离散数学代数结构

合集下载

离散数学课件 第五章 代数结构_2

离散数学课件 第五章 代数结构_2

aHbH,同理bHaH
aH=bH
拉格朗日定理
定理5-7.1(拉格朗日定理) 设<H,>为有限群<G, >的子群,|G|=n, |H|=m, 那么|G|/|H| = n/m是 整数,即m|n 。
拉格朗日定理的推论
推论1 任何质数阶的群不可能有非平凡子群。 推论2 设<G,>为n阶有限群,那么对于任意aG,a 的阶必是n的因子且必有an=e,这里e是群<G,>的幺 元。如果n为质数,则<G,>必是循环群。
陪集举例
例1.求出<N6,+6>关于子群<{[0],[3]},+6>的所有左 陪集,右陪集。 解:令H={[0],[3]}, 则左陪集: 右陪集: [0]H={[0],[3]}=[3]H H[0]={[0],[3]}=H[3] [1]H={[1],[4]}=[4]H H[1]={[1],[4]}=H[4] [2]H={[2],[5]}=[5]H H[2]={[2],[5]}=H[5] 从中可以看出:{[0]H,[1]H,[2]H}是G的一个划分。
补充:元素的阶(a的阶,记为|a| )
1.元素a的幂的定义
定义:给定群<G, * >,aG,若nN,则定义:
a0 = e,
an+1 = an * a,
a-n = a-1 * a-1 * * a-1= (a-1)n =(an)-1
对m用归纳法可证:am * an = am+n (m,nI),
5-5 阿贝尔群和循环群
定义 5-5.1 设 <G,>为一群,若 运算满足交 换律,则称G为交换群或阿贝尔群(Abel group)。 例:由于加法运算“+”满足交换律,因此群 <Z,+ >,<R, +>,<Q, +>,<C, +>都是交换群。

自考离散数学第4章

自考离散数学第4章

例:设集合A={a,b,c,d},在A上定义两个运算*和
,如表所示: 解:b,d是A中关于*运算的左幺元,而a是A中关于运算的右幺元。
a d a a a b a b b b c b c c c d c d c d a b c
* a b c d

a a b c
b b a d
c d c a
定义4.3.7 设<G,*>为群,若在G中存在一个元素a,使得G中的任意元素都由a
例:设A={a,b,c,d},*为A上的二元运算,
* a b c d
a a b c d
b b d a a
c c a b c
d d c b d
可以看出a为单位元。由a*a=a,b*c=a,c*b=a,d*b=a, 故a有逆元a;b有左逆元c,d;c有左逆元b;b有右逆元c;c有右逆元b;d有
定义4.3.2 设<G,*> 为一个群,如果G是有限集合,则称<G,*> 是有限群。G中
元素的个数通常称为有限群的阶数,记为|G|。
定义4.3.3 若群G中,只含有一个元素,即G={e},|G|=1,则称G为平凡群。 例:设G={e,a,b,c},运算*如表所示:
* e a b c
e e a b c
4.2 半群与独异点
4.3 群与子群
定义4.3.1 设<G,*>为一个代数系统,其中G是非空集合,*是G上一个二元运算,
① 如果*是封闭的; ② 运算*是可结合的; ③ 存在幺元e; ④ 对于每一个元素x G,存在它的逆元x-1; 则称<G,*>是一个群。
4.3 群与子群

4.3 群与子群
4.1 代数系统

离散数学中的代数结构和置换群

离散数学中的代数结构和置换群

离散数学是数学中的一个重要分支,它研究离散的、非连续的数学对象和结构。

在离散数学中,代数结构是其中一个重要的概念,而置换群是代数结构的一个重要例子。

代数结构是研究对象间关系的一种数学工具。

它包括集合,运算和运算性质。

集合是代数结构的基础,是一个由元素组成的不重复的集合。

运算指的是将集合中两个元素映射到集合中的另一个元素的操作,常见的运算有加法、乘法等。

运算性质是指运算在代数结构中具有的性质,如结合律、交换律、单位元等。

在代数结构中,置换群是一种重要的结构。

置换是一种改变事物次序的方法,它可以是将事物重新排列,也可以是将某个事物替换为另一个事物。

置换群是一组置换构成的集合,并且具有封闭性,结合律和单位元等性质。

置换群可以描述物体的旋转、对称和变换等操作,也可以用于密码学和密码破解等领域。

置换群的运算是指将两个置换进行合成,可以通过将第一个置换的作用结果作为第二个置换的作用对象来实现。

例如,设置换π1表示将物体的位置1和位置2进行交换,置换π2表示将物体的位置2和位置3进行交换,那么置换π1和置换π2的合成操作即为将物体的位置1和位置3进行交换。

正如前所述,置换群具有封闭性、结合律和单位元等性质。

封闭性指的是任意两个置换的合成结果仍然是一个置换。

结合律是指对于置换群中的任意三个置换a、b和c,有(a * b) * c = a * (b * c),即合成的顺序不影响结果。

单位元是指存在一个特殊的置换,它与任意置换进行合成后结果仍然是原置换。

在置换群中,还有一个重要的概念是逆元。

对于每个置换a,都存在一个逆置换a',使得a * a' = a' * a = e,其中e是置换群的单位元。

逆元表示将一个置换的操作逆向执行,可以将置换还原为原来的状态。

置换群不仅在离散数学中有重要应用,还在计算机科学、物理学和化学等领域中得到广泛应用。

在计算机科学中,置换群可以用于密码学中的置换密码,用于保护数据的安全性。

离散数学形考任务3代数结构部分概念及性质

离散数学形考任务3代数结构部分概念及性质

离散数学形考任务3代数结构部分概念及性质一、概念介绍代数结构是离散数学中的一个重要概念。

它描述了在特定集合上定义的运算规则和性质。

常见的代数结构主要包括:1. 群(Group):群是一种具有封闭性、结合律、单位元和逆元的代数结构。

它是一种基本的抽象代数结构,并具有丰富的性质和应用。

2. 环(Ring):环是一种具有加法和乘法两种运算的代数结构。

它具有封闭性、结合律、单位元、交换律和分配律等性质。

3. 域(Field):域是一种具有加法、乘法、减法和除法四种运算的代数结构。

它是一种高级的代数结构,并满足多种性质,如交换性、维数等。

二、性质探讨不同的代数结构具有不同的性质,下面我们分别探讨一下群、环和域的性质:1. 群的性质:- 封闭性:对于群G中的任意元素a和b,它们的运算结果ab 也属于G。

- 结合律:对于群G中的任意元素a、b和c,(ab)c = a(bc),即运算顺序不影响结果。

- 单位元:群G中存在一个元素e,使得对于任意元素a,ae = ea = a。

- 逆元:对于群G中的任意元素a,存在一个元素b,使得ab = ba = e。

2. 环的性质:- 封闭性:对于环R中的任意元素a和b,它们的加法运算结果a+b和乘法运算结果ab都属于R。

- 结合律:对于环R中的任意元素a、b和c,(a+b)+c = a+(b+c)和(ab)c = a(bc),即运算顺序不影响结果。

- 单位元:环R中存在一个元素0,使得对于任意元素a,a+0 = 0+a = a。

- 交换律:对于环R中的任意元素a和b,a+b = b+a和ab = ba。

- 分配律:对于环R中的任意元素a、b和c,a(b+c) = ab+ac和(a+b)c = ac+bc。

3. 域的性质:- 封闭性:对于域F中的任意非零元素a和b,它们的加法运算结果a+b和乘法运算结果ab都属于F。

- 结合律、单位元和逆元:与群和环的性质类似,域也具有结合律、单位元和逆元的性质。

离散数学代数结构

离散数学代数结构

第一节 代数结构的定义
2020年11月5日星期四
代数结构的定义 一个代数结构< S, f1, f2, …, fm >通常由两个部分组成:
一个集合S ,叫做代数的载体; 定义在载体上的运算(operator) f1, f2, …, fm
代数结构
2020年11月5日星期四
一个集合,叫做代数的载体 载体,是我们将要处理的数学目标的集合 如整数集合、实数集合、符号集合等 一般不讨论载体是空集合的代数结构
例5.1.2: 代数结构 < N, ×>与< Z, - > 具有相同的构成成分 因为它们都有一个二元运算 代数结构 < {F, T}, ∧, ∨> 与 < P(S), , >具有相同 的构成成分,它们都具有两个二元运算
子代数
2020年11月5日星期四
子代数 设< S, f1, f2, …, fm >是一个代数结构
⊙0 1 000 101
这种表称为运算表或复合表,它由 运算符、行表头元素、列表头元素 和复合元素组成。
运算⊙具有封闭性:运算表中的每个元素都属于S
结合律
2020年11月5日星期四
一、结合律
设有代数结构< S, ⊙ >,若 (x)(y)(z)(x,y,z S (x⊙y)⊙z=x⊙(y⊙z)) 则称运算⊙满足结合律,或⊙是可结合的
代数结构
2020年11月5日星期四
代数结构 有时还在代数结构的表示中加入特异元素k,记做 < S, f1, f2, …, fm , k > 载体中的特异元素,也叫做代数常数 有些运算存在么元和零元,它们在运算中起着特殊的作用
代数结构示例
2020年11月5日星期四

离散数学_第06章代数结构概念及性质

离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。

离散数学-近世代数-代数结构

离散数学-近世代数-代数结构
添加标题
例:代数系统(N,+,×)。其中+,×分别代表通常数的加法和乘法。
添加标题
是否满足交换律?
添加标题
单位元( 幺元)
一个代数系统(S,*), 若存在一个元素eU,使得对 xS,有:e * x =x * e = x,则称 e 为对于运算“ * ”的单位元,也称幺元 。 注意: 单位元是跟运算有关系的,不同的运算可能单位元是不一样的。
解: 作双射 f:A1A2,f(1)=b, f(2)=d, f(3)=c, f(4)=a
a
b
c
d
a
b
b
b
d
b
a
a
d
b
c
c
b
c
a
d
a
a
c
d
*
1
2
3
4
1
4
1
2
4
2
4
2
3
4
3
1
4
3
3
4
1
2
1
1
设代数系统V1=(A1,*),V2=(A2,º), 其中A1={1,2,3,4}, A2={a,b,c,d}, * 和 º 的运算分别如下表,V1 和 V2 是否同构?
等幂律
设 * 是定义在集合A上的一个二元运算,如果对于任意的xA,都有x * x = x,则称 * 运算是等幂的。 例: S={1,2,4},在集合 p(S) 定义两个二元运算,∩,∪,分别表示集合的“并”运算和集合的“交”运算,∩,∪是等幂的? 解:对于任意的A p(S) ,有A∩A=A;A∪A=A 因此运算∩,∪都满足等幂律。
性质、定理
定理 一个代数系统,其零元若存在,则唯一。 定理 一个代数系统(S,),若集合 A 中元素的个数大于1,且该代数系统存在幺元 e 和零元θ,则θe。 证明:用反证法,设θ=e,则对于任意的xA,必有 x = ex = θx =θ= e, 即对于A中所有元素都是相同的,这与A中含有多个元素相矛盾。

离散数学的基础知识点总结

离散数学的基础知识点总结

离散数学的基础知识点总结离散数学是研究离散结构和离散对象的数学分支。

它以集合论、图论和逻辑等为基础,涉及了许多重要的基础知识点。

下面是对离散数学的基础知识点进行的总结。

1. 集合论(Set theory):集合论是离散数学的基础,涉及了集合的概念、运算和恒等关系,以及集合的分类、子集、幂集和笛卡尔积等基本概念和性质。

2. 逻辑(Logic):逻辑是离散数学的重要组成部分,涉及了命题逻辑和谓词逻辑的基本概念和推理规则,包括命题的真值表、谓词的量化、逻辑等价和逻辑蕴含等概念。

3. 函数(Functions):函数是离散数学中的核心概念之一,涉及了函数的定义、域和值域、函数的性质、特殊的函数(如恒等函数、常值函数、单射函数和满射函数等)以及函数的复合和逆函数等。

4. 关系(Relations):关系是离散数学中的另一个核心概念,涉及了关系的定义、关系的特性(如自反性、对称性、传递性和等价关系等)、关系的闭包和自反闭包、关系的图示表示和矩阵表示、等价关系和偏序关系等。

5. 图论(Graph theory):图论是离散数学的重要分支,涉及了图的基本概念(如顶点、边、路径和圈等)、图的表示方法(如邻接矩阵和邻接表等)、图的遍历算法(如深度优先和广度优先等)、图的连通性和可达性、最小生成树和最短路径等基础知识。

7. 代数结构(Algebraic structures):代数结构是离散数学的一个重要方向,涉及了群、环、域和格等基本代数结构的定义、性质和分类,以及同态映射和同构等概念。

8. 数论(Number theory):数论是离散数学的一个重要分支,涉及了自然数的性质和结构,包括质数和素数、最大公因数和最小公倍数、同余和模运算、欧几里得算法和扩展欧几里得算法、费马小定理和欧拉函数等。

9. 排序和选择(Sorting and selection):排序和选择是离散数学中的一类重要问题,涉及了各种排序算法(如冒泡排序、插入排序、快速排序和归并排序等)和选择算法(如选择排序和堆排序等),以及它们的复杂度分析和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因此当x 1/2时,x/(1+2x)是x的逆元,1/2无逆元.
1
群的性质:消去律
设G = {a1, a2, … , an}是n阶群,令aiG = {ai aj | j=1,2,…,n} 证明 aiG = G. 证 由群中运算的封闭性有 aiGG. 假设aiGG,即 |aiG| < n. 必有aj , ak∈G使得 ai aj = ai ak (j ≠ k) 由消去律得 aj = ak , 与 |G| = n矛盾.
4
子群判定定理3
设G为群,H是G的非空有穷子集,则H是G的子群当且仅当
a,b∈H有ab∈H. 证 必要性显然. 为证充分性,只需证明 a∈H有a1∈H. 任取a∈H, 若a = e, 则a1 = e∈H. 若a≠e,令S={a,a2,…},则SH. 由于H是有穷集,必有ai = aj(i<j). 根据G中的消去律得 aji = e,由a ≠ e可知 ji>1,由此得 a ji1a = e 和 a a ji1 = e 从而证明了a1 = a ji1∈H.
图2
14
6
陪集的基本性质
设H是群G的子群,则a,b∈G有 a∈Hb Ha=Hb 证 充分性. 若Ha=Hb,由ea∈Hb 可知必有 a∈Hb. 必要性. 由 a∈Hb 可知存在 h∈H 使得 a =hb,即b =h1a 任取 h1a∈Ha,则有 h1a = h1(hb) = (h1h)b∈Hb 从而得到 Ha Hb. 反之,任取h1b∈Hb,则有 h1b = h1(h1a) = (h1h1)a∈Ha 从而得到Hb Ha. 综合上述,Ha=Hb得证.
3
子群判定定理2
G为群,H是G的非空子集. H是G的子群当且仅当a,b∈H 有ab1∈H. 证 必要性显然. 只证充分性. 因为H非空,必存在a∈H. 根据给定条件得aa1∈H,即e∈H. 任取a∈H, 由e,a∈H 得 ea1∈H,即a1∈H. 任取a,b∈H,由上步知b1∈H, 从而a(b1) 1∈H,即ab∈H. 综合上述,可知H是G的子群.
5
典型子群的实例:子群的交
设G是群,H,K是G的子群. 证明 H∪K是G的子群当且仅当 HK 或 KH 证 充分性显然,只证必要性. 用反证法. 假设 HK 且KH,那么存在 h 和 k 使得 h∈H∧hK, k∈K∧kH 推出 hk H. 否则由h1∈H 得 k=h1(hk)∈H,与假设矛盾. 同理可证 hk K. 从而得到 hk H∪K. 与H∪K是子群矛盾.
9
练习
判断下列集合和给定运算是否构成环、整环和域? 如果不构成, 简要说明其理由. (1) A = { a+bi | a,b∈Q }, 其中i2= 1, 运算为复数加法和乘法. (2) A={ 2z+1 | z∈Z}, 运算为实数加法和乘法 解 (1) 是环, 是整环, 也是域. (2) 不是环, 因为关于加法不封闭.
11
实例
下列偏序集是否构成格?并对(1)和(2)简要说明其理由. (1) <P(B), >,其中P(B)是集合B的幂集. (2) <Z, ≤>,其中Z是整数集,≤为小于或等于关系. (3) 偏序集的哈斯图分别在下图给出.
解:(1) 构成格. x,y∈P(B),x∨y就是x∪y,x∧y就是x∩y. (2) 构成格. x,y∈Z,x∨y = max(x,y),x∧y = min(x,y), 图2 (3) 都不是格. 可以找到两个结点缺少最大下界或最小上界12
练习
设 ∘为Q上的二元运算,x, yQ, x ∘y = x+y+2xy, 求出 ∘运算的单位元、零元和所有可逆元素的逆元. 解:设∘运算的单位元和零元分别为 e 和 , 则对于任意 x 有 x ∘e = x 成立,即 x+e+2xe = x e = 0
容易验证0 是幺元.
对于任意 x 有x ∘ = 成立,即 x++2x = = 1/2 容易验证1/2是零元. 给定 x (x≠ 1/2 ),设 x 的逆元为 y, 则有 x ∘y = 0 成立,即 x+y+2xy = 0 y = x/(1+2x)
2
群的性质:元素的阶
设G为群,a∈G且 |a| = r, k是整数,证明ak = e当且仅当r | k 证:充分性. 由于r|k,必存在整数m使得k = mr,所以有 ak = amr = (ar)m = em = e. 必要性:根据除法,存在整数 m 和 i 使得 k = mr+i, 0≤i≤r1 从而有 e = ak = amr+i = (ar)mai = eai = ai 因为|a| = r,必有i = 0. 这就证明了r | k.
7
陪集的基本性质
设H是群G的子群,在G上定义二元关系R: a,b∈G, <a,b>∈R ab1∈H 则 R是G上的等价关系,且[a]R = Ha.
证 先证明R为G上的等价关系. 自反性. 任取a∈G,aa1 = e∈H <a,a>∈R 对称性. 任取a,b∈G,则 <a,b>∈Rab1∈H(ab1)1∈Hba1∈H<b,a>∈R 传递性. 任取a,b,c∈G,则 <a,b>∈R∧<b,c>∈R ab1∈H∧bc1∈H ac1∈H <a,c>∈R 下面证明:a∈G,[a]R = Ha. 事实上,任取b∈G,有 b∈[a]R <a,b>∈R <b,a>∈R ba1∈H b∈Ha 故[a]R = Ha.图213Fra bibliotek-1实例
设(G,*)是一群,a ∈G,定义函数f:G → G,xa*x*a-1 , 证明f是G的自同构。 证:f(x*y) =a * (x *y) * a-1 = a*x*a-1* a*y*a-1 = f(x) *f(y), 故f为自同态。 设x,y ∈G,,f(x) = f(y),则 x = a-1* a*x*a-1*a = a-1*f(x)* a = a-1*f(y)* a = a-1*( a*y*a-1) * a = y, 故为单同态。 y ∈G,y = a*( a-1*y* a) * a-1 = f(a-1*y*a), 故f为满同态。 因此f为自同构。
8
练习
在整数环中定义∗和◇两个运算, a,b∈Z 有 a∗b = a+b1, a◇b = a+bab. 证明<Z, ∗,◇>构成环 证 a,b∈Z有a∗b, a◇b∈Z, 两个运算封闭. 任取a,b,c∈Z (a∗b)∗c = (a+b1)∗c = (a+b1)+c1 = a+b+c2 a∗(b∗c) = a∗(b+c1) = a+(b+c1)1 = a+b+c2 (a◇b)◇c = (a+bab)◇c = a+b+c (ab+ac+bc)+abc a◇(b◇c) = a◇(b+cbc) = a+b+c (ab+ac+bc)+abc ∗与◇可结合,1为∗的幺元. 2a为a关于∗的逆元. Z关于∗构成交换群, 关于◇构成半群. a◇(b∗c) = a◇(b+c1) = 2a+b+cabac1 (a◇b)∗(a◇c) = 2a+b+cabac1 ◇关于∗满足分配律. <Z, ∗,◇>构成环.
10
练习
判断下列集合和给定运算是否构成环、整环和域? 如果不构成, 简要说明其理由. (1) A={ 2z | z∈Z}, 运算为实数加法和乘法 (2) A={ x | x≥0∧x∈Z}, 运算为实数加法和乘法. 解 (1) 是环, 不是整环和域, 因为乘法没有么元. (2) 不是环, 因为正整数关于加法的负元不存在.
实例
设H是群G的子群,在G中定义关系 R = {(a,b)| b · a∈H }. 试证明R是G上的一个等价关系。 证:a∈G,a-1· = e ∈H,故 (a,a) ∈R,R是自反的; a 设(a,b)∈R,则b-1· a∈H.记b-1· = h . a 因H为群,故a-1· =(b-1· -1 = h-1∈H,(b,a) ∈R, b a) R是对称的; 设(a,b),(b,c) ∈R,即b-1· -1· a,c b∈H, 则 c-1· = (c-1· · -1· ∈H,(a,c) ∈R , a b) (b a) R是传递的。 因此,R是G上的一个等价关系。
相关文档
最新文档