程中没有追上甲D.甲的行驶速度比乙的行驶速度大8.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%,以96元出售,很快就卖掉了,则这次生意的盈亏情况为A.赚6元 B.不亏不赚 C.亏4元 D.亏249.如图6,在正方形网格上有五个三角形,其中与△ABC相似(不包括△ABC本身)的三角形有A.1个 B.2个 C.3个 D.4个10.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:跳高成绩(m) 1.50 1.55 1.60 1.65 1.70 1.75跳高人数 1 3 2 3 5 1这些运动员跳高成绩的中位数和众数分别是A .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,511.如图7,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径23r =,AC=2,则cosB 的值是A .23B .35C .25D .32 12.将正偶数按下表排成5列:第一第二第三第四第五第一 24 6 8 第二16 1412 10 第三 1820 22 24 第四32 3028 26 … …… … … … 根据以上规律,2008应在A .125行,3列B .125行,2列C .251行,5列D .251行,3列第Ⅱ卷(非选择题,共102分)二、填空题(本题共5个小题,每小题4分,共20分。
山东省聊城市2019-2020学年中考数学一模考试卷含解析

山东省聊城市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是轴对称图形的是()A.B.C.D.2.不等式组1351xx-<⎧⎨-≤⎩的解集是()A.x>﹣1 B.x≤2C.﹣1<x<2 D.﹣1<x≤2 3.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D4.如果关于x的不等式组2030x ax b-≥⎧⎨-≤⎩的整数解仅有2x=、3x=,那么适合这个不等式组的整数a、b组成的有序数对(,)a b共有()A.3个B.4个C.5个D.6个5.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )A.6 B.8 C.10 D.126221)的结果是()A.221B.22C.12D.2+27.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=28.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺9.如图直线y =mx 与双曲线y=k x交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .410.下列图形中,既是中心对称图形又是轴对称图形的是( )A .正五边形B .平行四边形C .矩形D .等边三角形11.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关12.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AB=c ,∠A=α,则CD 长为( )A .c•sin 2αB .c•cos 2αC .c•sinα•tanαD .c•sinα•cosα二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:2222444221(1)2a a a a a a a --+÷-+++- =____. 14.函数2y x +=﹣的图象不经过第__________象限.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a=______.16.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.17.化简:+3=_____.18.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB 于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由20.(6分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?21.(6分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.22.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?23.(8分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 …甲复印店收费(元) 0.5 2 …乙复印店收费(元) 0.6 2.4 …(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.24.(10分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离3,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.25.(10分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26.(12分)某食品厂生产一种半成品食材,产量p(百千克)与销售价格x(元/千克)满足函数关系式1p x 82=+,从市场反馈的信息发现,该半成品食材的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,如下表: 销售价格x(元/千克) 2 4 ⋯10 市场需求量q /(百千克) 12 10 ⋯ 4已知按物价部门规定销售价格x 不低于2元/千克且不高于10元/千克()1求q 与x 的函数关系式;()2当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x 的取值范围;()3当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.若该半成品食材的成本是2元/千克.①求厂家获得的利润y(百元)与销售价格x 的函数关系式;②当厂家获得的利润y(百元)随销售价格x 的上涨而增加时,直接写出x 的取值范围.(利润=售价-成本)27.(12分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形>的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.ABCD AB BC()()1求证:ED FC=.()2若20∠的度数.ADE∠=o,求DMC参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D3.B【解析】【分析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈ ,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B 最接近,故选B.4.D【解析】【分析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b <4,求出2<a≤4、9≤b <12,即可得出答案. 【详解】 解不等式2x−a≥0,得:x≥2a , 解不等式3x−b≤0,得:x≤3b , ∵不等式组的整数解仅有x =2、x =3,则1<2a ≤2、3≤3b <4, 解得:2<a≤4、9≤b <12,则a =3时,b =9、10、11;当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个,故选:D .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值.5.C【解析】∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,又∵∠ADE=∠EFC ,∴∠B=∠EFC ,△ADE ∽△EFC ,∴BD ∥EF ,DE AD FC EF=, ∴四边形BFED 是平行四边形,∴BD=EF , ∴563DE AD BD ==,解得:DE=10. 故选C.6.D【解析】【分析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式×+1). 故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.7.C【解析】分析:根据每个选项所涉及的数学知识进行分析判断即可.详解:A 选项中,“五边形的外角和为360°”是真命题,故不能选A ;B 选项中,“切线垂直于经过切点的半径”是真命题,故不能选B ;C 选项中,因为点(3,-2)关于y 轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C ;D 选项中,“抛物线y=x 2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.故选C.点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P (a ,b )关于y 轴的对称点为(-a ,b );(4)抛物线2 (0)y ax bx c a =++≠的对称轴是直线:2b x a=-等数学知识,是正确解答本题的关键.8.B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.9.B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=12|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.10.C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.11.C【解析】试题分析:连接AR ,根据勾股定理得出AR=22AD DR +的长不变,根据三角形的中位线定理得出EF=12AR ,即可得出线段EF 的长始终不变, 故选C .考点:1、矩形性质,2、勾股定理,3、三角形的中位线12.D 【解析】【分析】根据锐角三角函数的定义可得结论.【详解】在Rt △ABC 中,∠ACB=90°,AB=c ,∠A=a ,根据锐角三角函数的定义可得sinα=BC AB , ∴BC=c•sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt △DCB 中,∠CDB=90°,∴cos ∠DCB= CD BC, ∴CD=BC•cosα=c•sinα•cosα,故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.2a a - 【解析】【分析】先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.【详解】原式()()22222(1)222(1)(2)222a a a a a a a a a a +-++-=⋅-==+----, 故答案为2a a - 【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.14.三.【解析】【分析】先根据一次函数212y x k b +=﹣中=﹣,=判断出函数图象经过的象限,进而可得出结论. 【详解】解:∵一次函数2y x +=﹣中1020k b =﹣<,=>,∴此函数的图象经过一、二、四象限,不经过第三象限,故答案为:三.【点睛】本题考查的是一次函数的性质,即一次函数0y kx b k +≠=()中,当0k <,0b >时,函数图象经过一、二、四象限.15.150【解析】【分析】根据题意可得等量关系:不超过a 千瓦时的电费+超过a 千瓦时的电费=105元;根据等量关系列出方程,解出a 的值即可.【详解】∵0.5×200=100<105,∴a<200.由题意得:0.5a+0.6(200-a)=105,解得:a=150.故答案为:150【点睛】此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.16.1【解析】【分析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C ,推出AD=DE ,于是得到结论.【详解】∵△BDE 是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.17.【解析】试题分析:先进行二次根式的化简,然后合并,可得原式=2+=3.18.13【解析】【分析】根据同时同地物高与影长成比列式计算即可得解.【详解】解:设旗杆高度为x米,由题意得,1.5x=326,解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)112y x=+;(2)251544s t t=-+(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】【分析】(1)由A 、B 在抛物线上,可求出A 、B 点的坐标,从而用待定系数法求出直线AB 的函数关系式. (2)用t 表示P 、M 、N 的坐标,由等式MN NP MP =-得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t .再讨论邻边是否相等.【详解】解:(1)x=0时,y=1,∴点A 的坐标为:(0,1),∵BC ⊥x 轴,垂足为点C (3,0),∴点B 的横坐标为3,当x=3时,y=52, ∴点B 的坐标为(3,52), 设直线AB 的函数关系式为y=kx+b ,1532b k b =⎧⎪⎨+=⎪⎩, 解得,121k b ⎧=⎪⎨⎪=⎩,则直线AB 的函数关系式112y x =+ (2)当x=t 时,y=12t+1, ∴点M 的坐标为(t ,12t+1), 当x=t 时,2517144y t t =-++ ∴点N 的坐标为2517(,1)44t t t -++ 2251715151(1)44244s t t t t t =-++-+=-+ (0≤t≤3); (3)若四边形BCMN 为平行四边形,则有MN=BC , ∴25155=442t t -+, 解得t 1=1,t 2=2,∴当t=1或2时,四边形BCMN 为平行四边形,①当t=1时,MP=32,PC=2,∴MC=52=MN ,此时四边形BCMN 为菱形, ②当t=2时,MP=2,PC=1,∴,此时四边形BCMN 不是菱形.【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用. 20.100或200【解析】试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x 元,列方程解答即可.试题解析:设每台冰箱应降价x 元,每件冰箱的利润是:元,卖(8+x 50×4)件, 列方程得,(8+x 50×4)=4800, x 2﹣300x+20000=0,解得x 1=200,x 2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元.考点:一元二次方程的应用.21.(1)223y x x =+-32m =-时,S 最大为278(1)(-1,1)或332222⎛⎫-+- ⎪ ⎪⎝⎭,或332222⎛⎫--+ ⎪ ⎪⎝⎭,或(1,-1) 【解析】试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式.(2)设出M 点的坐标,利用S=S △AOM +S △OBM ﹣S △AOB 即可进行解答;(1)当OB 是平行四边形的边时,表示出PQ 的长,再根据平行四边形的对边相等列出方程求解即可;当OB 是对角线时,由图可知点A 与P 应该重合,即可得出结论.试题解析:解:(1)设此抛物线的函数解析式为:y=ax 2+bx+c (a≠0),将A (-1,0),B (0,-1),C (1,0)三点代入函数解析式得:93030a b c c a b c -+=⎧⎪=-⎨⎪++=⎩解得123a b c =⎧⎪=⎨⎪=-⎩:,所以此函数解析式为:223y x x =+-.(2)∵M 点的横坐标为m ,且点M 在这条抛物线上,∴M 点的坐标为:(m ,223m m +-),∴S=S △AOM +S △OBM -S △AOB =12×1×(-223m m +-)+12×1×(-m )-12×1×1=-(m+32)2+278, 当m=-32时,S 有最大值为:S=278-. (1)设P (x ,223x x +-).分两种情况讨论:①当OB 为边时,根据平行四边形的性质知PB ∥OQ ,∴Q 的横坐标的绝对值等于P 的横坐标的绝对值,又∵直线的解析式为y=-x ,则Q (x ,-x ).由PQ=OB ,得:|-x-(223x x +-)|=1解得: x=0(不合题意,舍去),-1, 3332-±,∴Q 的坐标为(-1,1)或33333322⎛⎫-+- ⎪ ⎪⎝⎭,或33333322⎛⎫--+ ⎪ ⎪⎝⎭,; ②当BO 为对角线时,如图,知A 与P 应该重合,OP=1.四边形PBQO 为平行四边形则BQ=OP=1,Q 横坐标为1,代入y=﹣x 得出Q 为(1,﹣1).综上所述:Q 的坐标为:(-1,1)或33333322⎛⎫-+- ⎪ ⎪⎝⎭,或33333322⎛⎫--+ ⎪ ⎪⎝⎭,或(1,-1).点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.22.规定日期是6天.【解析】【分析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x 天,则若单独做,甲队需x 天,乙队需x+3天,根据题意列方程得1122133x x x x -⎛⎫++= ⎪++⎝⎭解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.23.(1)1,3;1.2,3.3;(2)见解析;(3)顾客在乙复印店复印花费少.【解析】【分析】(1)根据收费标准,列代数式求得即可;(2)根据收费等于每页收费乘以页数即可求得y 1=0.1x (x≥0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y 2=0.12x ,当一次复印页数超过20时,根据题意求得y 2=0.09x+0.6; (3)设y=y 1-y 2,得到y 与x 的函数关系,根据y 与x 的函数关系式即可作出判断.【详解】解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2; 当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3; 故答案为1,3;1.2,3.3;(2)y 1=0.1x (x≥0);y 2=0.12x 0x 200.09x+0.6x 20≤≤⎧⎨>⎩()(); (3)顾客在乙复印店复印花费少;当x >70时,y 1=0.1x ,y 2=0.09x+0.6,设y=y 1﹣y 2,∴y 1﹣y 2=0.1x ﹣(0.09x+0.6)=0.01x ﹣0.6,设y=0.01x ﹣0.6,由0.01>0,则y 随x 的增大而增大,当x=70时,y=0.1∴x >70时,y >0.1,∴y 1>y 2,∴当x >70时,顾客在乙复印店复印花费少.【点睛】本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键.24. .【解析】【分析】利用∠ECA 的正切值可求得AE ;利用∠ECB 的正切值可求得BE ,由AB=AE+BE 可得答案.【详解】在Rt △EBC 中,有BE=EC×tan45°, 在Rt △AEC 中,有AE=EC×tan30°=8m ,∴(m ).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.25.(1)ab ﹣4x 1(1【解析】【分析】(1)边长为x 的正方形面积为x 1,矩形面积减去4个小正方形的面积即可.(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x 的值即可.【详解】解:(1)ab ﹣4x 1.(1)依题意有:22ab 4x 4x -=,将a=6,b=4,代入上式,得x 1=2.解得x 1x 1=.26.(1) q x 14=-+;(2)2x 4≤≤;(3)213105y (x )24=--+①;②当134x 2<≤时,厂家获得的利润y 随销售价格x 的上涨而增加.【解析】【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)由题意可得:p≤q ,进而得出x 的取值范围;(3)①利用顶点式求出函数最值得出答案;②利用二次函数的增减性得出答案即可.【详解】(1)设q=kx+b (k ,b 为常数且k≠0),当x=2时,q=12,当x=4时,q=10,代入解析式得:212410k b k b +=⎧⎨+=⎩,解得:114k b =-⎧⎨=⎩,∴q 与x 的函数关系式为:q=﹣x+14; (2)当产量小于或等于市场需求量时,有p≤q ,∴12x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4; (3)①当产量大于市场需求量时,可得4<x≤10,由题意得:厂家获得的利润是:y=qx ﹣2p=﹣x 2+13x ﹣16=﹣(x 132-)21054+; ②∵当x 132≤时,y 随x 的增加而增加. 又∵产量大于市场需求量时,有4<x≤10,∴当4<x 132≤时,厂家获得的利润y 随销售价格x 的上涨而增加.【点睛】本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键.27.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=o ,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE V ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,Q 四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=o ,ADE QV ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=o o o Q ,15DFC DCF ADE AED ∴∠=∠=∠=∠=o ,601575FDE ∴∠=+=o o o ,90MFD FDM ∴∠+∠=o ,90FMD ∴∠=o ,故答案为90o()1ABE QV 为等边三角形,60EAB ∴∠=o ,EA AB =.ADF QV 为等边三角形,60FDA ∴∠=o ,AD FD =.Q 四边形ABCD 为矩形,90BAD ADC ∴∠=∠=o ,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=o Q ,150CDF FDA ADC ∠=∠+∠=o ,EAD CDF ∴∠=∠.在EAD V 和CDF V中, AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴V ≌CDF V. ED FC ∴=;()2EAD QV ≌CDF V ,20ADE DFC ∴∠=∠=o ,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=o o o o .【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.。
山东省聊城市2020年中考数学一模试卷(I)卷

山东省聊城市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共11分)1. (1分) (2019七上·天台月考) 据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12000000千瓦,12000000用科学记数法表示为________千瓦;2. (1分)(2017·广元) 在函数y= 中,自变量x的取值范围是________.3. (1分) (2017八下·河东期中) 如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC 至点D,使CD= BD,连接DM、DN、MN.若AB=6,则DN=________.4. (1分)如图为一个电路图,在该电路图上有四个开关S1 , S2 , S3 , S4和一个灯泡⊗,闭合开关S1或同时闭合开关S2 , S3 , S4都能够使灯泡发光,现在任意闭合其中两个开关,灯泡能够发光的概率为________.5. (1分)使不等式成立的________叫做不等式的解; 要判断一个数是不是不等式的解,将这个数代入不等式,如果不等式成立,则它就是不等式的解,否则就不是.6. (1分)如图,∠A是⊙O的圆周角,若∠A=40°,则∠OBC=________ 度。
7. (1分)已知关于x的分式方程的解是非负数,则m的取值范围是________ .8. (1分)(2018·深圳模拟) 如图,中,∠C=90°,,则________.9. (1分) (2016七上·临海期末) 有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是________.10. (2分)(2018·河源模拟) 菱形的两条对角线分别是6 cm,8 cm,则菱形的边长为________cm,面积为________cm2 .二、选择题 (共10题;共20分)11. (2分)下列算式中正确的是()A .B .C .D .12. (2分) (2017九上·平桥期中) 如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A . (﹣a,﹣b)B . (﹣a,﹣b﹣1)C . (﹣a,﹣b+1)D . (﹣a,﹣b﹣2)13. (2分)下列关于y与x的表达式中,表示y是x的反比例函数的是()A . y=4xB . =﹣2C . xy=4D . y=4x﹣314. (2分) (2019七上·郑州月考) 一个小立方块的六个面分别标有字母A,B,C,D,E,F,从三个不同的方向看形如图所示,则字母D的对面是()A . 字母AB . 字母FC . 字母ED . 字母B15. (2分)(2017·怀化模拟) 某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A . 这组数据的众数是170B . 这组数据的中位数是169C . 这组数据的平均数是169D . 若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为16. (2分)某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A . 小强从家到公共汽车在步行了2公里B . 小强在公共汽车站等小明用了10分钟C . 公共汽车的平均速度是30公里/小时D . 小强乘公共汽车用了20分钟17. (2分)若|x﹣3|+(y+3)2=0,则yx=()A . -9B . 9C . ﹣27D . 2718. (2分)(2016·葫芦岛) 如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A . 4B . 8C . 2D . 419. (2分)某单位职工的平均年龄为40岁,其中男职工的平均年龄为50岁,女职工的平均年龄为35岁,那么男女职工人数之比为()A . 2:1B . 3:2C . 1:2D . 2:320. (2分)(2017·宁波) 如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为()A . 3B .C .D . 4三、解答题 (共8题;共98分)21. (5分)(2017·赤峰) (﹣)÷ ,其中a=2017°+(﹣)﹣1+ tan30°.22. (15分) (2016七下·宜昌期中) 平面内有三点A(2,2 ),B(5,2 ),C(5,).(1)请确定一个点D,使四边形ABCD为长方形,写出点D的坐标.(2)求这个四边形的面积(精确到0.01).(3)将这个四边形向右平移2个单位,再向下平移3 个单位,求平移后四个顶点的坐标.23. (15分) (2018九上·十堰期末) 如图,已知抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0)和点C(0,3).(1)求抛物线的解析式和顶点E的坐标;(2)点C是否在以BE为直径的圆上?请说明理由;(3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R的坐标,若不存在,请说明理由.24. (14分) (2017八下·湖州期中) 为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能体能测试成绩70分以上(包括70分)为合适.(1)请根据图中所提供的信息填写下表:平均数中位数体能测试成绩合格次数甲________65________乙60________________(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,谁的体能测试成绩较好?②依据平均数与中位数比较甲和乙,谁的体能测试成绩较好?(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.25. (11分)(2017·佳木斯) 在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距________千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?26. (10分) (2019八下·东莞月考) 如图,在菱形ABCD中,对角线AC、BD相交于点O ,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求平行四边形ACDE的面积.27. (17分) (2019七下·萍乡期中) 为了迎接2022年北京冬奥会,萍乡外国语学校组织了一次大型长跑比赛。
2020年山东省聊城市中考数学一模试卷 (含解析)

2020年山东省聊城市中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.实数−π,−3.14,0,√2四个数中,最小的是()A. −πB. −3.14C. √2D. 02.如图中几何体的俯视图是()A.B.C.D.3.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过O,且MN//BC,分别交AB、AC于点M、N.若BM=5,MN=9,则线段CN的长是()A. 3B. 4C. 4.5D. 54.下列计算正确的是()A. x2x3=x6B. (m+3)2=m2+9C. a10÷a5=a5D. (xy2)3=xy65.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.人数25131073成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是()A. 75,70B. 70,70C. 80,80D. 75,806. 给出下列化简①(−√2)2=2:②√(−2)2=2;③√122+142=12√3;④√1−14=12,其中正确的是( ) A. ①②③④ B. ①②③ C. ①② D. ③④7. 如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为( )A. 12B. √55C. √1010D. 2√55 8. 用配方法解方程2x 2−x −1=0时,配方结果正确的是( )A. (x −12)2=34B. (x −14)2=34C. (x −14)2=1716D. (x −14)2=916 9. 如图,CD 是⊙O 的直径,AB ,EF 是⊙O 的弦,且AB//CD//EF ,AB =16,CD =20,EF =12,则图中阴影部分的面积是( )A. 96+25πB. 88+50πC. 50πD. 25π10. 某同学用一扇形纸片为玩偶制作了一个圆锥形帽子(不考虑接缝),已知扇形的半径为13cm ,扇形的弧长为10π cm ,那么这个圆锥形帽子的高是( )A. 5cmB. 12cmC. 13cmD. 14cm11. 按照如图所示的方法排列黑色小正方形地砖,则第13个图案中黑色小正方形地砖的块数是( )A. 273B. 293C. 313D. 33312. 如图,在△ABC 中,∠BAC =108°,将△ABC 绕点A 按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC 边上,且AB′=CB′,则∠C′的度数为( )A. 18°B. 20°C. 24°D. 28°二、填空题(本大题共5小题,共15.0分)13. 因式分解:x(x −3)−x +3=______.14. 如图,点A 、B 、C 、D 、E 在⊙O 上,且AB ⏜为50°,则∠E +∠C =______°.15. 化简:(1x−4+1x+4)÷2x 2−16=______.16. 某校举行唱歌比赛活动,每个班级唱两首歌曲,一首是必唱曲目校歌,另外一首是从A ,B ,C ,D 四首歌曲中随机抽取1首,则九年级(1)班和(2)班抽取到同一首歌曲的概率是______.17. 在平面直角坐标系中,已知A 、B 两点的坐标分别为A(−1,1)、B(3,2),若点M 为x 轴上一点,且MA +MB 最小,则点M 的坐标为______.三、解答题(本大题共8小题,共69.0分)18. 解不等式组{x −32(2x −1)≤41+3x 3>2x −1,并写出x 的所有整数解.19.某校开设武术、舞蹈、剪纸等三项活动课程,随机抽取了部分学生对这三项活动课程的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)本次抽样调查的样本容量是____;(2)将条形统计图补充完整;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.20.公历3月12日是植树节,为宣传保护树木,激发人们爱林造林的热情,政府投资13万元给某村民小组用于购买与种植A、B两种树苗共3000棵,完成这项种植后,剩余的款项作为村民小组的纯收入,已知用160元购买A树苗比购买B树苗多3棵.这两种树苗的单价、成活率及移栽费用见下表:树苗品种A树苗B树苗购买价格(元/棵)a a+12树苗成活率90%95%移栽费用(元/棵)35(1)求表中a的值;(2)设购买A树苗x棵,其它购买的是B树苗,把这些树苗种植完成后,村民小组获得的纯收入为y元,请你写出y与x之间的函数关系式;(3)若要求这批树苗种植后,成活率达到93%以上(包含93%),则最多种植A树苗多少棵?此时,村民小组在这项工作中,所得的纯收入最大值可以是多少元?21.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若四边形BECD是矩形,求证:∠BOD=2∠A.22.如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈35,tan37°≈34,sin48°≈710,tan48°≈1110)23. 一次函数y =kx +b 的图象与反比例函数y =mx 的图象交于A(−2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积.(3)当kx +b ≤mx 时,请直接写出x 的取值范围.24.如图,AB,CD为⊙O的直径,弦AE//CD,连接BE交CD于点F,过点E的直线EP与CD的延长线交于点P,并且使得∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为6,CF=2EF,求PD的长.25.如图,抛物线y=−x2+bx+c经过A(−1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.【答案与解析】1.答案:A解析:本题考查了无理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.解:∵|−π|=π,|−3.14|=3.14,∴−π<−3.14,∴−π,−3.14,0,√2这四个数的大小关系为−π<−3.14<0<√2.故选A.2.答案:C解析:解:人站在几何体的正面,从上往下看,正方形个数依次为1,1,1,故选:C.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.答案:B解析:本题考查了等腰三角形的判定与性质和平行线性质的理解与掌握.此题证出∠MBO=∠MOB,∠NOC=∠NCO是解题的关键.解:∵MN//BC,∴∠OBC=∠MOB,∠OCB=∠NOC,∵OB是∠ABC的角平分线,OC是∠ACB的角平分线,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴OM=BM,ON=CN,∴MN=MO+ON=BM+CN,又∵BM=5,MN=9,∴CN=4,故选B.4.答案:C解析:解:A.x2⋅x3=x5,故选项A不合题意;B.(m+3)2=m2+6m+9,故选项B不合题意;C.a10÷a5=a5,故选项C符合题意;D.(xy2)3=x3y6,故选项D不合题意.故选:C.分别根据同底数幂的乘法法则,完全平方公式,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.5.答案:A解析:解:把这些数据从小到大排列,最中间的两个数是第20、21个数,分别为70和80,中位数是这两个数的平均数,=75;∴全班40名同学的成绩的中位数是:70+80270出现了13次,出现的次数最多,则众数是70;故选A.根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.答案:C解析:根据二次根式的运算法则即可求出答案.本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.解:①原式=2,故①正确;②原式=2,故②正确;③原式=√340=2√85,故③错误;④原式=√34=√32,故④错误;故选:C.7.答案:B解析:此题主要考查了锐角三角函数关系,正确构造直角三角形是解题关键.直接连接DC,得出CD⊥AB,再结合勾股定理以及锐角三角函数关系得出答案.解:连接DC,设每个正方形网格的边长为1,由网格可得:CD⊥AB,则DC=√2,AC=√10,故sinA=DCAC =√210=√55.故选:B.8.答案:D解析:本题考查了解一元二次方方程--配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.本题具体做法是把常数项−1移项后,再在左右两边同时除以2,最后在左右两边同时加上一次项系数−12的一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解:把方程2x2−x−1=0的常熟项移到等号的右边,得2x2−x=1,在左右两边同时除以2,得x2−12x=12方程两边同时加上一次项系数一半的平方,得到x 2−12x +116=12+116,配方得(x −14)2=916. 故选D .9.答案:C解析:解:延长BO 交⊙O 于G ,则BG 是⊙O 的直径,连接AG ,则∠GAB =90°,∵AB =16,BG =CD =20,∴AG =√BG 2−AB 2=12,∴AG =EF ,∴AG⏜=EF ⏜, 连接OE ,OF ,则S 扇形AOG =S 扇形EOF ,∵CD//EF ,∴S △OEF =S △DEF ,∴S 阴影DEF =S 扇形EOF ,∴S 阴影DEF =S 扇形AOG ,∴图中阴影部分的面积=12S 圆O =12⋅π×102=50π,故选:C .延长BO 交⊙O 于G ,则BG 是⊙O 的直径,连接AG ,根据圆周角定理得到∠GAB =90°,根据勾股定理得到AG =√BG 2−AB 2=12,求得AG =EF ,推出S 扇形AOG =S 扇形EOF ,根据已知条件得到S △OEF =S △DEF ,于是得到结论.本题考查学生的观察能力及计算能力.本题中找出两个阴影部分面积之间的联系是解题的关系. 10.答案:B解析:解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高=√132−52=12cm.故选:B.首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.11.答案:C解析:本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般规律,利用规律解决问题.由图形可知:第1个图案中黑色小正方形地砖的块数=1×1+0×0=12+02,第2个图案中黑色小正方形地砖的块数=2×2+1×1=22+12,第3个图案中黑色小正方形地砖的块数=3×3+ 2×2=32+22,…则第n个图案中黑色小正方形地砖的块数=n×n+(n−1)×(n−1)=n2+ (n−1)2,由此代入求得答案即可.解:∵第1个图案中黑色小正方形地砖的块数=1×1+0×0=12+02,第2个图案中黑色小正方形地砖的块数=2×2+1×1=22+12,第3个图案中黑色小正方形地砖的块数=3×3+2×2=32+22,…∴第n个图案中黑色小正方形地砖的块数=n×n+(n−1)×(n−1)=n2+(n−1)2,则第13个图案中黑色小正方形地砖的块数是132+122=313.故选C.12.答案:C解析:【试题解析】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.由旋转的性质可得∠C=∠C′,AB=AB′,由等腰三角形的性质可得∠C=∠CAB′,∠B=∠AB′B,由三角形的外角性质和三角形内角和定理可求解.解:∵AB′=CB′,∴∠C=∠CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°−108°,∴∠C=24°,∴∠C′=∠C=24°,故选:C.13.答案:(x−1)(x−3)解析:此题考查了因式分解−提公因式法,熟练掌握因式分解的方法是解本题的关键.原式变形后,提取公因式即可.解:原式=x(x−3)−(x−3)=(x−1)(x−3),故答案为:(x−1)(x−3).14.答案:155解析:解:连接EA,∵AB⏜为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°−25°=155°,故答案为:155.连接EA,根据圆周角定理求出∠BEA,根据圆内接四边形的性质得到∠DEA+∠C=180°,结合图形计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.15.答案:x解析:解:(1x−4+1x+4)÷2x2−16=x+4+x−4(x+4)(x−4)⋅(x+4)(x−4)2=2x2=x,故答案为:x.根据分式的加法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.16.答案:14解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.画树状图展示所有16种等可能的结果数,再找出九年级(1)班和(2)班抽取到同一首歌曲的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中九年级(1)班和(2)班抽取到同一首歌曲的有4种情况,所以九年级(1)班和(2)班抽取到同一首歌曲的概率为416=14,故答案为:14.17.答案:(13,0)解析:解:如图,作点A 作关于x 轴的对称点A′,连接A′B 与x 轴的交于点M ,点M 即为所求.∵点B 的坐标(3,2)点A′的坐标(−1,−1),∴直线BA′的解析式为y =34x −14,令y =0,得到x =13∴点M(13,0)故答案为(13,0).可过点A 作关于x 轴的对称点A′,连接A′B 与轴的交点即为所求.此题考查轴对称问题,熟练掌握轴对称的性质,理解两点之间线段最短的涵义.18.答案:解:{x −32(2x −1)≤4①1+3x 3>2x −1② 解不等式①,得:x ≥−54,解不等式②,得:x <43,则不等式组的解集为−54≤x <43,∴不等式组的整数解为:−1、0、1.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.答案:解:(1)100;(2)由(1)得女生总人数为50人,∴女生中喜欢舞蹈的人数为:50−10−16=24(人),如图所示:(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×30100=360人.解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,进而求得样本容量;(2)由(1)得女生总人数,即可得出喜欢舞蹈的人数,进而补全条形统计图即可;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴本次抽样调查的样本容量是:30+6+14+50=100,故答案为100;(2)见答案;(3)见答案.20.答案:解:(1)根据题意,得:160a −160a+12=3,解得:a1=20,a2=−32,经检验,它们都是原方程的解,但a2=−32不合题意,舍去,所以a=20;(2)由(1)可知:A树苗购买价格:20元/棵;B树苗购买价格:32元/棵,根据题意,得:y=130000−[20x+(3000−x)⋅32+3x+5(3000−x)]=14x+19000,即:y与x之间的函数关系式是:y=14x+19000;(3)设种植A树苗b棵,则有:90%b+(3000−b)×95%≥93%×3000,解得:b≤1200,由(2)可知:y=14x+19000,其中14>0,对于此一次函数,当x取最大值时,纯收入y的值最大.所以有:y最大值=14×1200+19000=35800(元),因此:最多种植A树苗1200棵,纯收入最大值是35800元.解析:(1)根据题意列出方程解答即可;(2)根据题意列出函数解析式即可;(3)设种植A树苗b棵,列出解析式根据增函数解答即可.此题考查一次函数的应用,关键是根据题意列出分式方程和函数解析式进行解答.21.答案:证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB//CD,则BE//CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.∴在△ABD与△BEC中,{AB=BE BD=EC AD=BC,∴△ABD≌△BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵平行四边形BECD为矩形,∴OC=OD,∴∠OCD=∠ODC,∴∠BOD=∠OCD+∠ODC=2∠A,∴∠BOD=2∠A.解析:本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;(2)由四边形ABCD为平行四边形可知∠A=∠BCD,即∠A=∠OCD,由四边形BECD是矩形,推知OC=OD,由等腰三角形的性质得到∠OCD=∠ODC.22.答案:解:过点C作CE⊥AB交AB于点E,则四边形EBDC为矩形,∴BE=CD CE=BD=60(米),如图,根据题意可得,∠ADB=48°,∠ACE=37°,∵tan48°=AB,BD在Rt△ADB中,×60=66(米),则AB=tan48°⋅BD≈1110∵tan37°=AE,CE在Rt△ACE中,×60=45(米),则AE=tan37°⋅CE≈34∴CD=BE=AB−AE=66−45=21(米),∴乙楼的高度CD为21米.解析:过点C作CE⊥AB交AB于点E,在直角△ADB中利用三角函数求得AB的长,然后在直角△AEC 中求得AE的长,即可求解.本题考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.23.答案:解:(1)∵把A(−2,1)代入y=mx得:m=−2,∴反比例函数的解析式是y=−2x,∵B(1,n)代入反比例函数y=−2x,得:n=−2,∴B的坐标是(1,−2),把A、B的坐标代入一次函数y=kx+b得:{1=−2k+b−2=k+b,解得:k=−1,b=−1,∴一次函数的解析式是y=−x−1;(2)设直线AB交x轴于点C,∵把y=0代入一次函数的解析式y=−x−1得:0=−x−1,即x=−1,∴C(−1,0),△AOB的面积S=S AOC+S△BOC=12×|−1|×1+12×|−1|×|−2|=1.5;(3)从图象可知:当kx+b≤mx时,x的取值范围x≥1或−2≤x<0.解析:本题考查了反比例函数、一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力.(1)把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出B的坐标,把A、B的坐标代入一次函数y=kx+b即可求出函数的解析式;(2)求出直线AB交x轴于点C的坐标,求出△AOC和△BOC的面积,即可求出答案;(3)根据函数的图象和A、B的坐标即可得出答案.24.答案:(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为6,∴OF=2x−6,在Rt△OEF中,OE2=OF2+EF2,即62=x2+(2x−6)2,解得x=4.8,∴EF=4.8,∴BE=2EF=9.6,CF=2EF=9.6,∴DF=CD−CF=12−9.6=2.4,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=12,BE=9.6,∴AE=365,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴PFBE =EFAE,即PF9.6=4.8365,∴PF=325,∴PD=PF−DF=4.解析:本题考查了切线的判定和性质,圆周角定理的应用,勾股定理的应用,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.(1)如图,连接OE.欲证明PE是⊙O的切线,只需推知OE⊥PE即可;(2)由圆周角定理得到∠AEB=∠CED=90°,根据“同角的余角相等”推知∠3=∠4,结合已知条件证得结论;(3)设EF=x,则CF=2x,在Rt△OEF中,根据勾股定理得出62=x2+(2x−6)2,求得EF,进而求得BE和CF,在Rt△AEB中,根据勾股定理求得,然后根据△AEB∽△EFP,求得PF的长,继而求出PD=PF−DF的长.25.答案:解:(1)∵抛物线y=−x2+bx+c经过A(−1,0),B(3,0)两点,∴{−1−b+c=0−9+3b+c=0,解得,{b =2c =3, ∴经过A ,B ,C 三点的抛物线的函数表达式为y =−x 2+2x +3;(2)如图1,连接PC 、PE ,x =−b 2a =−22×(−1)=1,当x =1时,y =4,∴点D 的坐标为(1,4),设直线BD 的解析式为:y =mx +n ,则{m +n =43m +n =0, 解得,{m =−2n =6, ∴直线BD 的解析式为y =−2x +6,设点P 的坐标为(x,−2x +6),则PC 2=x 2+(3+2x −6)2,PE 2=(x −1)2+(−2x +6)2,∵PC =PE ,∴x 2+(3+2x −6)2=(x −1)2+(−2x +6)2,解得,x =2,则y =−2×2+6=2,∴点P 的坐标为(2,2);(3)设点M 的坐标为(a,0),则点G 的坐标为(a,−a 2+2a +3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2−a|=|−a2+2a+3|,当2−a=−a2+2a+3时,整理得,a2−3a−1=0,解得,a=3±√132;当2−a=−(−a2+2a+3)时,整理得,a2−a−5=0,解得,a=1±√212,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(3+√132,0),(3−√132,0),(1+√212,0),(1−√212,0).解析:本题考查的是二次函数的图象和性质、待定系数法求函数解析式以及正方形的性质,掌握二次函数的图象和性质、灵活运用待定系数法是解题的关键.(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P 的坐标为(x,−2x+6),利用两点间距离公式表示出PC2和PE2,根据题意列出方程,解方程求出x 的值,计算求出点P的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.。
2020年聊城市中考数学第一次模拟试卷带答案

解析:B 【解析】 【分析】 根据题意可知 DE 是 AC 的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A 和∠B 互 余可求出∠A,由三角形外角性质即可求出∠CDA 的度数. 【详解】 解:∵DE 是 AC 的垂直平分线, ∴DA=DC, ∴∠DCE=∠A, ∵∠ACB=90°,∠B=34°, ∴∠A=56°, ∴∠CDA=∠DCE+∠A=112°, 故选 B. 【点睛】 本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的 性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
8.C
解析:C 【解析】 解:设小路的宽度为 xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据 题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选 C. 点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关 键.
3.A
解析:A 【解析】 【分析】易得 BC 长为 EF 长的 2 倍,那么菱形 ABCD 的周长=4BC 问题得解. 【详解】∵E 是 AC 中点, ∵EF∥BC,交 AB 于点 F, ∴EF 是△ABC 的中位线, ∴BC=2EF=2×3=6, ∴菱形 ABCD 的周长是 4×6=24, 故选 A. 【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的 关键.
请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了________名学生;
(2)补全条形统计图,并在扇形统计图中计算 C 类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校 2000 名学生中“家长和学生都未参与”的人数.
【附5套中考模拟试卷】山东省聊城市2019-2020学年中考数学一模试卷含解析

山东省聊城市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120°2.如图,A,B 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束. 设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能表示y 与x 的函数关系的是A .①B .④C .②或④D .①或③3.不等式4-2x >0的解集在数轴上表示为( )A .B .C .D . 4.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,DE ,则E 为BC 的中点,已知50BAC ∠=o ,则C ∠=( )A .55oB .60oC .65oD .70o5.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )A .主视图B .俯视图C .左视图D .一样大6.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-27.学校小组5名同学的身高(单位:cm )分别为:147,156,151,152,159,则这组数据的中位数是().A.147B.151C.152D.156 8.如图是一个放置在水平桌面的锥形瓶,它的俯视图是()A.B.C.D.9.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.5 10.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°11.计算25()77-+-的正确结果是()A.37B.-37C.1 D.﹣112.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知圆锥的母线SA 的长为4,底面半径OA 的长为2,则圆锥的侧面积等于.14.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)15.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。
山东省聊城市冠县东古城镇中学2020届数学中考模拟试卷

山东省聊城市冠县东古城镇中学2020届数学中考模拟试卷一、选择题1.下列各数中,最大的数是( )A .|﹣2|BC .12-D .﹣π2.北京气象部门测得冬季某周内七天的气温如下:3,5,5,4,6,5,7(单位:℃),则这组数据的平均数和众数分别是( )A .6,5B .5.5,5C .5,5D .5,4 3.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为24.2018年安徽省生产总值首次突破3万亿元大关,工业增加直增速创近1年新高居全国第四位、中部第一位(数据来源:安微信息网).其中数据3万亿用科学记数法表示正确的是( )A .3×104B .3×108C .3×1012D .3×10135.如图,60AOB ∠=,以点O 为圆心,以任意长为半径作弧交OA ,OB 于,C D 两点,分别以,C D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段6OM =,则M 点到OB 的距离为( )A.3 C.6 D.6.如图所示,在直角坐标系中,A 点坐标为(-3,-2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( )A .(-3,0)B .(-2,0)C .(-4,0)或(-2,0)D .(-4,0)7.已知直线y =mx ﹣1上有一点B (1,n ,则此直线与两坐标轴围成的三角形的面积为( )A .12B .14或12C .14或18D .18或128.已知抛物线223y x mx m =+-(m 是常数),且无论m 取何值,该抛物线都经过某定点H ,则点H 的坐标为A .3,12⎛⎫- ⎪⎝⎭B .3,12⎛⎫-- ⎪⎝⎭C .39,24⎛⎫ ⎪⎝⎭D .39,24⎛⎫- ⎪⎝⎭9.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(,1),半径为1,那么⊙O 与⊙A 的位置关系是( )A .内含B .内切C .相交D .外切10.如图,点O 是等边三角形ABC 内的一点,BOC=150∠︒,将BCO ∆绕点C 按顺时针旋转60︒得到ACD ∆,则下列结论不正确的是( )A.BO=ADB.DOC=60∠︒C.OD AD ⊥D.OD//AB 11.已知抛物线2y ax bx c =++(,,a b c 为常数,0a <),其对称轴是1x =,与x 轴的一个交点在()2,0,()3,0之间.有下列结论:①0abc <;②0a b c -+=;③若此抛物线过()12,y -和()23,y 两点,则12y y <,其中,正确结论的个数为( )A.0B.1C.2D.312.如图,在ABC ∆中,8AB =,6BC =,10AC =,D 为边AC 上一动点,DE AB ⊥于点E ,DF BC ⊥于点F ,则EF 的最小值为( )A .2.4B .3C .4.8D .5二、填空题 13.在△ABC 中,AB =AC ,CD 是AB 边上的中线,点E 在边AC 上(不与A ,C 重合),且BE =CD .设AB BC=k ,若符合条件的点E 有两个,则k 的取值范围是_____. 14.若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有实数根,则k 的取值范围是_____.15.如图,AOB 中,AOB 90∠=,AO 3=,BO 6=,AOB 绕顶点O 逆时针旋转到A'OB'处,此时线段A'B'与BO 的交点E 为BO 的中点,则线段B'E 的长度为______.16.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙跑了_____ 米.17.用一组a,b,c(c≠0))的值说明命题“如果a<b,那么ac<bc”是错误的,这组值可以是a=______,b=______,c=______.18.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=12,BC=9,则EF的长是_____.三、解答题19.先化简,再求值:22221111x x xxx x--⎛⎫÷--⎪-+⎝⎭,其中x是满足|x|≤2的整数.20.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁于2014年底开工.按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18分钟,最快列车时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?21.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.22.制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?(3)该种材料温度维持在40℃以上(包括40℃)的时间有多长?23.(1)先化简,再求值:211121a a a a -÷+++,其中a =2; (2)如图,在▱ABCD 中,E 为BC 边上的中点,将△ABE 沿AE 折叠,点B 的对应点为点F ,延长AF 与CD 交于点G ,求证:GC =GF .24.在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD 与CE 交于点F ,AB =CF .(1)如图1,求证:DF =DB ;(2)如图2,若AF ,在不添加任何辅助线和字母的情况下,请写出图中所有度数与3∠FAE 的度数相等的角.25.计算:﹣(﹣22﹣1﹣4cos60° 【参考答案】***一、选择题13.3k <<且1k ≠ 14.k≤5且k≠1.15 16.145017.2 -118.5三、解答题19.13-【解析】【分析】首先计算括号里面的,先通分再加减,然后把把分母分解因式,把除法变成乘法约分化简,再取x 的整数值时,要考虑到分式有意义的条件.【详解】 原式=2(2)121(1)(1)1x x x x x x x ---+÷+-+ =(2)1(1)(1)(2)x x x x x x x -+⋅+-- =11x -, ∵|x|≤2的整数,∴﹣2≤x≤2,∵分式有意义,∴x≠0,2,﹣1,1,∴取x =﹣2, ∴原式=121--=﹣13. 【点睛】此题主要考查了分式的化简求值,关键是首先把分式进行正确的化简,再代入整数求值.20.京张高铁最慢列车的速度是180千米/时.【解析】【分析】设京张高铁最慢列车的速度是x 千米/时,则最快列车的速度是2920x 千米/时,根据等量关系:京张高铁列车从张家口到北京最快用时比最慢用时少18分钟,列出方程求解即可.【详解】设京张高铁最慢列车的速度是x 千米/时,由题意,得17417418296020x x -=, 解得x =180,经检验,x =180是原方程的解,且符合题意,答:京张高铁最慢列车的速度是180千米/时.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题主要用到公式:时间=路程÷速度.21.(1)④(2)见解析【解析】【分析】(1)根据平行四边形的判定选择的条件能使四边形ABCD 是平行四边形,然后即可证明四边形ABCD 是菱形;(2)首先证明△AOB ≌△AOD ,然后结合AD ∥BC 可得到AB =AD= BC ,根据平行四边形的判定可得四边形ABCD 是平行四边形,再由AC ⊥BD 可证□ABCD 是菱形.【详解】解:(1)选择④可以使四边形ABCD 是菱形.(2)证明:∵AC ⊥BD ,∴∠AOB =∠AOD =90°.∵AC 平分∠BAD ,∴∠BAO =∠DAO .又∵AO =AO ,∴△AOB ≌△AOD .∴AB =AD .∵AD ∥BC ,∴∠DAO =∠BCO .又∵∠BAO =∠DAO ,∴∠BAO =∠BCO .∴BA =BC .∴AD =BC .又∵AD ∥BC ,∴四边形ABCD 是平行四边形.又∵AC ⊥BD ,∴□ABCD 是菱形.【点睛】本题考查平行四边形的判定和性质以及菱形的判定和性质,灵活运用性质定理进行推理论证是解题关键.22.(1)915(05)300(5)x x y x x+≤≤⎧⎪=⎨>⎪⎩;(2)20分钟;(3)8518分钟 【解析】【分析】(1)分成0≤x≤5和x >5两种情况,利用待定系数法即可求解;(2)在当x >5时的函数解析式中,求得y =15时对应的自变量x 的取值即可;(3)在两个函数解析式中求得y =40时对应的自变量的值,求差即可.【详解】(1)当0≤x≤5时,设函数的解析式是y =kx+b ,则15560b k b =⎧⎨+=⎩ , 解得:159b k =⎧⎨=⎩ 则函数的解析式是:y =9x+15;3005x y x=当>时, ; 综上所述,915(05)300(5)x x y x x+≤≤⎧⎪=⎨>⎪⎩ (2)把y =15代入300y x =,得30015=x,x =20; 经检验:x =20是原方程的解.则当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了20分钟;(3)把y =40代入y =9x+15得x =259;把y =40代入300y x =得x =7.5, 所以材料温度维持在40℃以上(包括40℃)的时间为7.5﹣259=8518 分钟. 【点睛】本题考查了二次函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.23.(1)3;(2)见解析.【解析】【分析】(1)根据分式的除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题;(2)根据题意,作出合适的辅助线,然后利用平行四边形的性质即可证明结论成立.【详解】(1)211121a a a a -÷+++ 21(1)11a a a +=⋅+- 11a a +=- 当a=2时,原式2121+==-3; (2)连接FC . ∵四边形ABCD 是平行四边形,E 为BC 边上的中点,将△ABE 沿AE 折叠,点B 的对应点为点F ,∴BE=EC=EF ,∠B=∠AFE ,AB ∥DC ,∴∠EFC=∠ECF ,∠B+∠BCD=180°.∵∠AFE+∠EFG=180°,∴∠EFG=∠BCD ,∴∠GCF=∠CGF ,∴GC=GF .【点睛】本题考查了分式的化简求值、平行四边形的性质、翻折变化,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)证明见解析;(2)∠CAB ,∠ABC ,∠DFC ,∠AFE 与3∠FAE 的度数相等,理由见解析.【解析】【分析】(1)由余角的性质可得∠DAB=∠DCE ,由“AAS”可证△ADB ≌△CDF ,可得DF=BD ;(2)由等腰三角形的性质可求∠DFB=∠DBF=45°,即可求∠ABD=∠DBF+∠ABF=67.5°,由全等三角形的性质可得∠CAB=∠DCF=∠ABD=∠AFE=67.5°=3∠FAE .【详解】(1)∵AD ⊥BC ,CE ⊥AB∴∠B+∠DAB =90°,∠B+∠DCE =90°∴∠DAB =∠DCE ,且∠ADB =∠ADC =90°,CF =AB∴△ADB ≌△CDF(AAS)∴DF =BD(2)∠CAB,∠ABC,∠DFC,∠AFE与3∠FAE的度数相等,理由如下:如图:连接BF,∵DF=DB,∠ADB=90°∴∠DFB=∠DBF=45°,BF DF,且AF DF∴AF=BF∴∠FAE=∠FBE∴∠DFB=2∠FAE=2∠ABF=45°∴∠FAE=∠FBE=22.5°∴∠ABD=∠DBF+∠ABF=67.5°∴∠ABD=3∠FAE∵△ADB≌△CDF∴∠DCF=∠ABD=∠AFE=67.5°=3∠FAE,AD=CD∴∠DAC=∠DCA=45°∴∠CAB=67.5°=3∠FAE【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.25.-1【解析】【分析】直接利用负指数幂的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案.【详解】原式=111 24222 ---⨯=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省聊城市冠县2020年中考数学一模卷一、选择题(本大题共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.计算﹣(+1)+|﹣1|,结果为()A.﹣2 B.2 C.1 D.0【分析】原式利用绝对值的代数意义,以及加法法则计算即可求出值.【解答】解:原式=﹣1+1=0,故选:D.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.2.下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.a÷a﹣2=a3 D.(﹣ a2b)3=﹣a6b3【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=7x2,不符合题意;B、原式=6x6,不符合题意;C、原式=a•a2=a3,符合题意;D、原式=﹣a6b3,不符合题意,故选:C.【点评】此题考查了整式的混合运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.3.如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0 B.小于0 C.等于0 D.不确定【分析】由a+c=0可知a与c互为相反数,所以原点是AC的中点,利用b、d与原点的距离可知b+d与0的大小关系.【解答】解:∵a+c=0,∴a,c互为相反数,∴原点O是AC的中点,∴由图可知:点D到原点的距离大于点B到原点的距离,且点D、B分布在原点的两侧,故b+d<0,故选:B.【点评】本题考查数轴、相反数、有理数加法法则,属于中等题型.4.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图是两个正方形,俯视图是三个正方形,不符合题意;B、左视图与俯视图不同,不符合题意;C、左视图与俯视图相同,符合题意;D左视图与俯视图不同,不符合题意,故选:C.【点评】此题主要考查了由几何体判断三视图,考查了空间想象能力,解答此题的关键是要明确:由几何体想象三视图的形状,应分别根据几何体的前面、上面和左侧面的形状想象主视图、俯视图和左视图.5.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.6【分析】设方程的另一个根为n,根据两根之和等于﹣,即可得出关于n的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n,则有﹣2+n=﹣5,解得:n=﹣3.故选:B.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.6.如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40° B.45° C.50° D.60°【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.7.方程=1的解是()A.x=1 B.x=3 C.x=4 D.无解【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x的系数化为1,求出x的值,将求出的x的值代入最简公分母中进行检验,即可得到原分式方程的解.【解答】解:化为整式方程为:3﹣x﹣1=x﹣4,解得:x=3,经检验x=3是原方程的解,故选:B.【点评】此题考查了分式方程的解法.注意解分式方程一定要验根.8.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形 C.正四边形 D.正三角形【分析】设AB是正多边形的一边,OC⊥AB,在直角△AOC中,利用三角函数求得∠AOC的度数,从而求得中心角的度数,然后利用360度除以中心角的度数,即可求得边数.【解答】解:正多边形的内切圆与外接圆的周长之比为:2,则半径之比为:2,设AB是正多边形的一边,OC⊥AB,则OC=,OA=OB=2,在直角△AOC中,cos∠AOC==,∴∠AOC=30°,∴∠AOB=60°,则正多边形边数是: =6.故选:B.【点评】本题考查学生对正多边形的概念掌握和计算的能力,正多边形的计算一般是转化成半径,边心距、以及边长的一半这三条线段构成的直角三角形的计算.9.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x >ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故选:D.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.10.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【分析】根据勾股定理求出BC,根据正弦的概念计算即可.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sinA==,故选:B.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.11.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【分析】分三种情况进行讨论,当0≤x≤1时,当1≤x≤2时,当2≤x≤3时,分别求得△ANM的面积,列出函数解析式,根据函数图象进行判断即可.【解答】解:由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,则S△ANM=AN•BM,∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,则S△ANM=AN•BC,∴y=(3﹣x)•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=9﹣3x,∴S△ANM=AM•AN,∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;故选:A.【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.利用数形结合,分类讨论是解决问题的关键.12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【分析】①由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=﹣4a、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当x=5时y>0,即可得出a﹣b+c>0,结论③错误;④将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当x<2时,yy随x增大而减小,结论⑤错误.综上即可得出结论.【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,y随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选:C.【点评】本题考查了抛物线与x轴的交点、二次函数图象与系数的关系以及二次函数图象上点的坐标特征,逐一分析五条结论的正误是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分,只要求写出最后结果)13.(3分)已知==3,则(b+d≠0)的值是 3 .【解答】解:由==3,得3b=a,3d=c,∴.故答案为:314.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.【解答】解:∵一个质地均匀的小正方体有6个面,其中标有数字5的有2个,∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.故答案为:.15.(3分)如果关于x的方程x2﹣3x+m=0没有实数根,那么m的取值范围是.【解答】解:∵关于x的方程x2﹣3x+m=0没有实数根,∴b2﹣4ac=(﹣3)2﹣4×1×m<0,解得:m>,故答案为:m>.16.(3分)一个滑轮起重装置如图所示,滑轮的半径是10cm,当滑轮的一条半径OA绕轴心O按逆时针方向旋转的角度为120°时,重物上升πcm(结果保留π).【解答】解:l==πcm;故答案为π.17.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1、3,与y轴负半轴交于点C,在下面四个结论中:①2a+b=0;②c=﹣3a;③只有当a=时,△ABD是等腰直角三角形;④使△ACB为等腰三角形的a的值有三个.其中正确的结论是①②③.(请把正确结论的序号都填上)【解答】解:①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x=﹣=1,即2a+b=0.故①正确;②∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,即c=﹣3a.故②正确;③要使△ABD为等腰直角三角形,必须保证D到x轴的距离等于AB长的一半;D到x轴的距离就是当x=1时y的值的绝对值.当x=1时,y=a+b+c,即|a+b+c|=2,∵当x=1时y<0,∴a+b+c=﹣2,又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=﹣1时y=0,即a﹣b+c=0,x=3时y=0,即9a+3b+c=0,解这三个方程可得:b=﹣1,a=,c=﹣.故③正确;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵BO=3,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AB=AC=4时,∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AC=BC时,在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无解.经解方程组可知只有两个a值满足条件.所以④错误.故答案为:①②③.三、解答题(本大题共8小题,共计69分。