11静电场中的电偶极子

合集下载

微波技术与天线考试复习重点(含答案)

微波技术与天线考试复习重点(含答案)

微波技术与天线复习提纲(2011级)一、思考题1. 什么是微波?微波有什么特点?答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ ,波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。

2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有哪些?一般是采用哪些物理量来描述?答:长线是指传输线的几何长度与工作波长相比拟的的传输线;以长线为基础的物理现象:传输线的反射和衰落;主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。

3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义?4. 均匀传输线方程通解的含义5. 如何求得传输线方程的解?6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数错误!未找到引用源。

,相速及波长。

1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为0Z =它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为衰减常数和相移常数,其一般的表达式为γ=传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即p v ωβ=;4)传输线上电磁波的波长λ与自由空间波长0λ的关系2πλβ==。

7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析三者之间的关系答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ zββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。

11-7 静电场中的电偶极子

11-7 静电场中的电偶极子

它们将形成一对力偶,力偶矩大小为
M qr0 E sin pE sin M p E
在非匀强电场中,电偶极子所受合力将不为0。
二 电偶极子在电场中的电势能和平衡位置
若将电偶极子正负电荷所在处的电势分别表示为 则电偶极子在电场中的电势能为
14:11 2
和 u u
u u Ep q(u u ) q( )r0 cos qr0 E cos r0 cos Ep p E
当 当
时,电势能能量最低;当 0
时能量最高。
时能量为零; 2

14:11
3
§11-7 静电场中的电偶极子
一、外电场对电偶极子的力矩和取向作用
和 F 表示正负电荷所受电场力 为零,即 则电偶极子所受合力 F
Hale Waihona Puke F F F F qE qE 0
1
14:11
电偶极子所受合力
虽然为零,但由于 F
和 F
不在一条直线上, F

大学物理授课教案 第八章 静电场中的导体和电介

大学物理授课教案 第八章 静电场中的导体和电介

第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时,称这种状态为导体的静电平衡。

(2)静电平衡条件从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。

从电势角度也可以把上述结论说成: ①⇒导体内各点电势相等; ②⇒导体表面为等势面。

用一句话说:静电平衡时导体为等势体。

二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=•内S Sq s d E 01ε 导体静电平衡时其内0=E,∴ 0=•⎰s d E S, 即0=∑内S q 。

S 面是任意的,∴导体内无净电荷存在。

结论:静电平衡时,净电荷都分布在导体外表面上。

2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=•内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴ 空腔内表面上的净电荷为0。

但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即BAU U =,因此,假设不成立。

结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。

(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=•内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。

又因为此时导体内部无净电荷,而腔内有电荷+q ,∴ 腔内表面必有感应电荷-q ,。

电动力学-选择题填空题判断题问答题复习

电动力学-选择题填空题判断题问答题复习

《电动力学1》随教材复习题目一、章节容:第0章 矢量分析第一章 电磁现象的普遍规律第二章 静电场第三章 静磁场第四章 电磁波的传播第五章 电磁波的辐射二、题型1. 选择题,填空题,判断题、问答题2. 计算题(见教材例题)2018年5月第0章 矢量分析一、选择题0.1设222)()()(z z y y x x r '-+'-+'-=为源点到场点的距离,r 的方向规定为从源点指向场点,则有 ( B )A. 0=∇rB. r r r ∇=C. 0=∇'rD. r r r'∇= 0.2位置矢量r 的散度等于 (B )A .0 B.3 C.r1 D. r 0.3位置矢量r 的旋度等于 (A )A.0B.3C.r rD.3rr 0.4位置矢量大小r 的梯度等于 ( C )A.0 B .r 1 C. r r D.3rr 0.5r 1∇=? ( B ) A. 0 B.3r r - C.r r D .r 0.6⨯∇3r r =? (A ) A. 0 B .r r C.r D.r 1 0.7⋅∇3rr =?(其中r ≠0) ( A ) A.0 B.1 C.r D.r1 二、填空题0.1位置矢量r 的散度等于( 3 )。

0.2位置矢量r 的旋度等于( 0 )。

0.3位置矢量大小r r r 。

0.4无旋矢量场可以引入(标)势来处理,无源矢量场可以引入(矢)势来处理。

0.5(无旋)矢量场可以引入标势来处理,(无源)矢量场可以引入矢势来处理。

三、判断题0.1标量场的梯度必为无旋场。

(√)0.2矢量场的旋度不一定是无源场。

(×) 0.3无旋场必可表示为标量场的梯度。

(√) 0.4无源场必可表示为另一矢量的旋度。

(√)第一章 电磁现象的普遍规律一、选择题1.1对于感应电场下面哪一个说确 ( D )A 感应电场的旋度为零B 感应电场散度不等于零C 感应电场为无源无旋场D 感应电场由变化磁场激发1.2从麦克斯韦方程组可知变化电场是 ( B )A 有源无旋场B 有源有旋场C 无源无旋场D 无源有旋场1.3从麦克斯韦方程组可知变化磁场是 ( D) A 有源无旋场 B 有源有旋场 C 无源无旋场 D 无源有旋场。

电磁场复习题

电磁场复习题

一、填空题⒈电场强度的方向与( )的受力方向相同。

⒉电偶极子产生的电场为()。

⒊无限长带线电荷密度为τ的导线周围电场强度为( )。

⒋静电场中,选定Q点为电位参考点,则空间任一点P的电位值为( )。

⒌电力线的微分方程为( )。

⒍球坐标系中电力线的微分方程为( )。

⒎静电场中,电通密度与电场强度、极化强度之间的关系式为( )。

⒏各向同性的线性介质中,极化强度与电场强度的关系为( )。

⒐极化电介质中电通密度与电场强度和极化强度的关系式为( )。

⒑静电场中媒质分界面上的衔接条件为( )和( )。

⒒静电场中导体与电介质分界面上电位表示的衔接条件为( )和( )。

⒓真空中半径为a的孤立导体球的电容量为( )。

⒔半径为a的球形区域内均匀分布有电荷体密度为ρ,则此球内电场为( )。

⒕静电场中电位函数的泊松方程为( )。

⒖同轴电缆内外导体半径分别为a和b,电压为U,中间介质介电常数为ε,则中间介质的电场强度为( )。

⒗内外半径分别为a和b的同心球面间电容量为( )。

⒘已知带电体上连续电荷分布密度函数和电位分布,计算静电能量的公式为( )。

⒙已知n个分离带电体上电荷量和电位分布,计算总的静电能量的公式为( )。

⒚已知静电场分布区域中电场强度分布以及区域媒质介电常数,总的静电能量计算公式为( )。

⒛电荷为q的带电体在电场中受到电场力为( )。

21静电场中,对带电荷量不变的系统,虚位移法计算电场力的公式为( )。

22静电场中,对电位不变系统,虚位移法计算电场力的公式为( )。

23在自由空间中,电荷运动形成的电流称为( )。

24恒定电场中电流连续性方程为( )。

25恒定电流指的是( )。

2020/3/27 26元电流段具有的形式为( )、( )、( )和( )。

27电流线密度与运动电荷之间的关系为( )。

28焦耳定律的微分形式为( )。

29欧姆定律的微分形式为( )。

30电源电动势与局外场强的关系为( )。

31导电媒质中(电源外)恒定电场的基本方程微分形式为( )和( )。

电偶极子的电场

电偶极子的电场

E dE 1 dqr 0
4 0 r 2
体密度为
体分布
dq dv
E 1 dvr 0
4 0 r 2
面分布 面密度为 dq ds
E 1 dsr 0
4 0 r 2
线分布 线密度为 dq dl
E 1 dlr 0
4 0 r 2
例1.电偶极子 (electric dipole)的场强
电偶极子:一对靠得很近的等量异号的 P× 点电荷所组成的电荷系
试验电荷应满足: (1) 电荷量足够小,不影响原电场 (2) 几何线度充分小,可祝为点电荷
将q0 放入场中不同点, q0 所受力的大小和方向一般不同,说明场是空间分布
若放置在同一点, q0 增加一倍,电场力F也增加一倍,
即: F q0
F q0 常矢量
说明这个常矢量只与电场中处位置有关,而与q0 的大小.正负无关,它反映
因高斯面内无净电
E

e E ds Es 1 0
E0
s1
论 结 均匀带电球面内的场强处处为零
oR
r (2) 球处任一点B的场强
过B点作一高斯球面 s2 (r R)
e
E ds
s2
ES 2
E 4r 2
q
0
q E
4 0r 2
例3、均匀带电球体的电场
E A
B
(1)球外任一点A的场强由上例可得:
4 0 r 2
P点场强
E
F q0
1
4 0
q r2
r0
q
r 0
r 0
q0
P点
q0
点电荷产生的电场分布具有球对称性
(2) 点电荷系的场强
电场由 q1 , q2 ,, qn 产生,P点相对于各点电荷矢径为 r1 , r2 ,, rn

电场强度的计算计算电偶极子较远处的电场

电场强度的计算计算电偶极子较远处的电场

计算电偶极子较远处的电场。
解: 在直角坐标系中先写出电势的表达式,
U 1 q 1 q
40 r 40 r
q
4 0
r r r r
q
4 0
L cos
r2

P cos 4 0r 2

Px
40 (x2
y2 )3/ 2
Ex


U x
P(2x2 y2)
S

l 0

E
侧E? dS E底0E 2drSl
dS
dS
E 2 0r
思考:如果线粗细不可忽略,空间场
强分布如何?
对于具有某种对称性的电场,用高斯定理求场强简便。
例题 求电量为Q 、半径为R的均匀带电球面的场强分布。
源球对称
场强对称
E
E
选高斯面
电偶极矩(电矩) P q l
E

E
1
4 0
(r 2
ቤተ መጻሕፍቲ ባይዱ
q l2
/ 4)
E 2E cos

2
1
4 0
(r 2
q l
2
/
4)

(r
2
l/2 l2 /
4)1/
2

1
4 0
(r 2

ql l2 /
4)3/ 2
P
l E
E

+ P

E
r

q
+q
l/2 l/2
40 (x2 y2 )5/ 2
Ey
U y


4
0

电偶极子的场及辐射

电偶极子的场及辐射

收稿日期:2003-06-14作者简介:吕宽州(1963-),男,河南扶沟人,郑州经济管理干部学院讲师。

文章编号:1004-3918(2003)05-0512-03电偶极子的场及辐射吕宽州1,姜俊2(1.郑州经济管理干部学院,河南郑州450053;2.河南省科学院,河南郑州450002)摘要:采用了镜像法等方法对电偶极子及其产生的静电场、电磁场及辐射等做了较系统和深入的分析、研究,使分析方便、简化,推出的结论有一定实际指导意义。

关键词:电偶极子;电场;磁场;辐射中图分类号:0442文献标识码:A在很多文献上,缺乏对电偶极子及其产生的静电场、电磁场及辐射等较系统和深入的分析、研究。

本文参考有关文献给出或分析、推出了重要结论,部分内容采用了镜像法,使分析更方便。

!电偶极子及其产生的静电场电偶极子由一对正、负点电荷组成,电量为l ,相距为l ,如图1所示。

其电偶极矩p =l l ,l 的方向由~l 指向+l ,在T 处产生的电场的电势为:#(r )=l 4L e 0T +_l4L e 0T _当T !l 时,#(r )=l l cOs 64L e 0T 2=p ·e r 4L e 0T2(1)电场强度为:E =_"@=e r P cOs 62L e 0T 3+e !P si n 64L e 0T3(2)以上结果表明,电偶极子的电势及电场强度的大小分别与距离的平方、三次方成反比,既存在于近区,且与方位角有关,这些特点都与点电荷的电场显著不同。

图2绘出了电偶极子的电力线与等位面。

图1电偶极子F i g .1E lectric d i p O le图2电偶极子的电力线与等位线F i g .2E lectric p Ow er li ne and e C ui p Otential p laneOf e lectric d i p O le第21卷第5期2003年10月河南科学HENAN SC I ENCEV O l.21N O.50ct .2003!电偶极子产生的电磁场及辐射当P =P 0e -j G t 时,为谐振电偶极子,P 0为常矢,则在近区,即l H T 时,主要地一方面将感应如上所述的静电场,另一方面,相当于I =j G C 、长为l 的电流元还将产生一稳恒磁场,其规律可用毕萨定律描述,且电场与磁场的相位相差为90 ,即电场能量与磁场能量相互转换,而平均波印亭矢量为零,故不产生辐射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 M 0
稳定 平衡位置
M 0 非稳定平衡位置
q
q
- +
r0
0
q
q
+ -
r0
2、非均匀电场,电偶极子不仅要转动,而
且还要平动
静电场中的电偶极子
二、电偶极子在电场中的电势能和平衡位置
Ep qV+ qV- q V- V
q
E dl
qE
dl
qE r0 p E
Ep p E
静电场中的电偶极子
一、外电场对电偶极子的力矩和取向作用
电偶极子在均匀电场 中,受到的合力为
F合 F+ F- qE qE 0
M rF
M M M
r0qE sin r0qEpE sin
M p E
静电场中的电偶极子
1、匀强电中场,在力矩作用下,电偶极子
顺时针转动 M p E
静电场中的电偶极子
0
2
Ep p E
q
q
Ep pE 电势能最小 - +
r0
Ep 0
Ep pE 电势能最大
0
q
q
+ -
r0
从能量的观点来看,能量越低,系统的状态越 稳定。
相关文档
最新文档