五年级下册数学:找最大公因数和最小公倍数的几种方法

合集下载

求最大公因数和最小公倍数的方法

求最大公因数和最小公倍数的方法

浅谈最小公倍数和最大公因数的教学明光市桥头镇司巷中心小学黄海燕摘要: 准确快速地求出两个数的最大公因数与最小公倍数的学习是小学生很难掌握的内容,又是至关重要的。

通过观察比较不难发现,当两数成倍数关系或互质关系时可直接写出它们的最大公因数和最小公倍数。

当既要求最大公因数又要求最小公倍数时,用短除法或分解质因数法比较简便;当只求最大公因数时,用除法算式法或小数缩小法比较简便;当只求最小公倍数时用大数翻倍法比较简便。

当这两个数比较大,比较复杂时用短除法比较简便。

看清之间关系,看清数据特征,看清条件与要求,用好最佳方法,认真细心计算。

一、教材分析苏教版小学数学第十册中第22页—31页第三单元公倍和公因数数的教学,从教材分析,这章内容特别重要。

准确迅速的找出它们的最大公因数与最小公倍数,是分数通分、约分必不可少的基础,而分数的通分、约分是进行分数加、减、乘、除四则运算的关键。

对于求最大公因数与最小公倍数能否熟练掌握,直接决定了分数四则运算的准确率,因此求两个数的最大公因数与最小公倍数的学习之重要。

而求两个数的最大公因数与最小公倍数的学习又牵涉到很多的概念。

而且概念间内在联系紧密,可以说是环环相扣,有一个环节学习不好也都会直接影响到下后面的学习,所以最大公因数与最小公倍数的学习是小学生很难掌握的内容,又是至关重要的。

它的概念多,环环相扣主要表现在:在学习最大公因数与最小公倍数时,学生要先掌握因数和倍数的概念,而要掌握因数与倍数的概念还要先掌握整除的概念,而整除这里又需要同学们能够掌握能被2、3、5整除的特征;除此之外,在求地大公因数与最小公倍数时,还讲到了两种特殊的关系,其中互质关系的两个数的最小公倍数是它们的乘积,最大公因数是1,而要正确是判断出两个数是不是互质关系,又要掌握质数与合数的概念;这里有需要同学们记住100以内的质数,这是有一定的难度的。

只有这些都能够熟练地掌握,学习起来最大公因数与最小公倍数才会感觉到轻松自如。

五年级下册数学第二单元知识点整理(因数和倍数)

五年级下册数学第二单元知识点整理(因数和倍数)

五年级下册数学第二单元知识点整理(因数和倍数)1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等4:自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。

叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。

5、自然数按因数的个数来分:质数、合数、1、0四类。

质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1:只有1个因数。

“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3。

五年级下册数学1-4单元知识点

五年级下册数学1-4单元知识点

五年级下册数学1-4单元知识点一、观察物体(三)1. 根据从一个方向看到的图形摆几何体。

- 从一个方向看到的图形,可以摆出多种不同的几何体。

例如,从正面看是一个正方形,这个几何体可能是一个正方体,也可能是一个底面为正方形的长方体(高不确定)等。

2. 根据从三个方向看到的图形摆几何体。

- 从三个方向(正面、左面、上面)看到的图形能确定唯一的几何体。

我们要综合考虑各个方向看到的形状和层数、列数、行数等信息来确定几何体的形状。

二、因数与倍数。

1. 因数和倍数的概念。

- 在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

例如,12÷3 = 4,12是3的倍数,3是12的因数。

因数和倍数是相互依存的,不能单独说某个数是因数或倍数。

2. 找一个数的因数。

- 找一个数的因数可以一对一对地找。

例如,18的因数有1、18、2、9、3、6。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

3. 找一个数的倍数。

- 用这个数分别乘1、2、3……就可以得到它的倍数。

例如,3的倍数有3、6、9、12……一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

4. 2、3、5的倍数的特征。

- 2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数。

是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

- 3的倍数特征:一个数各位上的数字之和是3的倍数,这个数就是3的倍数。

例如,123各位数字之和为1 + 2+3=6,6是3的倍数,所以123是3的倍数。

- 5的倍数特征:个位上是0或5的数是5的倍数。

- 既是2又是5的倍数特征:个位上是0的数既是2的倍数又是5的倍数。

5. 质数和合数。

- 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

例如,2、3、5、7、11等都是质数。

- 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

五年级下册数学知识点

五年级下册数学知识点

五年级下册数学知识11、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

最小的自然数是02、因数、倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

例:12÷2=6, 12是6的倍数,6是12的因数。

为了方便,在研究因数和倍数时,我们所说的数是自然数(一般不包括0)。

数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

一个数的最大因数=最小倍数=它本身3、2、3、5的倍数特征1)奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

①自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数,叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

②最小的奇数是1,最小的偶数是0.③奇数、偶数的运算性质:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数(大减小) 奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数2)数的整除特征例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是( 984 ),最小的是( 450 )②在能被3整除的数中,最大的是( 984 ),最小的是( 405 )③在能被5整除的数中,最大的是( 980 ),最小的是( 405 )2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能( 4 )种填法。

4、质数和合数①质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质素和(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

五年级下册数学最大公因数和最小公倍数

五年级下册数学最大公因数和最小公倍数

他们共同的休息日:12,24 这些数和4,6有什么关系?
4和6的公倍数:
……
4和6的公倍数还能找出一些来吗? 可以找多少?
其中最早的一天: 12 最小公倍数:
4的倍数:4,8,12,16,20,24,28,… 6的倍数:6,12,18,24,30,… 4和6的公倍数:12, 24,… 4和6的最小公倍数:12
要求把它剪成若干个大小相同的最大正方形,实际上就是求硬纸板的 长和宽的最大公因数。(60, 56)=4,所以最大正方形的边长是 4 厘米。 答:最大正方形的边长是 4 厘米。
例2:甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行 一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟。 三辆汽车同时从同一个起点出发,问:这三辆汽车至少要多 长时间才能同时回到出发地?
要把96朵红玻瑰花和72朵白玫瑰花做成花束,且每束花里的红玻瑰花朵数相同, 白玫瑰花朵数也相同,那么做成花束的个数一定是96和72 的公因数,又要求花束 的个数最多,所以花束的个数应是96和72的最大公因数。 解:最多可以做多少个花束?(96,72)=24(个) 每个花束里有几朵红玫瑰花? 96÷24=4(朵) 每个花束里有几朵白玫瑰花? 72 ÷ 24=3(朵) 每个花束里至少有几朵花? 4+3=7(朵) 答:最多可以做24个花束,每个花束里至少有7朵花。
8的因数: 1,2,4,8。 12的因数:1,2,3,4,6,12。 8和12的公因数: 1,2,4。
最大公因数
有三根铁丝,分别长8厘米、12厘米、 6厘米,要把它们截成同样大小的小段 (取整厘米数),不能有剩余,每段铁丝 最长多少厘米?
8的因数: 1,2,4,8。 12的因数:1,2,3,4,6,12。 6的因数: 1,2,3,6。

五年级数学下册公因数、公倍数(西师版)全面版

五年级数学下册公因数、公倍数(西师版)全面版
4=2×2 6=2×3
4和6的最小公倍数是2×2×3=12 4和6的其它公倍数是12,24,36,48…
怎样快速找出两个数的 公倍数和最小公倍数呢?
也可以这样算。
2 46 2 3 ……4÷2=2, 6÷2=3
4和6的最小公倍数是2×2×3=12
4和6的公倍数是12,24,36,48…
怎样快速找出两个数的 公倍数和最小公倍数呢?
用韦恩图来表示 表格中的数据吧。
12的因数 1 2 3 4 6 12 30的因数 1 2 3 5 6 10 15 30
12的因数 30的因数 1 2 3 • 2 123 5 4 6 12 3 6 6101530
12和30公有的因数
12的因数 30的因数
4,12
1, 2 5,10,15, 3, 6 30
●把两个数写在短除法竖式内。 ●用两个数公有的质因数作除数。 ●最后除得两个数的商只有公因数1。 ●把两个数公有的质因数和独有质因数 相乘,积就是这两个数的最小公倍数。 求两个数的最小公倍数的方法。
你能找出6和8的公倍数 和最小公倍数吗? 3和7的最小公倍数呢?
2 68 3 4 ……6÷2=3, 8÷2=4
6和8的最小公倍数是2×3×4=24
4和6的公倍数是24,48,96,…
3和7的最小公倍数是21。
1.把16个橘子,20个苹果按下面要求 放到篮子里。最多要多少个篮子? 每个篮子里既放 橘子又放苹果。
每个篮子里橘子 个数相同,苹果
个数也相同。
2.填一填。
×1 2 3 4 5 6 7 8 9
36 45 54 63 72 81
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时

怎样求两个数的最小公倍数

怎样求两个数的最小公倍数

怎样求两个数的最小公倍数马鞍镇中心小学冯金元义务教育实验教科书---数学---五年级---下册,教材给出了两种基本方法。

一种方法是先分别各自的倍数,再从中找出公倍数和最小公倍数。

教材的插图介绍了两个同学的不同表示方式。

另一种方法是先写出一个数的倍数,再从小到大圈出另一个数的倍数,第一个圈出的就是它们的最小公倍数。

这种方法同样用插图加以展现。

接下去,教材提出问题:“你还有其他方法吗?和同学们讨论一下。

”旨在通过相互交流、启发,开拓思路,达到算法多样化,体现个性化的教学意图。

笔者在长期教学实践中,根据课本练习的穿插,引导学生在课堂中总结了一下几种常见的求两个数的最小公倍数的方法。

1、找倍数法(列举法)。

例如:求6和8的最小公倍数。

6的倍数有:6,12,18,24,30,36,42,48,……8的倍数有:8,16,24,32,40,48,……6和8的公倍数:24,48,……其中24是6和8的最小公倍数。

这种方法是先分别写出各自的倍数,再找出它们的公倍数,然后在公倍数里找出它们的最小公倍数。

2、分解质因数法。

我们也可以利用分解质因数的方法,比较简便地求出两个数的最小公倍数。

例如:求60和42的最小公倍数。

60=2×2×3×542=2 ×3 ×760和42的最小公倍数=2×3×2×5×7=420 。

这种方法是把60和42分别质因数后,观察相同的质因数只取一个(如2,3),把各自独有的质因数全部乘进去,所得的积就是这两个数的最小公倍数。

3、短除法。

用短除法求18和24的最小公倍数。

2 18 24 …………先同时除以公因数23 9 12 …………再同时除以公因数33 4 ……除到两个商只有公因数1为止。

把所有的除数和最后的两个商连乘,得到:18和24的最小公倍数是2×3×3×4=72,可表示为[18,24]=2×3×3×4=72。

部编人教版小学五年级数学下册知识点总结

部编人教版小学五年级数学下册知识点总结

部编人教版小学五年级数学下册知识点总结五年级下册数学重点知识总结第一单元《因数和倍数》因数和倍数的意义:(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数数和商的倍数,除数和商是被除数的因数。

(2)如果a×b=c(a、b、c都不为的整数),那么a、b就是c的因数,c就是a、b的倍数。

数与倍数的关系:因数和倍数是相互依存的。

找一个数的因数的方法:用这个数除以1、2、3…..能整除时,所得的商和除数就是这个数的因数。

找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与1、2、3…..相乘,所得积就是这个数的倍数。

一个数倍数的特征:倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数因数的特征:因数的个数是有限的,最小的因数是1,最大的因数是它本身。

注:一个数最小倍数和最大因数都是它本身2、3、5的倍数的特征2的倍数的特征:个位上是、2、4、6、8的数都是2的倍数。

5的倍数的特征:个位上是或5的数都是5的倍数.。

3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数既是2又是5的倍数的特征:个位上是数都是2、5的倍数.。

同时是2、3、5倍数的特征:(1)个位上是的数,(2)个数各位上的数的和是3的倍数。

按是不是2的倍数可分为:奇数和偶数偶数:是2的倍数的数叫做偶数,(或个位上是、2、4、6、8的数),最小的偶数是。

奇数:不是2的倍数的数叫做奇数。

(或个位上是1、3、5、7、9的数)最小的奇数是1.注:自然数中除了偶数就是奇数。

数的奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数(大减小),奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

质数和合数按因数的个数把自然数(除外)可分为:质数、1、合数三类质数:一个数,假如只要1和它本身两个因数,如许的数叫做质数(或素数);合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

找最大公因数和最小公倍数的几种方法
(质数又叫做素数,公因数又叫做公约数)
一、找最小公倍数的方法
1、列举法
方法1、先分别写各自的(倍数),再找它们的(公倍数),然后在公倍数里找它们的(最小公数)。

方法2:先找较大数的(倍数),再找其中哪些是(较小)的倍数,最后找它们的(最小公倍数)
'
2
这种方法是分解质因数后,找出二个数相同的(质因数),,及二个数各自独有的(质因数),然后把二个数相同的(质因数,只取一个。

)和二个数各自独有的(质因数),全部乘进去,所得的积就是这两个数的最小公倍数。

42=2 ×3 ×7
60和42的最小公倍数=2×3 ×2×5×7=420 。

3、短除法。

用短除法求两个数的最小公倍数,一般用这两个数除以它们的(公因数),一直除到所得的两个商(只有公因数1)为止。

把所有的(除数)和最后的两个(商)连乘起来,就得到这两个数的(最小公倍数)。

4、特殊方法(观察法)

1)两个数具有倍数关系的,它们的最小公倍数就是其中(较大)的数。

2)两个数是互质数的(互质数就是两个数只有公因数1),它们的最小公倍数是二个数的(乘积)。

?
二、找最大公因数的方法
1、列举法
先找出两个数的(因数),再找出两个数的(公因数),最后找出二个数的(最大公因数)
2、分解质因数法。

用分解质因数方法找二个数的最大公因数,是分解质因数后,找出相同的(质因数),把相同的(质因数)相乘,所得的积就是这两个数的最大公因数。

3、短除法。

用短除法求二个数的最大公因数,一般用这两个数除以它们的(公因数),一直除到所得的两个商(只有公因数1)为止。

然后把最后所有的(除数)连乘,就得到了二个数最大公因数。

4、观察法
1)两个数具有倍数关系的,它们的最大公因数就是其中(较小)的数。

2)两个数是互质数的(互质数就是两个数只有公因数1),它们的最大公因数就是(1).。

相关文档
最新文档