【泄露天机】2018届全国统一招生高考押题卷理科数学(一)试卷(含答案)

合集下载

2018年高考理科数学全国卷1含答案

2018年高考理科数学全国卷1含答案

9.【答案】C 【解析】若 g(x) 存在 2 个零点,即 f (x) x a 0 有 2 个不同的实数根,即
y f (x) 与 y x a 的图像有两个交点,由图可知直线 y x a 不在直线 y x 1
的上方即可,即 a 1 ,则 a 1 .故选 C.
B. M(A)
N(B)
M
16
2
4N
8.【答案】D
【解析】由方程组

y 2 (x 3
y2 4x

2)
,解得

x y
1 2


x y

4 4
,不妨记
M
(1,
2),
N
(4,
4)
.
又 F 为 (1,0) ,所以 FM FN (0, 2) (3, 4) 8 ,故选 D.
检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取 20 件作检 验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率
都为 p 0 p 1 ,且各件产品是否为不合格品相互独立. ⑴记 20 件产品中恰有 2 件不合格品的概率为 f p ,求 f p 的最大值点 p0 ;
2018 年普通高等学校招生全国统一考试
理科数学答案解析
一、选择题
1.【答案】C
【解析】
z

1 i2 1 i1 i
2i

2i 2

2i
i ,则
z
1 ,选
C.
2.【答案】B
【解析】 CR A {x | x2 x 2 0} {x | 1 x 2} ,故选 B. 3.【答案】A

2018高考全国卷1理科数学试题及答案(word版)

2018高考全国卷1理科数学试题及答案(word版)

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( )A .0B .12C .1D 2.已知集合{}2|20A x x x =-->,则A =R( )A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( ) A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .334B .233C .324D .32二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。

2018年高考数学全国卷Ⅰ+答案(理科)(精美版)

2018年高考数学全国卷Ⅰ+答案(理科)(精美版)

绝密★启封并使用完毕前试题类型:A2018年普通高等学校招生全国统一考试理科数学(Ⅰ)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设,211i iiz ++-=则=|z | ( ) A. 0 B. 21C. 1D.22.已知集合}02|{2>--=x x x A ,则=A C R ( ) A.}21|{<<-x x B. }21|{≤≤-x xC. }2|{}1|{>-<x x x xD. 2}x |{x -1}x |{x ≥≤3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是: A. 新农村建设后,种植收入减少。

B. 新农村建设后,其他收入增加了一倍以上。

C. 新农村建设后,养殖收入增加了一倍。

D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

4.记n S 为等差数列}{n a 的前n 项和,若231423=+=a S S S ,,则=5a ( )A. -12B. -10C. 10D. 125.设函数ax x a x x f +-+=23)1()(若f(x)为奇函数,则曲线在点(0,0)处的切线方程为:( )A. y=-2xB. y=-xC. y=2xD. y=x6.在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,,则=EBA.AC AB 4143- B.AC AB 4341- C. AC AB 4143+ D. AC AB 4341+7.某圆柱的高为2,底面周长为16,其三视图如右图。

泄露天机2018高考押题卷理科数学(一)

泄露天机2018高考押题卷理科数学(一)

泄露天机2018高考押题卷理科数学(一) 2018年普通高等学校招生全国统一考试理科数学(一)注意事项:1.在答题卡上填写姓名和准考证号。

2.选择题用铅笔在答题卡上标记选项,非选择题在答题卡上作答。

3.考试结束后将试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。

1.复数z=a+ai(a∈R)的共轭复数为z,满足z=1,则复数z 为()A。

2+iB。

2-iC。

1+iD。

i解析】根据题意可得,z=a-ai,所以z^2=a^2+1=1,解得a=0,所以复数z=i。

2.集合A={θ|0<θ<π/2.2<sinθ≤1},B={φ|4/5<φ<1},则集合AB={θ|π/4<θ<π/2.4/5<sinθ≤1}。

解析】A可以化为{θ|π/6<θ<π/2},所以AB为{θ|π/4<θ<π/2.4/5<sinθ≤1}。

3.从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为3/4.解析】分别设一对白色斑块的野生小鼠为A,a,另一对短鼻子野生小鼠为B,b,从2对野生小鼠中不放回地随机拿出2只,所求基本事件总数为4×3=12种,拿出的野生小鼠不是同一表征的事件为(A,a),(a,A),(B,b),(b,B),所以概率为3/4.1.将函数f(x)=2sin(ωx+ϕ)的图像向左平移π/6个单位长度后得到函数y=sin2x+3cos2x的图像,求ϕ的可能值。

解析:将函数y=sin2x+3cos2x=2sin(2x+π/3)的图像向右平移π/6个单位长度,得到函数y=2sin2x的图像。

因此,ϕ=π/6.2.在XXX墓中发掘出堆积如山的“汉五铢”铜钱,假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱的数量为多少?解析:构成一个以首项为70缗,末项为31缗,项数为40层,公差为1的等差数列,则和为S=40×(70+31)=2020缗,这一堆铜钱的数量为2020×1000=2.02×106枚。

2018届全国统一招生高考押题卷理科数学试卷

2018届全国统一招生高考押题卷理科数学试卷

则这一堆铜钱的数量为()绝密★启用前66662102.025102.02102.05102018年普通高等学校招生全国统一考试 A.枚 B.枚 C.枚 D.枚6.一个几何体的三视图如图所示,则该几何体的体积为()理科数学(一)注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

号位2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

座封如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡正视图侧视图上,写在本试卷上无效。

3、考试结束后,请将本试题卷和答题卡一并上交。

密第Ⅰ卷号一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合场不2π1+π2+2π12πA. B. C. D.考题目要求的.y157.如图的程序框图,当输出后,程序结束,则判断框内应该填()z a i a R z11.复数的共轭复数为,满足,则复数()z x≤1x≤2x≤3x≤4A. B. C. D.订2i2i1i i A. B. C. D.1B A A=0,<sin≤1B12.集合,(),则集合24装号证11A. B.C. D.426624考准3.2018年3月7日《科学网》刊登“动物可以自我驯化”的文章表明:关于野生小鼠的最新研究,只它们在几乎没有任何人类影响的情况下也能表现出进化的迹象——皮毛上白色的斑块以及短鼻子.为了观察野生小鼠的这种表征,从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为()卷1123A. B. C. D.3434名姓fx2sin x4.已知函数的图象向左平移个单位长度后得到函数8.已知某函数图象如图所示,则图象所对应的函数可能是()6此y sin2x3cos2x的图象,则的可能值为()0A. B. C. D.6312级5.在海昏侯墓中发掘出堆积如山的“汉五铢”铜钱.汉代串铜钱的丝绳或麻绳叫“缗”,后来演变x班x x|x|2y2﹣xy22y e x y A. B. C. D.x2为计量铜钱的单位,1000枚铜钱用缗串起来,就叫一缗.假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,理科数学试卷第1页(共20页)理科数学试卷第2页(共20页)22xy32CBD=A BD CA BD Cy4xa0,b01CBD△ABD,沿把翻折起来,形成二面角,且二面角为,.若双曲线:9的一条渐近线被抛物线所截得的弦长为,222ab62ACCBD则双曲线的离心率为()此时,,,在同一球面上,则此球的体积为___________. 1A. B.1 C.2 D.4 42xy fxfx x2axex210.若是函数错误!未找到引用源。

(完整版)2018年高考全国一卷理科数学答案及解析

(完整版)2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

2018全国高考理科数学[全国一卷]试题和答案解析

2018全国高考理科数学[全国一卷]试题和答案解析

2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=( )A 。

0B 。

C.1 D.2、已知集合A={x |x 2-x —2〉0},则A =( )A 、{x |—1<x<2}B 、{x|-1≤x ≤2}C 、{x|x 〈—1}∪{x|x>2}D 、{x|x ≤—1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、—10 C 、10 D 、125、设函数f (x )=x ³+(a —1)x ²+ax .若f (x )为奇函数,则曲线y= f (x)在点(0,0)处的切线方程为( )A.y= —2xB 。

y= -xC 。

y=2xD 。

y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=( )建设前经济收入构成比例建设后经济收入构成比例A。

— B. - C. + D。

+7、某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A. 2B. 2C。

3D。

28。

设抛物线C:y²=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=( ) A。

2018年高等学校招生全国统一考试押题卷理科数学试卷(一)含解析

2018年高等学校招生全国统一考试押题卷理科数学试卷(一)含解析

A. 3
4
【答案】 C 【解析】 i 1,
B. 7
8
C. 15
16
D. 31
32
(1) x 2 x 1, i 2 ,
(2) x 2 2x 1 1 4x 3,i 3,
(3) x 2 4x 3 1 8x 7,i 4,
(4) x 2 8x 7 1 16x 15,i 5,
所以输出 16x 15 0 ,得 x 15 ,故选 C.
B. 2,0
C. 0, 2
D. 2, 0
xy2
x2
【解析】 解方程组
,得
.故 M N
xy2
y0
2,0 .选 D.
3.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗: “我有一壶酒,携着游春 走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多 少酒? ”用程序框图表达如图所示, 即最终输出的 x 0 ,则一开始输入的 x 的值为 ()
形码粘贴在答题卡上的指定位置。用
2B 铅笔将答题卡上试卷类型
A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用
2B 铅笔把答题卡上对应题目的答案标号涂
黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试 题卷、草稿纸和答题卡上的非答题区域均无效。
直角坐标系;则:A
1,0 ,B 1,0 ,设 P x ,y

PA =
2;
PB
2
x1
2
x1
y2 = 2,
y2
两边平方并整理得: x2 y2 6x 1 0 是 1 2 2 2 2 2 ,选 A .
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密 ★ 启用前2018年普通高等学校招生全国统一考试理 科 数 学(一)注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数()i z a a =+∈R的共轭复数为z ,满足1z =,则复数( ) A .2i + B .2i -C .1i +D .i【答案】D【解析】根据题意可得,i z a =-,所以211z a =+=,解得0a =,所以复数i z =.2.集合()1=0,sin 12A θθ⎧⎫∈π⎨⎬⎩⎭<≤,14B ϕϕ⎧⎫π=<<⎨⎬⎩⎭,则集合A B =I ( )A .42θθ⎧⎫ππ<<⎨⎬⎩⎭B .16θθ⎧⎫π<<⎨⎬⎩⎭C .62θθ⎧⎫ππ<<⎨⎬⎩⎭D .14θθ⎧⎫π<<⎨⎬⎩⎭【答案】D【解析】()15=0,sin 1266A θθθθ⎧⎫⎧⎫ππ∈π=<<⎨⎬⎨⎬⎩⎭⎩⎭<≤,14A B θθ⎧⎫π=<<⎨⎬⎩⎭I .3.2018年3月7日《科学网》刊登“动物可以自我驯化”的文章表明:关于野生小鼠的最新研究,它们在几乎没有任何人类影响的情况下也能表现出进化的迹象——皮毛上白色的斑块以及短鼻子.为了观察野生小鼠的这种表征,从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为( ) A .14B .13C .23D .34【答案】C【解析】分别设一对白色斑块的野生小鼠为A ,a ,另一对短鼻子野生小鼠为B ,b ,从2对野生小鼠中不放回地随机拿出2只,所求基本事件总数为4312⨯=种,拿出的野生小鼠是同一表征的事件为(),A a ,(),a A ,(),B b ,(),b B ,共计4种,所以拿出的野生小鼠不是同一表征的概率为421123-=. 4.已知函数()()2sin f x x ωϕ=+的图象向左平移6π个单位长度后得到函数sin 23cos 2y x x =+的图象,则ϕ的可能值为( )A .0B .6π C .3π D .12π 【答案】A【解析】将函数sin 23cos 22sin 23y x x x π⎛⎫=+=+⎪⎝⎭的图象向右平移6π个单位长度,可得2sin 22sin 263y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象,所以0ϕ=.5.在海昏侯墓中发掘出堆积如山的“汉五铢”铜钱.汉代串铜钱的丝绳或麻绳叫“缗”,后来演变为计量铜钱的单位,1000枚铜钱用缗串起来,就叫一缗.假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱的数量为( ) A .6210⨯枚B .62.0210⨯枚C .62.02510⨯枚D .62.0510⨯枚【答案】B【解析】由题意可知,构成一个以首项为70缗,末项为31缗,项数为40层,公差为1的等差数列,则和为()4070+31==20202S ⨯缗,这一堆铜钱的数量为620201000 2.0210⨯=⨯枚.6.一个几何体的三视图如图所示,则该几何体的体积为( )正视图侧视图此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .2π+B .1+πC .2+2πD .12π+【答案】A【解析】根据三视图可得该几何体为一个长方体和半个圆柱组合所成,21112π122π2V =⨯⨯+⨯⨯⨯=+.7.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( ) A .1x ≤B .2x ≤C .3x ≤D .4x ≤【答案】C【解析】当3x =-时,3y =;当2x =-时,0y =;当1x =-时,1y =-;当0x =时,0y =;当1x =时,3y =;当2x =时,8y =;当3x =时,15y =; 所以y 的最大值为15,可知3x ≤符合题意.8.已知某函数图象如图所示,则图象所对应的函数可能是( )A .2x xy =B .22xy =-C .e xy x =-D .|2|2x y x =﹣【答案】D【解析】对于A ,函数()2x x xf =,当0x >时,0y >,0x <时,0y <,不满足题意;对于B ,当0x ≥时,()f x 递增,不满足题意;对于C ,当0x ≥时,()0f x >,不满足题意;故选D .9.若双曲线C :()222210,0x y a b a b-=>>的一条渐近线被抛物线24y x =,则双曲线C 的离心率为( ) A .14B .1C .2D .4【答案】C【解析】双曲线C :()222210,0x y a b a b-=>>的一条渐近线方程不妨设为:0bx ay +=,与抛物线方程联立,24bx ay y x+=⎧⎨=⎩,消去y ,得240ax bx +=,所以121240b x x a x x ⎧+=-⎪⎨⎪=⎩,所以所截得的弦长=,化简可得24bc a =,2bc =,()222412c a c a -=,42120e e --=,得24e =或3-(舍),所以双曲线C 的离心率2e =.10.若x 是函数()()22e x f x x ax =-的极值点,则函数()y f x =的最小值为( ) A.(2e +B .0C.(2-D .e -【答案】C【解析】()()22e x f x x ax =-,∴()()()()2222e 2e 212e x x xf x x a x ax x a x a '⎡⎤=-+=+--⎣⎦-,由已知得,0f '=,∴220a +-=,解得1a =.∴()()22e x f x x x =-,∴()()22e x f x x '-=,所以函数的极值点为,当(x ∈时,()0f x '<,所以函数()y f x =是减函数,当(,x ∈-∞或)x ∈+∞时,()0f x '>,函数()y f x =是增函数.又当()(),02,+x ∈-∞∞U 时,220x x ->,()0f x >,当()0,2x ∈时,220x x -<,()0f x <,∴()min f x 在()0,2x ∈上,又当(x ∈时,函数()y f x =递减,当)x ∈时,函数()y f x =递增,∴()(min 2f x f==-.11.点(),M x y 在曲线22:4210C x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若a ,b +∈R ,则111a b++的最小值为( ) A .1 B .2C .3D .4【答案】A【解析】曲线22:4210C x x y -+-=可化为()22225x y -+=,表示圆心在()2,0A ,半径为5的圆,2222+1212150(6)(6)222t x y x y a x y a =+---=++---,22(6)(6)x y ++-可以看作点M 到点()6,6N -的距离的平方,圆C 上一点M 到N 的距离的最大值为5AN +,即点M 是直线AN 与圆C 的离点N 最远的交点,所以直线AN 的方程为()324y x =--,联立()()22324225y x x y ⎧=--⎪⎨⎪-+=⎩,解得1163x y =⎧⎨=-⎩或2123x y =-⎧⎨=⎩(舍去),当63x y =⎧⎨=-⎩时,t 取得最大值,则22max (66)(36)222t a b =++----=,所以3a b +=,所以()14a b ++=,()111111112114141b a a b a b a b a b +⎛⎫⎛⎫+=+⎡++⎤=++ ⎪ ⎪⎣⎦+++⎝⎭⎝⎭≥, 当且仅当11b a a b +=+,12a b =⎧⎨=⎩时取等号. 12.已知函数()y f x =为定义域R 上的奇函数,且在R 上是单调递增函数,函数()()5g x f x x =-+,数列{}n a 为等差数列,且公差不为0,若()()()12945g a g a g a +++=L,则129a a a +++=L ( ) A .45 B .15C .10D .0【答案】A【解析】由函数()()5g x f x x =-+,所以()()555g x f x x -=-+-, 当5x =时,()()()5555550g f f -=-+-=,而函数()y f x =为定义域R 上的奇函数,所以()00f =,所以()550g -=; 由()()()12945g a g a g a +++=L ,得()()()1295550g a g a g a ⎡-⎤+⎡-⎤++⎡-⎤=⎣⎦⎣⎦⎣⎦L , 由函数()y f x =为定义域R 上的奇函数,且在R 上是单调递增函数, 可知()5y g x =-关于()5,0对称,且在R 上是单调递增函数,由对称性猜想()550g a -=,下面用反证法说明()550g a -=, 假设()550g a -<,知55a <,则1910a a +<,2810a a +<,由对称性可知()()19550g a g a ⎡-⎤+⎡-⎤<⎣⎦⎣⎦,()()28550g a g a ⎡-⎤+⎡-⎤<⎣⎦⎣⎦,, 则()()()1295550g a g a g a ⎡-⎤+⎡-⎤++⎡-⎤<⎣⎦⎣⎦⎣⎦L 与题意不符,故()550g a -<不成立; 同理()550g a ->也不成立, 所以()550g a -=,所以55a =,根据等差数列性质,1295945a a a a +++==L .第Ⅱ卷本卷包括必考题和选考题两部分。

第(13)~(21)题为必考题,每个试题考生都必须作答。

第(22)~(23)题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分,共20分.13.已知变量x 、y 满足203500x y x y x -⎧⎪-+⎨⎪⎩≤≥≥,则2z x y =--的最小值为_______.【答案】4-【解析】根据约束条件画出可行域,直线2z x y =--过点()1,2A 时,z 取得最小值是4-.14.已知ππ,43α⎡⎤∈⎢⎥⎣⎦,,2βπ⎡⎤∈π⎢⎥⎣⎦,满足()sin sin 2sin cos αβααβ+-=,则sin 2sin()αβα-的最大值为________.【解析】因为()sin sin 2sin cos αβααβ+-=, 所以sin cos cos sin sin 2sin cos αβαβααβ+-=,所以cos sin sin cos sin αβαβα-=,即()sin sin βαα-=, 因为ππ,43α⎡⎤∈⎢⎥⎣⎦,,2βπ⎡⎤∈π⎢⎥⎣⎦,所以2βα=,则sin 2sin 22sin cos 2cos sin()sin sin αααααβααα===-,因为ππ,43α⎡⎤∈⎢⎥⎣⎦,所以2cos α⎡∈⎣,所以sin 2sin()αβα-15.已知正方形ABCD 的边长为1,P 为面ABCD 内一点,则()()PA PB PC PD +⋅+uu r uu r uu u r uu u r的最小值为____________. 【答案】1-【解析】建立如图所示的坐标系,以B 为坐标原点, 则()0,1A ,()0,0B ,()1,0C ,()1,1D ,设(),P x y ,则()=,1PA x y --u u r ,()=,PB x y --u u r ,()=1,PC x y --u u u r ,()1,1PD x y =--u u u r,()()()()()()()2++=2,1221,121241PA PB PC PD x y x y y x x ⋅--⋅--=---uu r uu r uu u r uu u r()()2212211y x =-+--,当12x =,12y =时,()()++PA PB PC PD ⋅u u r u u r u u u r u u u r 的最小值为1-.16.如图,在四边形ABCD 中,ABD △和BCD △都是等腰直角三角形,AB ,=2BAD π∠,=2CBD π∠,沿BD 把ABD △翻折起来,形成二面角A BD C --,且二面角A BD C --为65π,此时A ,B ,C ,D 在同一球面上,则此球的体积为___________.【答案】3π 【解析】由已知可知==2BC BD ,BCD △、ABD △的外接圆圆心分别为CD 、BD 的中点E 、F ,分别过E 、F 作BCD △、ABD △所在平面的垂线,垂线的交点O 即为球心,由已知可知AFE ∠即为二面角A BD C --的平面角,所以56AFE π∠=,又2OFA π∠=,所以3OFE π∠=,112EF BC ==,所以tan 3OE EF π=⋅=R OC ===所以343V R =π=.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin sin A B C +=,(1)若222cos sin cos sin sin A B C A B =++,求sin sin A B +的值, (2)若2c =,求ABC △面积的最大值. 【答案】(1;(2. 【解析】(1)∵222cos sin cos sin sin A B C A B =++,∴2221sin sin 1sin sin sin A B C A B -=+-+,······1分∴222sin sin sin sin sin A B C A B +-=-,······2分∴222a b c ab +-=-,······3分x∴2221cos 22a b c C ab +-==-,······4分 又0C <<π,∴23C π=,······5分23sin sin 32A B C π+===.······6分 (2)当2c =时,a b +==······7分∴()2222224cos 122a b ab c a b c C ab ab ab+--+-===-,······8分∴sin C ===······9分∴11sin 22S ab C ===······10分∵a b +=∴a b +=3ab ≤,当且仅当a b ==······11分∴S == ∴ABC △.······12分18.(12分)据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图. (1)求m 的值;(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少? (3)在上述抽取的40个企业中任取2个,设Y 为产值不超过500万元的企业个数与超过500万元的企业个数的差值,求Y 的分布列及期望.【答案】(1)0.04;(2)1419;(3)见解析. 【解析】(1)根据频率分布直方图可知,()150.030.070.050.010.045m -+++==.·······2分(2)产值小于500万元的企业个数为:()00300454014+⨯⨯=..,·······3分 所以抽到产值小于500万元的企业不超过两个的概率为326340C 141C 19P =-=.·······6分(3)Y 的所有可能取值为2-,0,2.·······7分()226240C 52C 12P Y =-==,·······8分 ()112614240C C 70C 15P Y ===,·······9分 ()214240C 72C 60P Y ===.·······10分∴Y 的分布列为:期望为:()57732021215605E Y =-⨯+⨯+⨯=-.·······12分19.(12分)在三棱锥A BCD-中,2AB AD BD ===,BC DC ==2AC =.(1)求证:BD AC ⊥;(2)点P 为AC 上一动点,设θ为直线BP 与平面ACD 所形成的角,求sin θ的最大值.【答案】(1)见解析;(2)最大值为7. 【解析】(1)取BD 中点E ,连接AE ,CE ,∵2AB AD BD ===,又E 为BD 中点,∴AE BD ⊥,·······1分 同理可得:CE BD ⊥,·······2分又AE CE E =I ,∴BD ⊥平面ACE ,·······3分 又AC ⊂平面ACE ,∴BD AC ⊥.·······4分 (2)∵2AB AD BD ===,2BC DC ==,∴BCD △为直角三角形,且3AE =,1CE =,∴222AE EC AC +=,2AEC π∠=,即AE EC ⊥, 又AE BD ⊥,所以AE ⊥平面BCD ,·······5分 ∴以E 为坐标原点,EC 为x 轴,ED 为y 轴,EA 为z 轴建立如图直角坐标系.∴()010B -,,,()010D ,,,()100C ,,,()003A ,,, 设()000,P x y z ,,()01AP AC λλ=u u u r u u u r ≤≤,()103AC =-u u u r ,,,()0003AP x y z =-u u u r,,, ∴()()()000,,310303x y z λλλ-=-=-,,,,, ∴000033x y z λλ⎧=⎪=⎨⎪-=-⎩,即000033x y z λλ⎧=⎪=⎨⎪=-⎩,∴()033P λλ-,,,·······6分 ()=133BP λλ-u u u r,,,·····7分()013DA =-u u u r,,,()110DC =-u u u r ,,, 设()111,,x y z =n 是平面ACD 的法向量,∴111103000DA y z x y DC ⎧⎧⋅=-+=⎪⎪⇒⎨⎨-=⋅=⎪⎪⎩⎩u u u ru u u r n n ,令11x =,得11y =,133z =, ∴3113⎛⎫= ⎪ ⎪⎝⎭,,n ,·······9分 ∴()2226sin cos 772321313,BPBP BPθλλλλ=<>===⋅-+⋅++-⋅⋅n n n u u u ru u u r u u u r , (10)分由01λ≤≤,可知2723228λλ-+≤≤,∴2143sin 77θ≤≤,∴sin θ的最大值为437.·······12分 20.(12分)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,点P 在椭圆上,有124P P F F +=,椭圆的离心率为12e =; (1)求椭圆C 的标准方程;(2)已知()4,0N ,过点N 作直线l 与椭圆交于,A B 不同两点,线段AB 的中垂线为l ',线段AB 的中点为Q 点,记l '与y 轴的交点为M ,求MQ 的取值范围.【答案】(1)22143x y +=;(2)[)0,5. 【解析】(1)因为124P P F F +=,所以24a =,所以2a =,·····1分 因为12e =,所以1c =,·······2分 所以222413b a c =-=-=,·······3分所以椭圆C 的标准方程为22143x y +=.·······4分 (2)由题意可知直线l 的斜率存在,设l :()4y k x =-,()11,A x y ,()22,B x y ,()00,Q x y ,联立直线与椭圆()221434x y y k x ⎧==-+⎪⎨⎪⎩,消去y 得()2222433264120k x k x k +-+-=,21223243k x x k +=+,2122641243k x x k -=+,·······5分 又()()()22223244364120kk k ∆=--+->,解得:1122k -<<,·····6分2120216243x x k x k +==+,()00212443k y k x k =-=-+,所以2221612,4343k k Q k k ⎛⎫- ⎪++⎝⎭,·······7分所以l ':()001y y x x k -=--,即222121164343k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,化简得:21443k y x k k =-++,·······8分 令0x =,得2443k m k =+,即240,43k M k ⎛⎫ ⎪+⎝⎭,·······9分 ()2224222222161616434343k k k k MQ k k k ⎛⎫+⎛⎫=+=⋅ ⎪ ⎪++⎝⎭⎝⎭+,·······10分 令243t k =+,则[)3,4t ∈,所以22222233231144161616321t t t t MQ t t t t --⎛⎫+ ⎪⎡⎤--⎛⎫⎝⎭=⋅=⋅=⋅-⋅-⋅+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以[)0,5MQ ∈.·······12分 21.(12分)已知函数()=ln e xf x a x -;(1)讨论()f x 的极值点的个数;(2)若*a ∈N ,且()0f x <恒成立,求*a ∈N 的最大值. 参考数据:【答案】(1)见解析;(2)10.【解析】(1)根据题意可得,()()e =e 0xx a a x f x x x x-'-=>,·······1分当0a ≤时,()0f x '<,函数()y f x =是减函数,无极值点;·······2分当0a >时,令()0f x =,得e 0xa x -=,即e x x a =, 又e xy x =在()0,+∞上是增函数,且当x →+∞时,e xx →+∞,所以e x x a =在()0,+∞上存在一解,不妨设为0x ,所以函数()y f x =在()00,x 上是单调递增的,在()0,x +∞上是单调递减的.所以函数()y f x =有一个极大值点,无极小值点; 总之:当0a ≤时,无极值点;当0a >时,函数()y f x =有一个极大值点,无极小值点.·······5分 (2)因为*0a ∈>N ,由(1)知()f x 有极大值()0f x ,且0x 满足00e x x a =①,可知:()()000max ln e xf x f x a x ==-,要使()0f x <恒成立,即()0000ln e xa x f x -=<②,·······6分由①可得00ex a x =,代入②得00ln 0a a x x -<,即001ln 0a x x ⎛⎫⎪⎝⎭<-, 因为*0a ∈>N ,所以001n 0l x x -<,·······7分 因为1ln1.710.7-<,1ln1.810.8->,且001ln y x x =-在()0,+∞是增函数,设m 为001ln y x x =-的零点,则()1.7,1.8m ∈, 可知00m x <<,·······8分 由②可得00ln e xa x <,当001x <≤时,0ln 0a x ≤,不等式显然恒成立;·······9分当01x m <<时,0ln 0x >,0e ln x a x <,令()e ln x g x x =,()1,x m ∈,()21e ln 0ln x x x g x x⎛⎫- ⎪⎝⎭'=<, 所以()()1,g x m 在上是减函数,且1.8e 10.29ln1.8≈, 1.7e 10.31ln1.7≈, 所以()10.2910.31g m <<,·······11分所以()a g m ≤,又*a ∈N ,所以a 的最大值为10.·······12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。

相关文档
最新文档