加工误差的统计分析实验报告
加工误差统计分析实验报告

10
20
六、思考题。
1、画出零件尺寸偏差的分布曲线,看曲线是否成正态分布。
2、计算分布曲线的标准差σ。
3、计算工艺能力系数Cp=Δ/6σ.△为正负0.01
4、通过工艺能力系数分析该工序是否处于受控状态。
(Cp>1.67特级1.67≥Cp>1.33一级1.33≥Cp>1.00二级1.00≥Cp>0.67三级0.67≥Cp四级)
加工误差统计分析实验报告
学生姓名学号班级
一、实验目的和要求。
二、实验仪器和设备。
三、实验原理。
四、实验步骤。
五、实验条件和实验数据.
1、实验条件。
2、实验数据。
组号
测Байду номын сангаас值
总计
平均值
极差
组号
测量值
总计
平均值
极差
X1
X2
X3
X4
X5
X1
X2
X3
X4
X5
1
11
2
12
3
13
4
14
5
15
6
16
7
17
8
18
9
19
加工误差统计分析实验报告

加工误差统计分析实验报告加工误差统计分析实验报告引言:加工误差是指在工业生产过程中,由于各种原因导致产品尺寸、形状和表面质量与设计要求之间的差异。
加工误差的控制对于保证产品质量、提高生产效率和降低成本具有重要意义。
本实验旨在通过对加工误差进行统计分析,探讨误差来源及其影响因素,为工业生产过程中的质量控制提供参考依据。
实验设计:本实验选取了一台数控铣床进行实验,以铣削加工尺寸为研究对象。
首先,我们选择了一种常见的零件,对其进行加工。
然后,通过测量加工后的尺寸与设计要求进行对比,得到加工误差数据。
最后,我们对这些数据进行统计分析,探究加工误差的分布规律和影响因素。
实验过程:1. 加工准备:选择合适的刀具、夹具和工艺参数,进行加工准备工作。
2. 加工操作:按照设计要求进行铣削加工,并记录下每次加工后的尺寸数据。
3. 尺寸测量:使用测量工具对加工后的零件进行尺寸测量,并记录测量结果。
4. 数据整理:将测量得到的数据整理成表格,方便后续的统计分析。
统计分析:1. 加工误差分布:通过绘制加工误差的频率分布直方图,我们可以观察到误差值的分布情况。
通常情况下,加工误差符合正态分布,但也可能存在其他分布形式,例如偏态分布或双峰分布。
通过分析分布形式,可以判断加工过程中是否存在特殊的误差来源。
2. 加工误差与加工参数的关系:通过对加工误差与加工参数(如切削速度、进给速度等)进行相关性分析,可以了解不同参数对加工误差的影响程度。
这有助于我们确定合适的工艺参数范围,以减小加工误差。
3. 加工误差与刀具磨损的关系:刀具磨损是导致加工误差增大的重要因素之一。
通过对加工误差与刀具磨损程度进行相关性分析,可以判断刀具寿命与加工误差之间的关系,进而合理安排刀具更换周期,以保证加工质量。
4. 加工误差与工件材料的关系:不同材料的加工性能不同,可能导致加工误差的差异。
通过对加工误差与工件材料进行相关性分析,可以了解不同材料对加工误差的影响程度,为材料选择和工艺优化提供依据。
机械制造工艺学加工误差统计分析报告

机械制造加工误差的统计分析一、实验目的:1.通过实验掌握加工精度统计分析的基本原理和方法,运用此方法综合分析零件尺寸的变化规律。
2.掌握样本数据的采集与处理方法,正确的绘制加工误差的实验分布曲线和x-R图并能对其进行正确地分析。
3.通过实验结果,分析影响加工零件精度的原因提出解决问题的方法,改进工艺规程,以达到提高零件加工精度的目的,进一步掌握统计分析在全面质量管理中的应用。
二、实验用材料、工具、设备1.50个被测工件;2.千分尺一只(量程25~50);3.记录用纸和计算器。
三、实验原理:生产实际中影响加工误差的因素是复杂的,因此不能以单个工件的检测得出结论,因为单个工件不能暴露出误差的性质和变化规律,单个工件的误差大小也不能代表整批工件的误差大小。
在一批工件的加工过程中,即有系统性误差因素,也有随机性误差因素。
在连续加工一批零件时,系统性误差的大小和方向或是保持不变或是按一定的规律而变化,前者称为常值系统误差,如原理误差、一次调整误差。
机床、刀具、夹具、量具的制造误差、工艺系统的静力变形系统性误差。
如机床的热变形、刀具的磨损等都属于此,他们都是随着加工顺序(即加工时间)而规律的变化着。
在加工中提高加工精度。
常用的统计分析有点图法和分布曲线法。
批零件时,误差的大小和方向如果是无规律的变化,则称为随机性误差。
如毛坯误差的复映、定位误差、加紧误差、多次调整误差、内应力引起的变形误差等都属于随机性误差。
鉴于以上分析,要提高加工精度,就应以生产现场内对许多工件进行检查的结果为基础,运行数理统计分析的方法去处理这些结果,进而找出规律性的东西,用以找出解决问题的途径,改进加工工艺,提高加工精度。
四、实验步骤:1.对工件预先编号(1~50)。
2.用千分尺对50个工件按序对其直径进行测量,3. 把测量结果填入表并将测量数据计入表1。
表内的实测值为测量值与零件标准值之差,单位取µm五、 数据处理并画出分布分析图:组 距: 44.59)35(1411min max =--=--=-=k x x k Rd µm 5.5=d µm 各组组界: ),,3,2,1(2)1(min k j dd j x =±-+ 各组中值: d j x )1(min -+16.1111-==∑=ni i x n x µm 28.12)(1112=--=∑=ni i x x n σ六、 误差分析1.加工误差性质样本数据分布与正态分布基本相符,加工过程系统误差影响很小。
加工误差统计分析实验报告

加工误差统计分析实验报告一、实验目的通过统计分析加工误差数据,探究加工工艺对产品加工误差的影响,并提出相应的改进措施。
二、实验原理加工误差是指产品实际尺寸与设计尺寸之间的差异,主要受到原材料、加工设备、操作工艺等因素的影响。
统计分析可以通过数学模型和数据处理方法,定量地描述和评估加工误差的分布情况,为加工工艺改进提供依据。
三、实验步骤1.随机选择一批相同产品进行加工,保持其他加工条件不变。
2.测量每个产品的实际尺寸,记录数据并整理成表格。
3.统计每组数据的平均值、方差以及标准差。
4.构建加工误差的概率分布函数,通过正态性检验和偏度、峰度检验判断数据是否符合正态分布。
5.进行加工误差数据的t检验,分析不同因素对加工误差的影响程度。
四、实验数据产品编号,实际尺寸 (mm)--------,--------------1,10.012,10.02...,...100,10.08五、数据处理及分析1.计算平均值、方差和标准差:平均值μ=(10.01+10.02+...+10.08)/100=10.05方差s^2=((10.01-10.05)^2+(10.02-10.05)^2+...+(10.08-10.05)^2)/99标准差s=√s^22.正态性检验:根据实验数据计算样本均值和样本标准差,绘制加工误差的概率密度分布曲线。
通过观察曲线形状以及进行偏度、峰度检验,判断数据是否符合正态分布。
3.t检验:根据产品加工误差数据,进行t检验来分析不同因素对加工误差的影响程度。
比如,可以比较不同机器加工出的产品误差是否有显著性差异。
六、实验结果分析1.样本加工误差符合正态分布,数据较为集中,无明显偏离。
2.通过t检验发现:不同机器加工出的产品误差差异不显著,说明机器之间的加工稳定性较好。
3.根据样本数据及数据处理结果,可以得到加工误差的基本分布情况,对加工工艺的控制和改进提供依据。
例如,可以调整机器参数、改进操作工艺等。
实验五 加工误差的统计分析

实验五加工误差的统计分析1.实验目的(1)掌握加工误差统计分析的原理和方法;(2)掌握统计分析法的应用。
2.原理根据加工一批零件的检验数据,运用数理统计的原理加以分析处理,从中找出误差的种类、大小及规律。
这就是加工误差的统计分析法。
3.试剂和仪器设备(1)型卧式车床;(2)外径千分尺();(3)硬质合金车刀;(4)试件(材料钢,尺寸);4.实验步骤(1)调好机床和刀具,用调整法加工一批试件(100件);(2)按加工顺序测量试件尺寸,并记录测量结果。
5.实验数据及其处理(1)以加工顺序为横坐标,实测尺寸为纵坐标,绘制点图;(2)绘制实验分布曲线图(直方图);(3)绘制图。
6.问题讨论(1)本工序点图说明了什么问题?(2)本工序的实验分布曲线图是否服从正态分布规律?(3)根据工序精度系数,本工序属于几级精度工艺能力?能否满足加工要求?(4)从图看,本工序的工艺过程是否稳定?如果不稳定,试分析其原因。
X—R控制图的操作步骤及应用示例用于控制对象为长度、重量、强度、纯度、时间、收率和生产量等计量值的场合。
X控制图主要用于观察正态分布的均值的变化,R控制图主要用于观察正态分布分散或变异情况的变化,而X-R控制图则将二者联合运用,用于观察正态分布的变化。
X-R控制图的操作步骤步骤1:确定控制对象,或称统计量。
这里要注意下列各点:(1)选择技术上最重要的控制对象。
(2)若指标之间有因果关系,则宁可取作为因的指标为统计量。
(3)控制对象要明确,并为大家理解与同意。
(4)控制对象要能以数字来表示。
(5)控制对象要选择容易测定并对过程容易采取措施者。
步骤2:取预备数据(Preliminary data)。
(1)取25个子组。
(2)子组大小取为多少?国标推荐样本量为4或5。
(3)合理子组原则。
合理子组原则是由休哈特本人提出的,其内容是:“组内差异只由偶因造成,组间差异主要由异因造成”。
其中,前一句的目的是保证控制图上、下控制线的间隔距离6σ为最小,从而对异因能够及时发出统计信号。
加工误差

加工误差统计分析实验报告实验名称加工误差统计分析实验日期2014年12月30日班级机械117班姓名安建廷同组人王云利杨磊戚晓彤丁兴一﹑实验目的统计分析法是通过一批工件加工误差的表现形式,来研究产生误差原因的一种方法。
做加工误差统计分析实验的目的在于,巩固已学过的统计分析法的基本理论;掌握运用统计分析法的步骤,练习使用统计分析法判断问题的能力。
1. 掌握绘制工件尺寸实际分布图的方法,并能根据分布图分析加工误差的性质,计算工序能力系数,合格品率,废品率等,能提出工艺改进的措施;2. 掌握绘制X-R 点图的方法,能根据X-R 点图分析工艺过程的稳定性。
二﹑实验仪器设备设备:M1040无心磨床量仪:数显千分尺一把试件:工件一批三﹑实验原理在M1040 无心磨床上用纵磨法磨削工件一批,检查其每件尺寸。
做出实际分布图以及X—R 控制图。
在机械加工中应用数理统计方法对加工误差(或其他质量指标)进行分析,是进行过程控制的一种有效方法,也是实施全面质量管理的一个重要方面。
其基本原理是利用加工误差的统计特性,对测量数据进行处理,做出分布图和点图,据此对加工误差的性质、工序能力及工艺稳定性等进行识别和判断,进而对加工误差做出综合分析。
四﹑实验数据记录与处理1. 实验原始数据2. 绘制实际分布图(1)剔除异常数据==∑=ni i x n x 1119.9915=--=∑=n i ix x n 12)(11σ0.017若σ3>-x x k ,认为k x 为异常数据,应剔除。
(2)确定尺寸间距和分组数1)初选分组数 K一般应根据样本容量来选择,容量为100。
2)确定组距找出样本数据的最大值 X max 和最小值X min ,并计算组距:计算求得组距d=0.016选取与计算的 d'值相近的且为测量值尾数整倍数的数值为组距。
3)确定分组数 共分为9组(3)制作频率分布表(4)绘制实际分布图(5)加工误差统计分析(误差性质、改进措施、工序能力、合格品率等)通过对直方图的分析,可以看出总体来说满足要求,误差范围也较小,但是还是有一部分不满足加工要求仍需要改进。
加工误差的统计分析实验报告

加工误差的统计分析实验报告实验报告-加工误差的统计分析一、引言加工误差是工业生产中常见的问题之一,直接影响着产品的质量和性能。
了解加工误差的统计分布和规律,对于优化加工工艺、提高产品精度具有重要意义。
本实验旨在通过统计分析加工误差数据,探讨加工误差的分布及其对产品质量的影响。
二、实验设计1.实验目标:观察加工误差的统计分布及其规律。
2.实验工具:数控加工机床,三坐标测量仪3.实验材料:其中一种金属材料4.实验步骤:a.设计并加工若干个样品b.使用三坐标测量仪测量每个样品的加工误差c.记录加工误差数据并进行统计分析三、实验结果1.加工误差数据记录表样品编号,加工误差(mm----------,--------------A,0.0B,0.0C,0.0D,0.0E,-0.0F,0.0G,0.0H,-0.0I,0.0J,0.02.加工误差的统计分析a. 加工误差的均值(μ):0.01mmb. 加工误差的标准差(σ):0.02mmc. 加工误差的方差(σ^2):0.0004mm^2四、结果分析1. 加工误差的均值与标准差分别表示了加工误差的集中程度和离散程度。
实验结果显示,加工误差的均值为0.01mm,说明整体上加工误差集中在一个较小的范围内。
而标准差为0.02mm,表明加工误差的离散程度较大。
2.通过加工误差的统计分布分析,可以更准确地评估加工精度的稳定性和可靠性。
3.经过正态性检验,加工误差近似符合正态分布,这与许多加工误差服从中心极限定理的理论支持一致。
五、结论1. 通过加工误差数据的统计分析,得出样品加工误差的均值为0.01mm,标准差为0.02mm,方差为0.0004mm^22.样品的加工误差数据近似符合正态分布,说明加工误差在一定程度上服从中心极限定理。
3.实验结果进一步表明,加工误差的集中程度较高,但其离散程度相对较大。
六、改进建议1.根据加工误差的分布规律,可以对加工工艺进行优化,减小加工误差的产生。
加工误差的统计分析

(一)实验分布图
记录各组数据,整理成频数分布表(表4-5)
(一)实验分布图
根据表4-4所列数据画出直方图
(一)实验分布图
计算。 在直方图上作出最大极限尺寸Amax=60.06mm及最小极限尺寸Amin=60.01mm的标志线,并计算: =37.3μm; S =8.93μm。
(三)分布图分析法的应用
确定工序能力及其等级 (定义)工序能力:所谓工序能力是指工序处于稳定状态时,加工误差正常波动的幅度。当加工尺寸服从正态分布时,其尺寸分散范围是6σ,所以工序能力就是6σ。 (定义)工序能力系数:工序能力等级是以工序能力系数来表示的,它代表了工序能满足加工精度要求的程度。 当工序处于稳定状态度时,工序能力系数Cp按下式计算:
1.正态分布
可以看出,分布曲线的最大值与σ成反比。 当σ减小时,分布曲线向上伸展。由于分布曲线所围成的面积总是保持等于1,因此σ愈小,分布曲线两侧愈向中间收紧,分散范围越小。 σ是表征分布曲线形状的参数,亦即它刻划了随机变量X取值的分散程度。
1.正态分布
标准正态分布 总体平均值μ=0,总体标准差σ=1的正态分布称为标准正态分布。任何不同的μ和σ的正态分布都可以通过坐标变换 为标准的正态分布,故可以利用标准正态分布的函数值,求得各种正态分布的函数值。
一、加工误差性质
(定义)系统误差:在顺序加工一批工件中,其加工误差的大小和方向都保持不变,或者按一定规律变化,统称为系统误差。前者称常值系统误差,后者称变值系统误差。
常值系统误差 加工原理误差,机床、刀具、夹具和量具的制造误差、工艺系统的受力变形、机床、夹具、量具等磨损
变值系统误差 机床、刀具和夹具等在热平衡前的热变形误差,刀具的磨损等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称:加工误差的统计分析
一.实验目的
通过检测工件尺寸,计算并画出直方图,分析误差性质, 理解影响加工误差的因素。
掌握加工误差统计分析的基本原理和方法。
二.主要实验仪器及材料
游标卡尺; 工件N件。
三.实验步骤
1.测量各工件上指定尺寸x,并按测量顺序记录如下
2.计算尺寸分散范围R:由于随机误差和变值系统误差的存在,零件加工尺寸的实际值各不相同,这种现象称为尺寸分散。
样本尺寸的最大值Xmax与最小值Xmin之差,称为分散范围。
R= Xmax-Xmin=
3.分组并计算组距△x:将样本尺寸按大小顺序排列,分成k组,则组距为:△x =R/k。
分组数k一般取为7.
4. 绘制分布曲线(直方图):
以工件尺寸为横坐标, 以各组中实际尺寸出现的频数作纵坐标, 即可作出等宽直方图。
再连接直方图中每一直方宽度的中点(组中值)得到一条折线,即实际分布曲线。
5. 根据分布图分析
a.实际分布曲线是否接近正态分布
b.实际尺寸平均值与理论尺寸平均值是否相等
c.由此可知,误差性质为:
分布图分析法的应用
•判别加工误差的性质
–是否存在变值系统性误差
•如果实际分布与正态分布基本相符,说明加工过程中没有变值系统性误差(或
影响很小)。
–是否存在常值系统性误差
•如果尺寸分布中心与公差带中心不重合就说明存在常值系统性误差,误差的大
小就是两个中心的不重合度(距离)。