比例的意义和基本性1

合集下载

比例的意义和比例的基本性质

比例的意义和比例的基本性质
通过比例关系,可以计算 出物体运动的速度和加速 度。
确定力的关系
通过比例关系,可以确定 物体之间的作用力和反作 用力。
计算热量和能量
通过比例关系,可以计算 出物体吸收或释放的热量 和能量。
在经济学中的应用
确定成本和收益
比较市场占有率
通过比例关系,可以计算出生产或销 售的成本和收益。
通过比例关系,可以比较不同企业在 市场中的占有率。
THANKS
感谢观看
03
比例的应用
在几何学中的应用
01
02
03
确定物体位置
通过比例关系,可以确定 物体在平面或空间中的位 置。
计算面积和体积
利用比例关系,可以计算 出平面图形或立体图形的 面积和体积。
测量长度
通过比例尺,可以将实际 距离转化为图纸上的长度, 或者将图纸上的长度转化 为实际距离。
在物理学中的应用
计算速度和加速度
总结词
合比性质是指在一个比例中,如果两个数的比等于另外两个 数的和的比,则这个比例具有合比性质;分比性质是指在一 个比例中,如果两个数的比等于另外两个数的差的比,则这 个比例具有分比性质。
详细描述
合比性质和分比性质是比例的另外两个重要性质。如果 a:b=(a+c):(b+d),则这个比例具有合比性质。同样地,如果 a:b=(a-c):(b-d),则这个比例具有分比性质。这些性质在解决 数学问题时非常有用,可以帮助我们简化复杂的比例关系。
比例的乘法运算可以通过将比例的分子和分母分别相乘来实现。例如,如果有一个比例为2:3,另一个比 例为3:4,则它们的积为(2*3):(3*4)=6:12。
比例的除法运算
总结词
比例的除法运算是指用一个比例去除另一个 比例,以得到一个新的比例。

六年级数学比例重点知识汇总

六年级数学比例重点知识汇总

六年级数学比例重点知识汇总孔子曰:学而时习之。

课后作业也是学习和巩固数学的重要环节。

下面是小偏整理的六年级数学比例重点知识汇总,感谢您的每一次阅读。

六年级数学比例重点知识汇总(一)比例的意义和基本性质1、比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:3组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

2、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

3、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例有基本性质,它是解比例的依据。

4、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

(二)正比例和反比例1、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④、y=5x,y和x成正比例,因为:y÷x=5(一定)。

⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

2、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

人教版小学数学六年级下册说课稿 比例的意义和基本性质(1)

人教版小学数学六年级下册说课稿 比例的意义和基本性质(1)

人教版小学数学六年级下册说课稿比例的意义和基本性质(1)一、说教材1、教学内容:《比例的意义和基本性质》是浙教版数学第十二册的内容。

比例的知识在工农业生产和日常生活中有广泛的应用。

这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。

而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。

学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

2、教学目标:根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

3、教学重、难点:理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

4、教法、学法:根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。

二、说程序设计课堂教学是学生学习数学知识的获得,能力发展的重要途径。

基于此,我设计了如下的教学设计。

(一)复习导入让学生根据所给信息写出四个比。

目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。

(二)教学新课分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

第一部分:先出示几个比,让学生计算它们的比值,然后通过观察、比较,给这些比分类。

通过学生自己的观察、发现,根据比值是否相等来分类。

接着追问:“两个比的比值相等,那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。

运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象,然后列举一个反例,让学生对比观察,引导学生发现他们之间的共同特点,抽象概括出比例的意义。

比例的意义和基本性质

比例的意义和基本性质

03
CHAPTER
比例的应用
在数学中的应用
比例在数学中有着广泛的应用,它涉及到许多数学概念和问 题。例如,在几何学中,比例用于描述两个线段或两个平面 图形的相对大小和位置关系。在代数中,比例用于解决各种 数学问题,如线性方程、不等式和函数等。
比例也用于统计学中,用于描述数据分布和变化规律。例如 ,比例可以用来计算平均数、中位数、众数等统计指标,以 及进行数据分析和预测。
比例的意义和基本性质
目录
CONTENTS
• 比例的定义与意义 • 比例的基本性质 • 比例的应用 • 比例与百分数、比、函数的关系 • 比例的运算 • 比例在实际生活中的应用案例
01
CHAPTER
比例的定义与意义
比例的概念
比例是指两个比值相 等的关系,通常表示 为两个数的商。
在数学中,比例通常 用于解决各种问题, 如计算、建模和推理 等。
04
CHAPTER
比例与百分数、比、函数的 关系
比例与百分数的关系
总结词
比例和百分数都是表示相对数量的工具,但它们在数学和实际应用中有一些重要的区别。
详细描述
比例是一个数学表达方式,用于表示两个数量之间的相对大小,通常表示为两个数的比 值。而百分数是一种表达比例的方式,它表示一个数是另一个数的百分之几。例如,如 果一个数是另一个数的25%,那么这个数就是另一个数的四分之一,可以用比例来表示。
比例与比的关系
总结词
比例和比都是用来比较数量的工具,但 它们在定义和使用上有一些区别。
VS
详细描述
比通常用于表示两个数量之间的关系,通 常用于比较两个数的大小。例如,“苹果 和橙子的比是2:3”表示苹果的数量是橙 子数量的三分之二。而比例通常用于表示 两个数量之间的相对大小,通常表示为两 个数的比值。例如,“苹果和橙子的比例 是2/3”表示苹果的数量是橙子数量的三 分之二。

比例的意义和基本性质 (1)(省一等奖)

比例的意义和基本性质 (1)(省一等奖)
比例的基 本性质
2.4 1.6

60 40
交叉相乘
2.4×40=1.6×60
组成比例有条件,比值相等是关键; 外项内项积相等,基本性质来判断。 根据意义看“比值”;根据性质来看“积” 。
下面各表中相对应的两个量的比能否组成比例?
年龄/岁 12 14
1.
身高/m
时间/时
1.4
2
1.6
6
2.
路程/km
7 7: 3= 3 7 21:9= 3 7 7 3 〓 3
(2)0.5:24和1.5:3.6
1 0.5:24= 48 5 1.5:3.6= 12
所以,0.5:24和1.5:3.6不能组 所以,7:3和21:9可以组成比例。 成比例。
试试身手
3 写出比值是 的两个比,并组成比例。 2
2.4 ︰1.6

内项
外项
60 ︰ 40
在比例中,组成比例的四个数,叫做比例的项。 两端的两项叫做比例的外项,中间的两项叫做 比例的内项。
2.4 ︰1.6

内项
外项
60 ︰ 40
2.4 1.6

60 40
2.4 ︰1.6

内项
外项
60 ︰ 40
2.4 1.6

60 40
2.4 ︰1.6

内项
外项
60 ︰ 40
冀教版六年级数学上册
杨小艳 洛阳市涧西区英语学校
关于“比”,你了解多少?
国旗的学问
中华人民共和国国旗是五星红旗,是中华人民共和国 的象征和标志。我国的第一面国旗长是4.6米,宽3.38米, 1949年10月1日开国大典时由中华人民共和国主席毛泽东亲 手升起。《国旗法》对国旗的制作有明确规范。国旗的通

比例的应用知识点总结

比例的应用知识点总结

比例的应用知识点总结一、比例的意义和基本性质在应用中的体现。

1. 比例的意义。

- 表示两个比相等的式子叫做比例。

例如:2:3 = 4:6,因为2÷3=(2)/(3),4÷6=(2)/(3),这两个比的比值相等,所以它们能组成比例。

- 在实际应用中,判断两个比是否能组成比例,可以通过求比值的方法。

如果两个比的比值相等,那么这两个比就能组成比例。

2. 比例的基本性质。

- 比例的基本性质是在比例里,两个外项的积等于两个内项的积。

如果a:b = c:d,那么ad = bc。

- 应用比例的基本性质可以解比例。

例如,解比例(x)/(3)=(4)/(6),根据比例的基本性质可得6x = 3×4,然后求解x的值,6x=12,x = 2。

二、正比例的应用。

1. 正比例的意义。

- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

例如:汽车行驶的速度一定时,路程和时间成正比例关系,因为(路程)/(时间)=速度(一定)。

2. 正比例关系的图像。

- 正比例关系的图像是一条经过原点的直线。

通过图像可以直观地看出两种量的变化情况,并且可以根据图像上的一个点求出对应的另一个量的值。

3. 正比例的应用实例。

- 例如,已知每支铅笔的单价为2元,购买铅笔的总价和数量成正比例关系。

如果购买5支铅笔,总价为2×5 = 10元;如果知道总价为16元,设购买的数量为x 支,根据正比例关系(总价)/(数量)=单价(一定),可得(16)/(x)=2,解得x = 8支。

三、反比例的应用。

1. 反比例的意义。

- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

例如:当长方形的面积一定时,长和宽成反比例关系,因为长×宽 = 面积(一定)。

比例的意义和基本性1

比例的意义和基本性1

《比例的意义和基本性质》课堂教学实录吴艳教学内容人教版教材第33-34页比例的意义和基本性质。

教学目标1、理解比例的意义,认识比例各部分的名称。

2、能运用比例的意义判断两个比能否组成比例,并会组比例。

3、理解并会应用比例的基本性质。

教学过程一、情境导入,复习比的知识教师出示课件,结合画面引入。

师:同学们请看,这是们祖国各地的风景图片,我们的祖国幅员非常辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。

这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

教师板书课题:比例的意义和基本性质。

师:说到比例,我们很容易想起前面学过……(教师拖长声音)生:比(几乎异口同声地)师:下面就请同学们完成学案的“课前检测”部分,复习一下比的有关知识。

[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。

]二、自主探究,学习比例的意义1、探求共性,概括意义师:刚才第三题10:6 与 4.5:2.7 的比值有何特点?生1:我发现这两个比的比值相等。

师:既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!生2:用等号。

(师把左右两个中间板书 = )师:同学们现在用了等号表示出这样一个式子,这是一个新的表达式,你能给它起个名字吗?生:比例(有几个学生低声说)师:这几位同学很聪明,数学上也起名为“比例”(师板书:比例)师:你现在想知道什么叫比例吗?生:想(学生声音响亮,愿望强烈)师:那就请同学们自学课本32-33页做一做之前的内容,并完成学案上自学引导部分的问题。

(5分钟后多数学生停了笔,教师在学生的回答过程中板书比例的概念,并引导学生把文字语言转化成数学符号语言,得出比例的两种表达式: a:b=c:d或 = (b、d不能为0)2、根据意义,判断比例师:刚刚我们认识了新的式子比例,要是让你来判断两个比是不是能组成比例,你会怎么办?生:看比值是不是相等师出示课件:下面哪组中的两个比可以组成比例?把组成的比例写出来.(1)6∶10 和 9∶15 (2)20∶5 和 1∶4师:比一比看谁说的又快又好!生1:因为 6∶10 = 0.69∶15 = 0.6所以6∶10 = 9∶15生2:因为20∶5 = 41∶4 = 0.25所以20∶5和1∶4不能组成比例.(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。

比例的意义和基本性质

比例的意义和基本性质

比例的意义和基本性质比例在我们的日常生活中无时无刻不存在,比例研究及应用早已不是新鲜的概念,从古至今比例一直是数学中重要的概念,在不同的学科中都有重要的地位。

在建筑学、几何学、艺术学以及工程学中,许多原则和过程都建立在比例的基础上。

本文将讨论比例的意义和基本性质。

首先,我们来看比例的定义。

比例的定义是指在相同的时间内两个不同的数量之间的比率。

比例可以用比例系数、比例常数或比例因子来表示,即:一份量与另一份量之比。

比例系数指两个量之间的比率,是一个无单位的量,而比例常数指两个量之间的恒定比率,是单位之间的比率,比例因子则指相同量级下两个数量之间的比率,可以是一个实数或分数。

比例在实际应用中可以分为两种,即实物比例和金钱比例。

实物比例是指两种物质的比例,它是指对一定量的物质保持一定比例关系。

例如,一袋红豆与一袋绿豆的比例是3:2,而一袋绿豆与一袋黑豆的比例是2:3。

金钱比例是指货币在不同数量物品中的单位比率。

例如,针对不同数量的香槟,每一瓶香槟的价格比率是一致的,比如一瓶20元,两瓶40元,四瓶80元,以此类推。

比例在现代社会中具有重要的意义和作用,它具有以下几个基本性质。

首先,比例是非常精确的,可以用数学上的语言表达出来,这使得它在实际应用中更加准确。

其次,比例是一种比较的概念,无论是实物比例还是金钱比例,都是用来衡量不同物体之间的比率或比较不同物体之间的价格。

第三,比例可以用来评价一个物品或事物,可以用来衡量它的质量或性能,如一个商品的价值,它的成本与收入比率,甚至对一个组织的改善水平等。

此外,比例也是美的追求的基石,它是一种几何学的规律,比如帕拉迪斯比例、金字塔比例和黄金分割比例等,它们被广泛的应用在建筑学和艺术学中。

总之,比例是无处不在的,它为组织节约成本、改善质量提供了可靠的参照,对艺术追求和实践中取得美感也有重要作用。

它不仅仅是一种量度,更是一种规律,一种理论,一种思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《比例的意义和基本性质》说课稿
一、说教材
1、教学内容:
《比例的意义和基本性质》是人教版数学第十二册的内容。

比例的知识在工农业生产和日常生活中有广泛的应用。

这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。

而本节课内容主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。

学生学好这部分知识,不但能够初步接触函数的思想,而且能够用来解决日常生活中一些具体的问题。

2、教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

(2)理解比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

3、教学重、难点:
教学重点:理解比例的意义和基本性质。

教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

二、说教学设计
课堂教学是学生学习数学知识的获得,水平发展的重要途径。

为此,我设计了如下的教学设计。

(一)复习导入
先复习比的一些知识,什么叫比?什么叫比值?然后出示四个比让学求比值。

揭示课题。

(二)教学新课
分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

第一部分:先出示例1,让学生写出比,再计算它们的比值,然后观察、比较,发现比值相等,问:“那他们之间能够用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就能够说两个比相等。

使用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象。

教学比例的意义后,即时组织练习。

第一个是判断导入部分的四个比能否组成比例,并说明理由。

第二个练习是,判断两个比是否能组成比例,在这个过程中,不但使用了比例的意义,而且对比的性质也有一定的使用,以培养学生从多种角度解决问题的水平。

第三个练习是写出比值是0.4的两个比,并组成比例。

三个练习,每一个都在逐步的延伸,意在达到熟练使用比例的意义解决问题的水平。

第二部分:在理解比例的各部分名称时,从比较比和比例有什么区别引出比例各部分的名称。

在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。

接着就做些练习对所学的知识实行巩固及应用。

特别强调了已知两个外项的积等于两个内项的积,利用这个式子改写成比例。

相关文档
最新文档