Stata在医学统计中的应用

合集下载

stata可用数据案例

stata可用数据案例

stata可用数据案例Stata(统计与数据分析软件)是一种流行的统计软件,广泛应用于社会科学、医学、经济学等领域的数据分析和研究中。

下面列举了十个以Stata可用数据案例为题的例子。

1. 经济增长与人均GDP使用Stata分析不同国家的经济增长率与人均GDP之间的关系。

数据包括各国的GDP增长率和人均GDP数据,利用回归分析来探讨经济增长对人均GDP的影响。

2. 教育水平与收入差距使用Stata分析教育水平与个人收入之间的关系。

数据包括个人的教育程度和收入数据,通过计算相关系数和回归分析来研究教育与收入之间的关系。

3. 社会支出与健康状况使用Stata分析各国社会支出与人均健康状况之间的关系。

数据包括各国的社会支出和健康指标数据,通过可视化和回归分析来探讨社会支出对健康状况的影响。

4. 城市化与环境污染使用Stata分析城市化程度与环境污染之间的关系。

数据包括各城市的人口密度和环境指标数据,通过相关性分析和回归分析来研究城市化对环境污染的影响。

5. 金融市场与经济波动使用Stata分析金融市场指数与经济波动之间的关系。

数据包括金融市场指数和宏观经济指标数据,通过时间序列分析和相关系数计算来研究金融市场对经济波动的影响。

6. 健康保险与医疗费用使用Stata分析健康保险覆盖率与个人医疗费用之间的关系。

数据包括个人的健康保险信息和医疗费用数据,通过回归分析和描述统计来研究健康保险对医疗费用的影响。

7. 教育投资与就业率使用Stata分析教育投资与就业率之间的关系。

数据包括各国的教育投资和就业率数据,通过回归分析和可视化来探讨教育投资对就业率的影响。

8. 基础设施建设与经济增长使用Stata分析基础设施建设投资与经济增长之间的关系。

数据包括各国的基础设施建设投资和GDP增长率数据,通过相关性分析和回归分析来研究基础设施建设对经济增长的影响。

9. 政府开支与财政赤字使用Stata分析政府开支与财政赤字之间的关系。

流行病学中的流行病学调查与统计分析软件

流行病学中的流行病学调查与统计分析软件

流行病学中的流行病学调查与统计分析软件流行病学调查和统计分析是流行病学领域中非常重要的研究方法和工具。

在过去的几十年里,由于计算机技术的不断发展和进步,流行病学调查和统计分析软件的应用得到了广泛推广和普及。

本文将介绍流行病学中常用的调查和统计分析软件以及其在流行病学研究中的应用。

一、调查软件调查软件在流行病学调查中起着至关重要的作用。

它们可以用于设计问卷、收集数据、管理数据,并对调查结果进行分析。

目前,流行病学调查常用的软件有Epi Info、OpenEpi和REDCap等。

1. Epi InfoEpi Info是由美国疾病控制与预防中心(CDC)开发的免费的流行病学调查软件。

它具有简单易用、功能强大的特点,并提供了广泛的数据收集、管理和分析功能。

Epi Info支持多种调查方法,包括横断面调查、队列研究和病例对照研究等。

此外,Epi Info还提供了绘制流行病曲线和制作交叉表等功能,方便研究人员进行流行病学分析。

2. OpenEpiOpenEpi是一款开源的流行病学统计软件,其目的是为研究人员提供易于使用和广泛共享的流行病学工具。

OpenEpi包括了多种统计方法,如描述性统计、推断性统计和生存分析等,以及常见流行病学研究设计。

此外,OpenEpi还提供了在线计算器和统计图形绘制功能,方便用户进行数据分析和结果展示。

3. REDCapREDCap是一种专门用于临床研究数据管理和收集的软件。

它由美国维尔京亚历山大大学开发,广泛应用于流行病学研究。

REDCap具有简单灵活、安全可靠的特点,并提供了强大的数据导入、导出和编辑功能,支持多语言和多中心研究。

此外,REDCap还支持自定义问卷和字典,以及用户权限管理,满足不同研究需求。

二、统计分析软件统计分析是流行病学研究中必不可少的环节。

通过对数据进行统计分析,可以揭示流行病的特点和规律,为疾病预防和控制提供科学依据。

目前,常用的流行病学统计分析软件有SPSS、R和Stata等。

STATA使用教程

STATA使用教程

STATA使用教程第一章:介绍 StataStata 是一款统计分析软件,广泛应用于经济学、社会科学、健康科学和医学研究等领域。

本章将介绍 Stata 软件的基本特点、适用范围和主要功能。

1.1 Stata 的特点Stata 是一款功能强大、易于使用的统计软件。

不同于其他统计软件,Stata 具有灵活性高、数据处理效率好的优点。

它支持多种数据文件格式,可以处理大规模的数据集,并且具有丰富的数据处理、统计分析和图形展示功能。

1.2 Stata 的适用范围Stata 软件适用于各类研究领域,涵盖了经济学、社会科学、医学、健康科学等多个领域。

它广泛应用于定量分析、回归分析、面板数据分析、时间序列分析等领域,可用于统计推断、数据可视化和模型建立等任务。

1.3 Stata 的主要功能Stata 软件提供了丰富的功能模块,包括数据导入导出、数据清洗、数据管理、描述性统计、推断统计、回归分析、面板数据分析、时间序列分析、图形展示等。

这些功能模块为用户提供了全面且灵活的数据分析工具。

第二章:Stata 数据处理数据处理是统计分析的前置工作,本章将介绍 Stata 软件的数据导入导出、数据清洗和数据管理等功能。

2.1 数据导入导出Stata 支持导入多种文件格式的数据,如文本文件、Excel 文件和 SAS 数据集等。

用户可以使用内置命令或者图形界面进行导入操作,导入后的数据可以存储为 Stata 数据文件(.dta 格式),方便后续的数据处理和分析。

2.2 数据清洗数据清洗是数据处理的重要环节,Stata 提供了多种数据清洗命令,如缺失值处理、异常值处理和数据类型转换等。

用户可以根据实际情况选择合适的数据清洗操作,确保数据的准确性和完整性。

2.3 数据管理数据管理是有效进行数据处理的关键,Stata 提供了许多数据管理命令,如数据排序、数据合并、数据分割和数据标记等。

这些命令可以帮助用户高效地对数据进行管理和组织,提高数据处理效率。

stata的统计学运用

stata的统计学运用

stata的统计学运用
Stata可以用于各种统计学应用,包括描述统计、假设检验、
回归分析、方差分析、时间序列分析、生存分析等。

描述统计:Stata可以计算数据的均值、中位数、众数、标准差、四分位数等常见的描述统计量,并生成统计报告和图表。

假设检验:Stata可以进行各种假设检验,如t检验、方差分析、卡方检验等。

通过设定显著性水平,可以判断变量之间的差异是否具有统计学意义。

回归分析:Stata可以进行线性回归、逻辑回归、多元回归等。

通过回归分析,可以了解自变量对因变量的影响程度,得到各个变量的系数、显著性等信息。

方差分析:Stata可以进行单因素方差分析、多因素方差分析等。

通过方差分析,可以比较不同组之间的均值是否存在显著差异,用于研究因素对于观测变量的影响。

时间序列分析:Stata提供了一系列用于处理时间序列数据的
命令,可以进行趋势分析、季节性分析、平稳性检验等。

通过时间序列分析,可以了解数据的时间变化规律和趋势。

生存分析:Stata可以进行生存分析,包括Kaplan-Meier法、Cox比例风险模型等。

生存分析用于研究时间至事件发生的概率,常用于医学和流行病学研究。

总之,Stata是一个功能强大的统计软件,可以广泛应用于统计学研究和数据分析领域。

无论是数据描述、假设检验、回归分析、方差分析还是时间序列分析、生存分析等,Stata都提供了相应的工具和命令。

03Stata的数据库操作技巧-《现代医学统计方法与STATA应用》

03Stata的数据库操作技巧-《现代医学统计方法与STATA应用》

第三章 Stata的数据库操作技巧 数据库管理是统计分析软件的基础,熟练地掌握数据库的操作是进行统计分析的前提,特别是对实际资料进行分析时,数据库操作技巧尤显重要。

本章是Stata的基础部分,对需要深入了解Stata或进行复杂的数据库操作的读者,是必不可少的。

§3.1 Stata数据库的建立 Stata数据库的建立有4种方法,即从命令行键盘输入、用Stata的数据编辑器输入、从ASCII数据文件读入,以及从dbase或Foxbase数据库,SAS,SPSS等数据文件中转入。

一、 从键盘输入数据 从键盘输入数据适用于数据量比较少的情况。

用input命令。

例3.1 表3.1为一配对试验数据,试从键盘输入Stata,并保存为Stata格式文件。

  表3.1 配对试验数据 x0 x1 3550 2450  2000 2400  3000 1800  3950 3200  3800 3250  3750 2700  3450 2500  3050 1750 进入Stata后,键入input及变量名x0 x1,Stata即进入数据输入状态。

然后依次输入数据x0和x1,所输数据的顺序与变量名一致,数据间用空格分开,每输完一组键入回车键Enter ,数据输完后键入“end”,Stata将自动退到圆点提示符状态。

. input x0 x1  x0 x1 1. 3550 2450 2.2000 2400 3.3000 1800 4.3950 3200 5.3800 3250 6.3750 2700 7.3450 2500 8.3050 1750 9.end 至此,数据输入完毕。

可用list命令查看。

要将数据存成Stata的格式文件,用命令“save”:. save d:\mydata\ex3-1 该指令在d:\盘的mydata子目录中建立了一个名为“ex3-1.dta”的Stata数据文件。

后缀dta是Stata内定的数据格式文件。

医学统计学(预防医学)

医学统计学(预防医学)
医学统计学的特点
医学统计学具有以下特点
实践性
医学统计学的方法和理论是建立在大量实践经验的基础上的,它提供了解决实际问题的具体方法和技术。
多元性
医学统计学涉及的领域广泛,包括流行病学、临床试验、病因学、预防医学等多个方面。
可靠性
医学统计学的分析结果具有可靠性,因为其分析方法和技术是建立在科学原理和严格数学理论基础上的。
临床试验设计
在临床试验中,医学统计学提供了数据收集、整理、分析和解释的方法和技术,以确保试验结果的准确性和可靠性。
医学统计学的应用领域
医学统计学基本概念
02
VS
在医学统计学中,变量是用于描述和度量个体或群体特征的量度。变量可以是离散的(如性别、血型)或连续的(如体温、血压)。
数据类型
医学统计学中涉及的数据类型包括计数数据(如出生人数、死亡人数)、计量数据(如身高、体重)、等级数据(如疾病严重程度评分)和时间序列数据(如发病率、死亡率随时间的变化)。
医学统计学的定义与特点
03
04
05
起源
医学统计学起源于17世纪,当时欧洲的一些学者开始尝试应用数学方法研究人类生理和病理现象。
医学统计学的历史与发展
发展
自19世纪中叶以来,医学统计学得到了迅速发展,应用范围不断扩大,逐渐成为医学领域中不可或缺的一部分。
现状
目前,医学统计学已经成为一个独立的学科领域,具有较为完善的理论和方法体系。同时,随着计算机技术的不断发展,医学统计学的应用更加广泛和深入。
功能特点
SAS具有强大的数据处理和统计分析能力,同时支持编程方式进行数据处理和分析,可扩展性较强。
应用实例
在医学研究中,SAS可用于复杂的数据处理和高级统计分析,如生存分析、混合效应模型等。

分层生长曲线模型stata

分层生长曲线模型stata

分层生长曲线模型stata
分层生长曲线模型(HLM)是一种统计模型,常用于分析个体在
时间上的变化,特别是在教育、心理学和医学研究中。

这种模型允
许我们考虑数据的层次结构,比如个体观测数据嵌套在群体数据中。

在Stata中,我们可以使用mixed命令来拟合分层生长曲线模型。

首先,我们需要准备数据,确保数据集中包含了个体的多次观
测数据以及个体所属的群体信息。

接下来,我们可以使用Stata中
的mixed命令来拟合分层生长曲线模型。

该命令的语法通常为:
mixed outcome_var time_var || group_var: time_var, covstruct(covariance_structure)。

在这个命令中,我们需要指定因变量(outcome_var)和时间变
量(time_var),并用两个竖线(||)将时间变量和群体变量(group_var)分隔开来。

在后面的部分,我们可以指定时间变量与
群体变量的交互项,以及指定协变量结构
(covariance_structure)。

在拟合了模型之后,我们可以使用Stata的命令来检验模型的
拟合程度、参数估计的显著性以及模型的预测能力等。

同时,我们也可以进行模型诊断,比如检验模型的假设是否成立,以及检验模型的残差是否符合正态分布等。

总之,在Stata中,我们可以使用mixed命令来拟合分层生长曲线模型,并通过一系列的统计检验和诊断来评估模型的质量和适用性。

希望这个回答能够帮助你更好地理解在Stata中如何进行分层生长曲线模型的分析。

医学统计学第四版各章例题SAS与STATA实现第四章

医学统计学第四版各章例题SAS与STATA实现第四章

医学统计学(第四版)各章例题SAS/STATA实现(第四章)例4-2某医生为了研丸一种降血脂新药的临床疗效,按统一纳入标准选择120名高血脂虑者,采用完全随机设计方法将患者等分为4组(具体分组方法见例4-1),进行双盲试验。

6周后测得低密度脂蛋白作为试验结果,见表4・3。

问4个处理组想者的低密度脂蛋白含量总体均数有无差别?表4・3 4个处理组低密度脂蛋白测量值(mmol/L)统讣S zr iu 11Hn扎“23.534.59 4.34 2,66 3,59 3,13 2.64 2.56 3.50 3・25安慰剂组3・30 4.04 3.53 3,56 3.85 4,07 3.52 3・93 4.19 2・96 30 3・102,91 367・ 85431.37 3-93 233 2,98 4,00 3,552.96 4,3 4.16 2・59降血脂新药2.42 336 4.32 2,34 2・68 2,95 1・56 3・11 1・81 17730 272 81.46 233・ 002・4g组 1.98 2・63 2.86 2,93 2,17 2,72 2.65 2・22 2.90 2・972・36 256 2・52 2,27 2,98 3,72 2.80 3・57 4.02 2・312.36 2.28 239 2,28 2,48 2.28 3-21 2・23 232 2・684・8g组2・66 232 2・61 3,64 2,58 3,65 2.66 3.68 2.65 3.02 30 270 80,94 225・ 543.48 2.42 2.41 2,66 3,29 2.70 3.04 2.81 137 1.680・89 1.06 1.08 1,27 1,63 1,89 1.19 2・17 2.28 1727・2g组 1.98 174 Z16 3,37 2,97 1,69 0.94 2・11 2.81 2・52 30 1.97 5839 132.13 1・31 2・51 1.88 1,41 3,19 1,92 2.47 1.02 2.10 371分析步骤:Ho:/7, = “2 = “3 = “4,即4个试验组的总体均数相等H I: 4个试验组的总体均数不全相等a = 0.05按表44中的公式计算各离均差平方和SS、自由度V、均方MS和F值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Bartlett's test for equal variances:
Comparison of ÖÎÁÆÇ° (bp0) by × ð(group) é± (Scheffe) Row MeanCol Mean low high -4.5 0.570 -5.75 0.413 -1.25 0.955 low
table
. table mods,c(mean ldh sd ldh p50 ldh) mods 0 1 mean(ldh) 282.473 892.15 sd(ldh) 210.1834 638.3892 med(ldh) 219 633
summarize
. sum(ldh),d ldh 1% 5% 10% 25% 50% 75% 90% 95% 99% Percentiles 29 131 146 186 265 460.5 1033 1402.3 2250 Largest 2036 2047.4 2250 2272 Smallest 2.9 29 115 117
signrank ranksum kwallis
. ranksum ldh,by(mods) Two-sample Wilcoxon rank-sum (Mann-Whitney) test mods 0 1 combined unadjusted variance adjustment for ties adjusted variance obs 85 28 113 22610.00 -1.13 22608.87 rank sum 3885 2556 6441 expected 4845 1596 6441
sktest sdtest
. sktest ldh Skewness/Kurtosis tests for Normality Variable ldh Obs 113 Pr(Skewness) 0.0000 Pr(Kurtosis) 0.0000 adj chi2(2) 52.62 joint Prob>chi2 0.0000
ratio = sd(0) / sd(1) Ho: ratio = 1 Ha: ratio < 1 Pr(F < f) = 0.0000 Ha: ratio != 1 2*Pr(F < f) = 0.0000
f = degrees of freedom =
Ha: ratio > 1 Pr(F > f) = 1.0000
diff = mean(0) - mean(1) Ho: diff = 0 Ha: diff < 0 Pr(T < t) = 0.0000
Ha: diff > 0 Pr(T > t) = 1.0000
ttesti
. ttesti 85 282.47 210.18 28 892.15 638.39 Two-sample t test with equal variances Obs x y combined diff 85 28 113 Mean 282.47 892.15 433.5412 -609.68 Std. Err. 22.79722 120.6444 42.20468 79.33417 Std. Dev. 210.18 638.39 448.6419 [95% Conf. Interval] 237.1352 644.6082 349.918 -766.8859 t = degrees of freedom = Ha: diff != 0 Pr(|T| > |t|) = 0.0000 327.8048 1139.692 517.1643 -452.4741 -7.6850 111
统计分析
统计描述
summarize describe table … graph twoway …
统计推断
ttest oneway anova ranksum kwallis tabi logit …
Stata
list
. l id 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 828966 769948 691896 679641 766834 746872 711428 699401 789971 788979 780270 775535 650668 697919 699401 sex 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 age 65 40 78 79 79 76 58 62 79 21 59 77 57 84 62 76 77 ldh 299.3 2036 881 2250 300 410 2047.4 633 225 1149 881 500 1248 345 633 460.5 359 cr 47.1 395.1 89.4 360.2 775 177 276 235.4 71 37 310 318 180 210 235 157 159 abl 34.4 25.9 39.1 26.2 22.4 21.1 27.1 24.7 30.2 21 34 28 29 32.7 24.7 26 35.4 mods 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 pre .0614 .99972 .17659 .99972 .99995 .86829 .99814 .93165 .1432 .85097 .92918 .94542 .92791 .51026 .93128 .69305 .23909
age 35 44 50 48 60 38 31 47 33 21 66 53
sex Male Female Female Male Male Male Female Female Female Female Male Female
bp0 139 148 139 148 135 150 144 150 151 151 153 142
diff = mean(x) - mean(y) Ho: diff = 0 Ha: diff < 0 Pr(T < t) = 0.0000
Ha: diff > 0 Pr(T > t) = 1.0000
ttest,une
. ttest ldh,by(mods) une Two-sample t test with unequal variances Group 0 1 combined diff Obs 85 28 113 Mean 282.4729 892.15 433.5434 -609.6771 Std. Err. 22.79759 120.6442 42.2047 122.7793 Std. Dev. 210.1834 638.3891 448.6421 [95% Conf. Interval] 237.1374 644.6085 349.9202 -860.8075 327.8085 1139.691 517.1666 -358.5467 -4.9656 28.9508
F
1.08
Prob > F
0.3794
Bartlett's test for equal variances:
Prob>chi2 = 0.808
oneway,sch
. oneway bp0 group,sch Analysis of Variance SS df MS 73.1666667 304.5 377.666667 2 9 11 36.5833333 33.8333333 34.3333333 chi2(2) = 0.4261 Prob>chi2 = 0.808 Source Between groups Within groups Total F 1.08 Prob > F 0.3794
LOGO
Stata在医学统计中的应用 在医学统计中的应用
CHEN DU QQ 415669492
Contents
1 2 3 4 Stata概述 统计描述 统计推断 统计绘图
Stata概述 概述
统计学:挖掘数据背后的真理! 统计学:挖掘数据背后的真理! SAS 、Stata、 SPSS 、
Stata与统计学 与统计学
. sdtest ldh,by(mods) Variance ratio test Group 0 1 combined Obs 85 28 113 Mean 282.4729 892.15 433.5434 Std. Err. 22.79759 120.6442 42.2047 Std. Dev. 210.1834 638.3891 448.6421 [95% Conf. Interval] 237.1374 644.6085 349.9202 327.8085 1139.691 517.1666 0.1084 84, 27
Ho: ldh(mods==0) = ldh(mods==1) z = -6.385 Prob > |z| = 0.0000
oneway
. l
no 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 1 2 3 4 5 6 7 8 9 10 11 12
group placebo placebo placebo placebo low low low low high high high high
bp1
. oneway bp0 group
128 131 122 126ource
Between groups Within groups Total
Analysis of Variance SS df MS
73.1666667 304.5 377.666667 2 9 11 36.5833333 33.8333333 34.3333333 chi2(2) = 0.4261
Obs Sum of Wgt. Mean Std. Dev. Variance Skewness Kurtosis
相关文档
最新文档