生物统计学名词解释大全

合集下载

生物统计学名词解释

生物统计学名词解释

样本:从总体中抽出的若干个体所构成的集合称为样本。

总体:指具有相同性质的个体所组成的集合称为总体。

连续变量:表示在不变量范围内可抽出某一范围的所有值。

非连续变量:也称为离散型变量,表示在变量数列中,仅能取得固定数值,并且通常是整数。

准确性:指在调查或实验中某一试验指标或形状的观测值与真值接近的程度。

精确性:指调查或实验中同一试验指标或形状的重复观测值彼此接近程度大小。

资料:指在一定条件下,在生物学实验和调查中,能够获得大量原始数据,对某种具体事务或现象观察的结果。

数量性状资料:指一般是由计数和测量或度量得到的。

质量性状资料:是指对某种现象只能观察而不能测量的资料,也称属性资料。

计数资料;指由计数得到的数据。

计量资料:有测量或度量得到的数据。

普查:指对研究对象的每一个个体都进行测量或度量的一种全面调查。

抽样调查:是一种非全面调查,它是根据一定的原则对研究对象抽取一部分个体进行测量或度量,把得到的数据资料作为样本进行统计处理,然后利用样本特征数对总体进行推断。

全距(极差):是指样本数据资料中最大观测值与最小观测值的差值。

组中值:是指两个组限下线和上限的中间值。

算数平均数:是指总体或样本资料中哥哥给观测值的总和除以观测值的个数所得的商。

中位数:是指将试验或调查资料中所有观测值以大小顺序排列,居中位置的观测值。

众数:资料中出现次数最多的那个观测值或次数最多一组的中点值。

几何平均数:指资料中有几个观测值,其乘积开几次方所得的数值。

方差:指用样本容量n来除离均差平方和,得到平均的平方和。

标准差:指方差的平方根和。

变异系数:指将样本标准差除以样本平均数得出的百分比。

概率:指某事件A在n次重复试验中,发生了几次,当试验次数n不断增大时,事件A发生的频率W(A)就越来越接近某一确定值P,于是则定P为事件A发生的概率:P(A)=P和事件:指事件A和事件B至少有一件发生而构成的新事件称为事件A和事件B的事件。

积事件:指事件A和事件B同时发生而构成的新事件,称为事件A和事件B的积事件。

生物统计名词解释

生物统计名词解释

生物统计名词解释一、田间试验1.田间试验:是指在田间土壤、自然气候等环境条件下栽培作物,并进行与作物有关的各种科学研究的试验。

4.准确性:也称准确度,指某一试验指标或性状的观测值与该实验指标或性状观测值总体平均数接近的程度(实验的系统误差影响准确性大小)。

5.精确性:也称精确度,指同一试验指标或性状的重复观测值彼此接近程度(实验的随机误差影响精确性大小)。

6.试验指标:用来衡量实验结果好坏或处理效应高低、在试验中具有测定的性状或观测的项目称为试验指标。

7.试验因素:试验中人为控制的、影响试验指标的原因或条件称为试验因素。

8.试验水平:对试验因素所设定的质的不同状态或量的不同级别称为试验水平,简称水平。

9.试验处理:事先设计好的实施在试验单位上的具体项目称为实验处理简称处理。

10.实验小区:实施一个实验处理的一小块长方形土地称为实验小区,简称小区。

11.试验单位:实施试验处理的材料单位称为试验单位,亦称试验单元。

12.总体与个体:根据研究目的确定的研究对象的全体称为总体,其中的一个研究对象称为个体。

13.样本:从总体中抽取的一部分个体组成的集合。

14.样本容量:样本所包含的个体数目,常记为n。

15.试验误差:由于受到试验因素以外各种内在的、外在的非试验因素的影响使观测值与试验处理观测值总体平均数之间产生的差异,简称误差。

16.系统误差:在一定试验条件下,由某种原因所引起的使观测值发生方向性的误差,又称偏性。

17.随机误差:由多种偶然的、无法控制的因素引起的误差。

21.边际效应:指小区两边或两端植株的生长环境与小区中间植株的生长环境不一致而表现出的差异。

22.小区形状:指小区长宽比例。

(小区形状一般为长方形,狭长小区使各小区更紧密相邻,减少了小区之间的土壤差异)23.区组:将一个重复全部小区安排与土壤非礼等环境条件相对均匀一致的小块土地上,成为一个区组(田间试验一般设置3-4次重复,即设置3-4个区组。

生物统计学名词解释

生物统计学名词解释

样本: 样本从总体中抽出的若干个体所构成的集合称为样本。

总体: 总体指具有相同性质的个体所组成的集合称为总体。

连续变量:表示在不变量范围内可抽出某一范围的所有值。

非连续变量:也称为离散型变量,表示在变量数列中,仅能取得固定数值,并且通常是整数。

准确性:指在调查或实验中某一试验指标或形状的观测值与真值接近的程度。

精确性:指调查或实验中同一试验指标或形状的重复观测值彼此接近程度大小。

资料:指在一定条件下,在生物学实验和调查中,能够获得大量原始数据,对某种具体事务或现象观察的结果。

数量性状资料:指一般是由计数和测量或度量得到的。

质量性状资料:是指对某种现象只能观察而不能测量的资料,也称属性资料。

计数资料;指由计数得到的数据。

计量资料:有测量或度量得到的数据。

普查:指对研究对象的每一个个体都进行测量或度量的一种全面调查。

抽样调查:是一种非全面调查,它是根据一定的原则对研究对象抽取一部分个体进行测量或度量,把得到抽样调查的数据资料作为样本进行统计处理,然后利用样本特征数对总体进行推断。

全距(极差):是指样本数据资料中最大观测值与最小观测值的差值。

组中值:是指两个组限下线和上限的中间值。

算数平均数:是指总体或样本资料中哥哥给观测值的总和除以观测值的个数所得的商。

中位数:是指将试验或调查资料中所有观测值以大小顺序排列,居中位置的观测值。

众数:资料中出现次数最多的那个观测值或次数最多一组的中点值。

几何平均数:指资料中有几个观测值,其乘积开几次方所得的数值。

方差:指用样本容量 n 来除离均差平方和,得到平均的平方和。

标准差:指方差的平方根和。

变异系数:指将样本标准差除以样本平均数得出的百分比。

概率:指某事件 A 在 n 次重复试验中,发生了几次,当试验次数 n 不断增大时,事件 A 发生的频率 W(A)概率就越来越接近某一确定值 P,于是则定 P 为事件 A 发生的概率.和事件:指事件 A 和事件 B 至少有一件发生而构成的新事件称为事件 A 和事件B 的事件。

生物统计学名词解释

生物统计学名词解释

1.样本: 样本从总体中抽出的若干个体所构成的集合称为样本。

2.总体: 总体指具有相同性质的个体所组成的集合称为总体。

3.连续变量:表示在不变量范围内可抽出某一范围的所有值。

4.非连续变量:也称为离散型变量,表示在变量数列中,仅能取得固定数值,并且通常是整数。

5.准确性:指在调查或实验中某一试验指标或形状的观测值与真值接近的程度。

6.精确性:指调查或实验中同一试验指标或形状的重复观测值彼此接近程度大小。

7.资料:指在一定条件下,在生物学实验和调查中,能够获得大量原始数据,对某种具体事务或现象观察的结果。

8.数量性状资料:指一般是由计数和测量或度量得到的。

9.质量性状资料:是指对某种现象只能观察而不能测量的资料,也称属性资料。

10.计数资料;指由计数得到的数据。

11.计量资料:有测量或度量得到的数据。

12.普查:指对研究对象的每一个个体都进行测量或度量的一种全面调查。

13.抽样调查:是一种非全面调查,它是根据一定的原则对研究对象抽取一部分个体进行测量或度量,把得到抽样调查的数据资料作为样本进行统计处理,然后利用样本特征数对总体进行推断。

14.全距(极差):是指样本数据资料中最大观测值与最小观测值的差值。

组中值:是指两个组限下线和上限的中间值。

15.算数平均数:是指总体或样本资料中哥哥给观测值的总和除以观测值的个数所得的商。

16.中位数:是指将试验或调查资料中所有观测值以大小顺序排列,居中位置的观测值。

17.众数:资料中出现次数最多的那个观测值或次数最多一组的中点值。

18.几何平均数:指资料中有几个观测值,其乘积开几次方所得的数值。

19.方差:指用样本容量 n 来除离均差平方和,得到平均的平方和。

20.标准差:指方差的平方根和。

21.变异系数:指将样本标准差除以样本平均数得出的百分比。

22.概率:指某事件 A 在 n 次重复试验中,发生了几次,当试验次数 n不断增大时,事件 A 发生的频率 W(A)概率就越来越接近某一确定值 P,于是则定 P 为事件 A 发生的概率.23.和事件:指事件 A 和事件 B 至少有一件发生而构成的新事件称为事件 A 和事件 B 的事件。

生物统计名词解释和简答

生物统计名词解释和简答

名词解释1、总体:指我们研究的全部对象,指性质相同的所有个体的集合,包括有限总体和无限总体。

2、样本:总体的一部分,样本内包含的个体数目称为样本含量。

3、随机抽样:随机抽样要求总体中的任何个体都有同等机会被抽到和抽样时不受任何主观因素的影响。

4、随机变量:在随机试验中,被测定的量是可取不同值的变量,而且它究竟取何值具有随机性,这样的量为随机变量。

5、统计量:由样本计算的数,是总体参数的估计值,受抽样变动的影响。

6、参数:由总体计算的数。

是一个真值,没有抽样变动的影响。

7、数学期望:所谓X或X的函数的数学期望,即它们的理论平均值。

8、中心极限定理:假设被研究的随机变量X,可以表示为许多相互独立的随机变量Xi的和。

那么,如果Xi的数量很大,而且每一个别的Xi对于X所起的作用很小,则可以被认为X 服从或近似地服从正态分布。

9、统计假设检验:先对所估计的总体做一假设,然后通过样本数据推断这个假设是否接受,这种途径称为统计假设检验。

10、小概率原理:在一次试验中几乎是不会发生的。

若根据一定的假设条件计算出来的该事件发生的概率很小,而在一次试验中它竟然发生了,则可认为原假设条件不正确,给予否定。

11、点估计:用由样本数据所计算出来的单个数值,对总体参数所作的估计称为点估计。

12、区间估计:对总体平均数更合理的估计,是在一定概率保证下,给出总体平均数和标准差的可能范围,这种估计方法叫区间估计。

13、置信区间:区间估计中所给出的可能范围叫置信区间。

14、拟合优度检验:是用来检验实际观测数与依照某种假设或模型计算出来的理论数之间的一致性,以便判断该假设或模型是否与观测数相配合。

15、方差分析:是一类特定情况下的统计假设检验,是平均数差异显著性检验—成组数据t 检验的一种引伸。

t检验可以判断两组数据平均数间的差异显著性,而方差分析则可以同时判断多组数据平均数之间的差异显著性。

16、抽样分布:从一个已知的总体中,独立随机的抽取含量为n的样本,研究所得的样本的各种统计量的概率分布,称为抽样分布。

生物统计学名词解释

生物统计学名词解释

样本: 从总体中抽出的若干个体所构成的集合称为样本。

总体: 指具有相同性质的个体所组成的集合称为总体。

连续变量:表示在不变量范围内可抽出某一范围的所有值。

非连续变量:也称为离散型变量,表示在变量数列中,仅能取得固定数值,并且通常是整数。

准确性:指在调查或实验中某一试验指标或形状的观测值与真值接近的程度。

精确性:指调查或实验中同一试验指标或形状的重复观测值彼此接近程度大小。

资料:指在一定条件下,在生物学实验和调查中,能够获得大量原始数据,对某种具体事务或现象观察的结果。

数量性状资料:指一般是由计数和测量或度量得到的。

质量性状资料:是指对某种现象只能观察而不能测量的资料,也称属性资料。

计数资料;指由计数得到的数据。

计量资料:有测量或度量得到的数据。

普查:指对研究对象的每一个个体都进行测量或度量的一种全面调查。

抽样调查:是一种非全面调查,它是根据一定的原则对研究对象抽取一部分个体进行测量或度量,把得到的数据资料作为样本进行统计处理,然后利用样本特征数对总体进行推断。

全距(极差):是指样本数据资料中最大观测值与最小观测值的差值。

组中值:是指两个组限下线和上限的中间值。

算数平均数:是指总体或样本资料中哥哥给观测值的总和除以观测值的个数所得的商。

中位数:是指将试验或调查资料中所有观测值以大小顺序排列,居中位置的观测值。

众数:资料中出现次数最多的那个观测值或次数最多一组的中点值。

几何平均数:指资料中有几个观测值,其乘积开几次方所得的数值。

方差:指用样本容量n来除离均差平方和,得到平均的平方和。

标准差:指方差的平方根和。

变异系数:指将样本标准差除以样本平均数得出的百分比。

概率:指某事件A在n次重复试验中,发生了几次,当试验次数n不断增大时,事件A发生的频率W(A)就越来越接近某一确定值P,于是则定P为事件A发生的概率:P(A)=P和事件:指事件A和事件B至少有一件发生而构成的新事件称为事件A和事件B的事件。

积事件:指事件A和事件B同时发生而构成的新事件,称为事件A和事件B的积事件。

生物统计学名词解释

生物统计学名词解释

1. 总体(population):研究对象的全体,由具有共同性质的个体所组成。

2. 样本(sample):从总体中抽取一部分个体所组成的集团。

3. 参数(parameter):由总体全部观察值计算得到的用来描述总体特征的数。

4. 统计数(statistic):由样本全部观察值计算得到的用来描述样本特征和估计总体特征的数5. 平均数(average):根据统计方法求得的一种常用特征数,作为一个资料集中性的代表值,反映资料中各观察值集中较多的中心位置。

6. 变异数(variant):反映资料的变异性的代表值,常用的变异数有极差、方差、标准差、标准误和变异系数。

7. 概率的古典定义:在随机试验中,如果基本事件的总数n为有限多个,且每个基本事件的发生是等可能的,时间A 由其中m个基本事件所组成,则事件A的概率为(P)=A中包含的基本事件数/基本事件数=m/n8. 概率的统计定义:在相同条件下,重复某一试验n次,事件A发生的频率随着n的不断增大而在某个常数值p附近摆动,则称频率的稳定值p为事件A发生的频率,记为P(A) =p≈m/n9. 随机变量(random variant):设E为一随机试验,Ω为样本空间。

如果对于Ω中的每个样本点ш,都有一个确定的实数X(ш)与之对应,则称X(ш)为随机变量,简称为X10. 伯努利试验(Bernoulli trials):随机变量X只有两个可能结果的实验11. 统计推断(statistical inference):利用研究获得的样本信息和假定的模型对总体特征做出概率性的推断。

12. 假设检验(test of hypothesis):根据样本信息判断总体是否具有制定的特征13. 参数估计(parametric estimation):用样本统计数估计总体参数。

14. 抽样分布(sampling distribution):统计量g(X1,X2,…,Xn)作为随机变量,也有自己的概率分布,则统计量的概率分布则称为抽样分布15. 零假设(null hypothesis)和备择假设(alternative hypothesis)零假设:指进行统计检验时预先建立的假设。

生物统计学名词解释完整版

生物统计学名词解释完整版

生物统计学名词解释 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1.样本:样本从总体中抽出的若干个体所构成的集合称为样本。

2.总体: 总体指具有相同性质的个体所组成的集合称为总体。

3.连续变量:表示在不变量范围内可抽出某一范围的所有值。

4.非连续变量:也称为离散型变量,表示在变量数列中,仅能取得固定数值,并且通常是整数。

5.准确性:指在调查或实验中某一试验指标或形状的观测值与真值接近的程度。

6.精确性:指调查或实验中同一试验指标或形状的重复观测值彼此接近程度大小。

7.资料:指在一定条件下,在生物学实验和调查中,能够获得大量原始数据,对某种具体事务或现象观察的结果。

8.数量性状资料:指一般是由计数和测量或度量得到的。

9.质量性状资料:是指对某种现象只能观察而不能测量的资料,也称属性资料。

10.计数资料;指由计数得到的数据。

11.计量资料:有测量或度量得到的数据。

12.普查:指对研究对象的每一个个体都进行测量或度量的一种全面调查。

13.抽样调查:是一种非全面调查,它是根据一定的原则对研究对象抽取一部分个体进行测量或度量,把得到抽样调查的数据资料作为样本进行统计处理,然后利用样本特征数对总体进行推断。

14.全距(极差):是指样本数据资料中最大观测值与最小观测值的差值。

组中值:是指两个组限下线和上限的中间值。

15.算数平均数:是指总体或样本资料中哥哥给观测值的总和除以观测值的个数所得的商。

16.中位数:是指将试验或调查资料中所有观测值以大小顺序排列,居中位置的观测值。

17.众数:资料中出现次数最多的那个观测值或次数最多一组的中点值。

18.几何平均数:指资料中有几个观测值,其乘积开几次方所得的数值。

19.方差:指用样本容量 n 来除离均差平方和,得到平均的平方和。

20.标准差:指方差的平方根和。

21.变异系数:指将样本标准差除以样本平均数得出的百分比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.样本: 样本从总体中抽出的若干个体所构成的集合称为样本。

2.总体: 总体指具有相同性质的个体所组成的集合称为总体。

3.连续变量:表示在不变量范围内可抽出某一范围的所有值。

4.非连续变量:也称为离散型变量,表示在变量数列中,仅能取得固定数值,并且通常是整数。

准确性:指在调查或实验中某一试验指标或形状的观测值与真值接近的程度。

精确性:指调查或实验中同一试验指标或形状的重复观测值彼此接近程度大小。

资料:指在一定条件下,在生物学实验和调查中,能够获得大量原始数据,对某种具体事务或现象观察的结果。

数量性状资料:指一般是由计数和测量或度量得到的。

质量性状资料:是指对某种现象只能观察而不能测量的资料,也称属性资料。

计数资料;指由计数得到的数据。

计量资料:有测量或度量得到的数据。

普查:指对研究对象的每一个个体都进行测量或度量的一种全面调查。

抽样调查:是一种非全面调查,它是根据一定的原则对研究对象抽取一部分个体进行测量或度量,把得到抽样调查的数据资料作为样本进行统计处理,然后利用样本特征数对总体进行推断。

全距(极差):是指样本数据资料中最大观测值与最小观测值的差值。

组中值:是指两个组限下线和上限的中间值。

算数平均数:是指总体或样本资料中哥哥给观测值的总和除以观测值的个数所得的商。

中位数:是指将试验或调查资料中所有观测值以大小顺序排列,居中位置的观测值。

众数:资料中出现次数最多的那个观测值或次数最多一组的中点值。

几何平均数:指资料中有几个观测值,其乘积开几次方所得的数值。

方差:指用样本容量n 来除离均差平方和,得到平均的平方和。

标准差:指方差的平方根和。

变异系数:指将样本标准差除以样本平均数得出的百分比。

概率:指某事件 A 在n 次重复试验中,发生了几次,当试验次数n 不断增大时,事件 A 发生的频率W(A)概率就越来越接近某一确定值P,于是则定P 为事件 A 发生的概率.和事件:指事件 A 和事件 B 至少有一件发生而构成的新事件称为事件 A 和事件 B 的事件。

积事件:指事件 A 和事件 B 同时发生而构成的新事件,称为事件 A 和事件 B 的积事件。

互斥事件:指事件 A 和事件 B 不能同时发生,称为事件 A 和事件 B 互斥。

对立事件:指事件 A 和事件 B 必有一个事件发生,但两者不能同时发生。

独立事件:指事件 A 的发生与事件 B 的发生毫无关系。

完全事件系:指如果多个事件A1、A2、、、、、、An 两两相斥,且每次试验结果必然发生其一,则称事件A1、完全事件系A2、、、、、、An 为一个完全事件系。

概率加法定理:指互斥事件 A 和 B 的和事件的概率等于事件 A 和事件 B 的概率之和,P(A+B)=P(A)+P(B)。

概率乘法定理:指事件 A 和事件 B 为独立事件,则事件 A 与 B 同时发生的概率等于事件 A 和事件 B 各自概率乘法定理的乘积,即:P(A*B)=P(A)*P(B)。

伯努利大数定律:设M 是n 次独立试验中事件 A 出现的次数,而不是事件 A 在每次试验中出现的概率,则对于任意小的正数ε ,有如下关系:limp{m/n-p< ε }=1辛钦大数定律:是用来说明为什么可以用算术平均数来推断总体平均数m 的。

统计推断:指从样本的统计数对总体参数做出的推断,包括参数估计和假设检验。

假设检验:指根据总体理论分布和小概率原理,对未知或不完全知道的总体提出两种彼此对立的假设,然后有样本的实际结果,经过一定的计算,做出在一定概率意义上应该接受的那种假设的推断。

参数估计:指由样本结果对总体参数在一定概率水平下所作出的估计。

点估计是用样本统计量直接给出总体相应参数的估计值,由于抽样误差存在,X拔不同的样本将会得到不同的点估计值,点估计缺乏明确的精度概念,而区间估计在一定程度上可以弥补这个不足小概率原理:指如果假设一些条件,并在假设的条件下能够准确地算出事件 A 出现的概率 a 为很小,则在假设条件下的n 次独立重复试验中时按预定的概率发生,而在有一次试验中则几乎不可能独立。

显著水平:指在无效假设和备择假设后,要确定一个否定H0 的概率标准,这个概率称为显著水平。

方差同质性:就是指各个总体的方差是相同的。

α 错误:H0 是真实的,假设检验却否定了它,就烦了一个否定真实假设的错误,称为α 错误。

β 错误:指如果H0 不是真实的,假设检验时却接受了H0,否定了HA 这样就犯了接受不真实假设的错误,称为β 错误。

适合性检验:指比较观测值与理论值是否符合的假设检验交适合性检验。

独立性检验:指研究两个或两个以上因子彼此之间是相互独立的还是相互影响的一类统计方法。

相关分析:是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量间的相关关系的一种统计方法。

回归分析:是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

回归系数:y^=a+bx,自变量x 改变一个单位,依变量y 平均增加或减少的单位数,即回归直线的斜率b。

回归截距:y^=a+bx,a 是当x=0 时的Y^值,即直线在y 轴上的截距,称为回归截距。

离回归平方和:它反映除去x 与y 相关程度和性质的统计数。

回归平方和:它反映在y 的总体变异种由于x 与y 的直线关系而产生y 变异减小的部分。

相关系数:是指通过计算表示x 和y 相关程度和性质的统计数。

决定系数:是变量x 引起y 变异的回归平方和与y 变异总平方和的比率。

转换:指估计总体相关系数p 的置信区间时,需要将r 转换成z。

试验设计:广义的指整个研究课题的设计,包括实验方案的拟订,试验方案的拟订,试验单位的选择,分组的排列,实验过程中试验指标的现象记载,试验资料的整理,分析等内容。

试验结果重演:是指在相同的条件下,在进行实验或实践,应能重复获得与原试验结果相近的结果。

处理因素:一般指对受试对象给予的某种外部干预。

主效应:多因素中试验中引起实验结果发生变化的主要。

互作:因素之间的交互作用。

受试对象:是处理因素的客体,实际上就是根据研究目的而确立的观测总体。

处理效应:是处理因素作用于受试对象的反应,是研究最终体现误差:在试验中受偶然影响或者说非处理因素影响使观测值偏离试验处理真值的差异。

随机误差:由于试验中许多无法控制的偶然因素所造成的试验结果与真实结果之间产生的误差。

系统误差:由于试验处理以外的其他条件明显不一致所产生的带有倾向性或定向性的偏差重复:在试验中,同一处理设置的试验单位数。

随机:是指一个重复的某一处理或处理组合被安排在哪一个试验单位,不要有主观成见。

均积:是x 与y 的平均的离均差的乘积和,简称均积。

协方差:与均积相应的总体参数。

协方差分析:把回归分析与方差分析结合。

试验控制:要提高试验的精确度和灵敏度,必须严格控制试验条件的均匀性,使各处里处于尽可能一致的条件下。

统计控制:是试验控制的一种辅助手段,是用统计方法来矫正因自变量的不同而对依变量所产生的影响。

估计量:估计总体参数的统计量无偏估计量:如果一个统计量的理论平均数(即数学期望)等于总体参数,这个统计量就叫无偏估计量矩估计:用样本矩作为总体矩的估计值矩估计法(数字特征法、矩法)用样本矩作为相应总体矩的估计量,也可以用样本数字特征作为相应的总体数字特征的估计量。

用矩法获得的估计值,叫据估计值。

据发的思想实质是用样本去替换总体矩的原则,称之为替换原则有效估计量:设a1,a2是A的两个无偏估计量,若var(a1)<var(a2),则a1为有效估计量抽样误差:由抽样引起的样本值与总体值之间的差异成为抽样误差,直接原因:总体中各个体之间存在差异,或重复试验中一些服从某种分布的偶然误差的存在标注误差(标准误):描述样本平均数波动情况的统计量,就是X拔的方差或标准差,计均数抽样误差为西格玛X拔,=西格玛/根号n,西格玛X拔就是标准误(差)估计样本平均数方差:SX拔平方,=S平方/n估计标准误:SX拔,=S/根号n置信区间:达到某一置信度(如95%)时,预报量可能出现的范围(如E(y)±西格玛,这里西格玛是标准差)置信区间的意义是:反复抽样多次,每次的样本容量相等,每次的样本值确定一个区间[a1,a2],这个区间包含a的概率是100(1-阿尔法)%,不包含a的概率是100阿尔法%置信水平(置信度,置信系数,可靠度)是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。

置信区间越大,置信水平越高。

拟合优度检验:对总体分布类型的检验,包括检验观测数与理论书之间的一致性,通过检验观测数与理论书之间的一致性来判断事件之间的独立性皮尔逊定理:若n充分大,则不论总体服从什么分布,卡平方总是近似服从自由度为m-a-1的卡平方分布方差分析:能同时判断多组数据平均数之间的差异显著性,能把随机变异从混杂状态中分离开来,从而为判断因素对实验结果有无确实的影响提供依据方差分析的前提条件:等方差,正态性、独立性固定因素:若因素的a个水平是经过特意选择的,则该因素为固定因素。

发差分析所得到的结论只适合于选定的几个水平,并不能将其结论扩展到未加考虑的水平上固定效应模型:处理固定因素所用的模型称为固定效应模型或固定模型随机因素:若因素的a个水平,是从该因素水平总体中随机抽出的样本,则该因素称为随机因素,从随机因素a个水平所得到的结论,可以推广到这个因素的所有水平上处理随机因素所用的模型称为随机效应模型多重比较:对各对均值之间的差异的显著性检验LSD法在统计推断时犯第一类错误的概率大,而Duncan法犯第一类错误的概率小。

多个方差齐性检验(bartlett检验,巴特氏卡平方检验):当a个随机样本是从独立正态总体中抽取时,可以计算出统计量K平方,当n=min(nj)充分大时,K平方的抽样分布非常接近于a-1自由度的卡方分布。

由此可对多个总体进行卡平方检验。

两因素之间交互作用产生新效应的现象为交互作用由因素水平的改变而造成的因素效应的改变称为该因素的主效应交叉分组设计:假设A药物有a水平,B药物有b水平,共有ab个剂量组合,每一组重复n次。

共有abn名病人参加实验,这样的实验设计称为交叉分组设计相关:设有两个随机变量 X和Y,对于任一随机变量的每一个可能的值,另一个随机变量都有一个确定的分布与之相对应,则称这两个随机变量之间存在相关关系如果变量之间的关系可以用函数关系来表达,就称它们之间的关系为确定性关系回归关系、相关关系:统计学上把变量之间的非确定性关系称为相关关系,也成为回归关系如果对于一个普通变量x的每一个可能的值xj都有随机变量Y的一个分布与之对应,则称随见变量Y的一个分布与之对应,则称随机变量Y对x存在回归关系具有回归关系的两变量之间对于任一xi都不会有一个确切的yi与之对应,但为了描述两变量之间的数量关系,可选当x=xi时Y的平均数谬角标Y乘X=xi与之相对应,则称谬角标Y乘X是Y的条件平均数Y1,y2…yn这n个数据的离差平方和,记作SYY,称为总离差平方和,反映了n个yi折的离散程度回归平方和(y折-y拔)平方求和,几座SSR。

相关文档
最新文档