离散数学结构 习题13
离散数学结构练习题

离散数学结构练习题1. 集合论基础- 定义集合A={1,2,3}和集合B={2,3,4},求A∩B(A和B的交集)。
- 给定集合C={x|x是小于10的正整数},求C的子集数量。
- 证明如果A⊆B且B⊆C,则A⊆C。
2. 逻辑运算- 写出命题p: "x是偶数"和命题q: "x能被4整除"的逻辑表达式,并求p∧q(p和q的合取)。
- 给定命题r: "今天是星期一"和命题s: "明天是星期二",判断r∨s(r或s的析取)的真值。
- 证明德摩根定律:(A∪B)' = A'∩B' 和(A∩B)' = A'∪B'。
3. 函数与关系- 定义函数f: N→N,f(x) = 2x,求f(3)的值。
- 给定关系R={(1,2),(2,3),(3,4)}在集合{1,2,3,4}上,判断R是否为等价关系,并说明理由。
- 证明如果f是从集合A到集合B的单射函数,那么对于任意的a1, a2∈A,若a1≠a2,则f(a1)≠f(a2)。
4. 组合数学- 计算5个不同的球放入3个不同的盒子中,每个盒子至少有一个球的不同放法数量。
- 给定n个不同的元素,求从这n个元素中选取k个元素的所有可能组合的总数。
- 证明二项式定理:(a+b)^n = ∑(从k=0到n) C(n,k) * a^(n-k) * b^k。
5. 图论基础- 画出一个有5个顶点的无向图,使得该图是连通的且没有环。
- 给定一个有向图,找出所有可能的简单路径。
- 证明欧拉路径和欧拉回路的存在条件。
6. 布尔代数- 给定布尔表达式A∧(B∨C),使用布尔代数的规则将其简化。
- 构造一个布尔函数f(A,B,C)=A⊕B⊕C的真值表。
- 证明布尔代数中的分配律:A∧(B∨C) = (A∧B)∨(A∧C)。
7. 归纳与递归- 使用数学归纳法证明对于所有自然数n,1+2+3+...+n =n(n+1)/2成立。
应用离散数学代数结构群题库试卷习题及答案

§4.3 群习题4.31. 设G 是所有形如⎪⎪⎭⎫ ⎝⎛001211a a 的矩阵组成的集合, *表示矩阵乘法。
试问>*<,G 是半群吗?是有么半群吗?这里1211a a 、是实数。
解 任取G 中的2个元素=A ⎪⎪⎭⎫ ⎝⎛001211a a 、=B ⎪⎪⎭⎫⎝⎛001211b b 、 ∵=*B A ⎪⎪⎭⎫ ⎝⎛001211a a ⎪⎪⎭⎫ ⎝⎛001211b b =⎪⎪⎭⎫⎝⎛0012111111b a b a G ∈ ∴ >*<,G 是一个代数系统。
且因为矩阵的乘法满足结合律,所以>*<,G 是半群。
又因为,只要11a =1,则=*B A ⎪⎪⎭⎫ ⎝⎛001211a a *⎪⎪⎭⎫ ⎝⎛001211b b =⎪⎪⎭⎫ ⎝⎛0012111111b a b a =⎪⎪⎭⎫⎝⎛001211b b B = 对任何的G B ∈成立,即⎪⎪⎭⎫⎝⎛00112a 是左单位元(不论12a 取什么值)。
但右单位元不存在,因为不论11b ,12b 取什么值,=*B A ⎪⎪⎭⎫ ⎝⎛001211a a ⎪⎪⎭⎫ ⎝⎛001211b b =⎪⎪⎭⎫ ⎝⎛0012111111b a b a =⎪⎪⎭⎫⎝⎛001111a a B = 不可能对任何的G A ∈成立。
所以单位元不存在(事实上,若单位元存在,则左、右单位元都存在且相等还唯一),所以>*<,G 不是有么半群。
2. 在自然数集合N 上定义运算∨和∧如下:}max{b a b a ,=∨,}min{b a b a ,=∧试问>∨<,N 和>∧<,N 是半群吗?是有么半群吗? 解>∨<,N 是半群,有单位元0,是有幺半群。
>∧<,N 是半群,没有单位元,不是有幺半群。
3. 设Z 为整数集合,在Z 上定义二元运算*如下:Z ∈∀-+=*y x y x y x ,,2问Z 关于运算*能否构成群?为什么? 解(1)整数集合Z 非空。
《离散的数学结构》课后习题答案

离散数学辅助教材概念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系离散数学习题解答习题一(第一章集合)1. 列出下述集合的全部元素:1)A={x | x ∈N∧x是偶数∧x<15}2)B={x|x∈N∧4+x=3}3)C={x|x是十进制的数字}[解] 1)A={2,4,6,8,10,12,14}2)B=∅3)C={0,1,2,3,4,5,6,7,8,9}2. 用谓词法表示下列集合:1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29}[解] 1){n n∈I∧(∃m∈I)(n=2m+1)};2){n n∈I∧n≥0∧n<7};3){p p∈N∧p>2∧p<30∧⌝(∃d∈N)(d≠1∧d≠p∧(∃k∈N)(p=k⋅d))}。
3. 确定下列各命题的真假性:1)∅⊆∅2)∅∈∅3)∅⊆{∅}4)∅∈{∅}5){a,b}⊆{a,b,c,{a,b,c}}6){a,b}∈(a,b,c,{a,b,c})7){a,b}⊆{a,b,{{a,b,}}}8){a,b}∈{a,b,{{a,b,}}}[解]1)真。
因为空集是任意集合的子集;2)假。
因为空集不含任何元素;3)真。
因为空集是任意集合的子集;4)真。
因为∅是集合{∅}的元素;5)真。
因为{a,b}是集合{a,b,c,{a,b,c}}的子集;6)假。
因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;7)真。
因为{a,b}是集合{a,b,{{a,b}}}的子集;8)假。
因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4. 对任意集合A,B,C,确定下列命题的真假性:1)如果A∈B∧B∈C,则A∈C。
2)如果A∈B∧B∈C,则A∈C。
3)如果A⊂B∧B∈C,则A∈C。
[解] 1)假。
例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。
离散数学练习题

离散数学练习题1、图中度为零的结点称为孤立结点。
A. 正确B. 错误正确:【A】2、域是整环。
A. 正确B. 错误正确:【A】3、有限格都是有界格。
A. 正确B. 错误正确:【A】4、连通且不含圈的图称为树。
A. 正确B. 错误正确:【A】5、“如果1+1≠3,则2+2≠4”是真命题。
A. 正确B. 错误正确:【B】6、无向图G为欧拉图,则G是连通的。
A. 正确B. 错误正确:【A】7、若A和B都是谓词公式,则(A∧B)、(A∨B)、(A→B)、(A<->B)都是谓词公式。
A. 正确B. 错误8、设A, B, C是命题公式,则AVBV﹁C 也是命题公式。
A. 正确B. 错误正确:【A】9、设〈L,≤〉是格,则格的交∧和并∨运算满足等幂律。
A. 正确B. 错误正确:【A】10、“x+3>1。
”是命题。
A. 正确B. 错误正确:【B】11、半群满足交换律。
A. 正确B. 错误正确:【B】12、在任何图中,奇数度的结点数必是偶数。
A. 正确B. 错误正确:【A】13、在格〈L,∨,∧〉中,如果交运算对并运算是可分配的,则并运算对交运算也是可分配的。
A. 正确B. 错误正确:【A】14、完全图Kn没有割集,它的连通性能是最好的。
A. 正确B. 错误15、对任意集合A,都有∅⊆A。
A. 正确B. 错误正确:【A】17、强连通图一定是单向连通图。
A. 正确B. 错误正确:【A】18、代数系统〈G,∘〉为群的条件是存在零元素。
A. 正确B. 错误正确:【B】19、对应日常生活中的“任意的”,“所有的”,“一切的”等词,用符号“任意”表示。
A. 正确B. 错误正确:【A】20、如果a是集合A中的元素,则称a属于A,记作a∉A。
A. 正确B. 错误正确:【B】21、A,B是集合,P(A),P(B)为其幂集,且,则P(A)∩P(B)为()A. B.C. D.正确:【B】22、设M={x|f1(x)=0},N={x|f2(x)=0},则方程f1(x)•f2(x)=0的解为()A. M∩NB. M∪NC. MND. M-N正确:【B】23、设集合A={1,2,3},下列关系R中不是等价关系的是()A. R={<1,1>,<2,2>,<3,3>}B. R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>}C. R={<1,1>,<2,2>,<3,3>,<1,2>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>} 正确:【C】24、设<A,?,*>是环,则下列说法不正确的是()A. <A,?>是交换群B. <A,*>是半群C. *对?是可分配的D. ?对*是可分配的正确:【D】25、平面图(如下)的三个面的次数分别是()A. 11,3,4B. 11,3,5C. 12,3,6D. 10,4,3正确:【A】26、下列命题正确的是()A. {l,2} {{1,2},{l,2,3},1}B. {1,2} {1,{l,2},{l,2,3},2}C. {1,2} {{1},{2},{1,2}}D. {1,2}∈{1,2,{2},{l,2,3}}正确:【B】27、设D的结点数大于1,D=<V,E>是强连通图,当且仅当()A. D中至少有一条通路B. D中至少有一条回路C. D中有通过每个结点至少一次的通路D. D中有通过每个结点至少一次的回路正确:【D】28、下列等价式正确的是()A. ┐┐AB.C. ┐┐AD.正确:【C】29、设P={x|(x+1)2≤4},Q={x|x2+16≥5x},则下列选项正确的是()A. PQB. PQC. QPD. Q=P正确:【C】30、设,则有()A. B.C. D.正确:【C】31、下列各图中既是欧拉图,又是汉密尔顿图的是()A. B.C. D.正确:【C】32、无向图G是欧拉图当且仅当G是连通的且()A. G中各顶点的度数均相等B. G中各顶点的度数之和为偶数C. G中各顶点的度数均为偶数D. G中各顶点的度数均为奇数正确:【C】33、下列式子正确的是()A. (A-B)-C = A-(B∪C)B. A-(B∪C)=(A-B)∪CC. ~(A-B)= ~(B-A)D.正确:【A】34、设有代数系统G=〈A,*〉,其中A是所有命题公式的集合,*为命题公式的合取运算,则G的幺元是()A. 矛盾式B. 重言式C. 可满足D. 公式p∧q正确:【B】35、设P:天下大雨,Q:他在室内运动,命题“除非天下大雨,否则他不在室内运动”可符合化为()A. ┐P∧QB. ┐P→QC. ┐P→┐QD. P→┐Q正确:【C】36、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x∈A,y ∈A},则R的性质是()A. 自反的B. 对称的C. 传递的、对称的D. 反自反的、传递的正确:【B】37、设集合A={a,b, c}上的关系如下,具有传递性的是()A. R={<a,c>,<c,a>,<a,b>,<b,a>}B. R={<a,c>,<c,a>}C. R={<a,b>,<c,c>,<b,a>,<b,c>}D. R={<a,a>}正确:【D】38、下列等价式不正确的是()A. B.C. D.正确:【A】39、设M(x):x是人;F(x):x要吃饭。
《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散结构试卷+答案讲解学习

(1)等价关系R
(2)写出关系矩阵
(3)画出关系图
(4)写出R的传递闭包四、来自明题(5分+5分+6分,共16分)
1、设R是A上的等价关系,S是B上的等价关系,且A和B非空,关系T满足:
且 ,证明T是 上的等价关系。
2、设G为n阶无向简单图,证明:若G为自补图(若一个图的补图为本身则称为自补图),则 或 ,其中k为正整数。
C、全体实对称矩阵集合,对于矩阵的加法运算
D、 , 为有理数,*为乘法运算
三、计算题(5分+5分+8分,共18分)
1、设有5个城市 ,任意两城市之间的铁路造价如下:
, , , , ,
, , , ,
试求出连接5个城市的且造价最低的铁路网
2、构造前序遍历为a,b,f,c,g,h,i,d,e,j,k,p的有序树,其中a有4个子结点,c有3个子结点,j有2个子结点,b和e都有一个子结点,所有其它结点都是树叶。
D、010,11,011,1011,1001,10101
13、5阶非同构的无向树有_____棵。
A、1 B、2 C、3 D、4
14、由0、1、2、3这四个数字能构成_____个3位数
A、64 B、48 C、24 D、18
15、在下列选项中,不是群的是_____。
A、 , 为有理数,+为加法运算
B、 , 为非零实数集, 为乘法运算
A、 B、 C、 D、
5、下列哪个表达式错误_____。。
A、
B、
C、
D、
6、设R,S是集合 上的两个关系,其中 , ,则S是R的____闭包。
A、自反B、反对称C、对称D、传递
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。
A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。
A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。
A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。
A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。
A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。
A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。
A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。
A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。
A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。
答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。
离散数学课后练习题答案(第三版)-乔维声-汤维版

离散数学课后练习题答案(第三版)-乔维声-汤维版、命题逻辑1.用形式语言写出下列命题:(1)如果这个数是大于1 的整数,则它的大于1 最小因数一定是素数。
(2)如果王琳是学生党员又能严格要求自己,则她一定会得到大家的尊敬。
(3)小王不富有但很快乐。
(4)说逻辑学枯燥无味或毫无价值都是不对的。
(5)我现在乘公共汽车或者坐飞机。
(6)如果有雾,他就不能搭船而是乘车过江。
解:(1)设P:这个数是大于1 的整数。
Q:这个数的大于1 最小因数是素数。
则原命题可表示为:P→Q。
或:设P1:这个数大于1。
P2:这个数是整数。
Q:这个数的大于1 最小因数是素数。
则原命题可表示为:P1∧ P2→Q。
(2)设P:王琳是学生。
Q:王琳是党员。
R:王琳能严格要求自己。
S:王琳会得到大家的尊敬。
则原命题可表示为:P ∧Q∧R→ S。
(3)设P:小王富有。
Q:小王很快乐。
则原命题可表示为:⌝P ∧Q。
(4)设P:逻辑学枯燥无味。
Q:逻辑学毫无价值。
则原命题可表示为:⌝( P∨Q)。
(5)设P:我现在乘公共汽车。
Q:我现在坐飞机。
则原命题可表示为:P⎺∨Q。
(6)设P:天有雾。
Q:他搭船过江。
R:他乘车过江。
则原命题可表示为:P →⌝ Q∧R。
2.设P:天下雪。
Q:我将进城。
R:我有时间。
将下列命题形式化:(1)天不下雪,我也没有进城。
(2)如果我有时间,我将进城。
(3)如果天不下雪而我又有时间的话,我将进城。
解:原命题可分别表示为:(1)⌝P ∧⌝ Q。
(2)R→Q。
(3)⌝P ∧ R→Q。
3.将P、Q、R所表示的命题与上题相同,试把下列公式翻译成自然语言:(1)R∧Q(2)⌝(R∨Q)(3)Q↔(R∧⌝P)(4)(Q→R)∧(R→Q)解:(1)原公式可翻译为:我有时间而且我将进城。
(2)⌝(R∨Q) ⇔⌝R∧⌝Q。
原公式可翻译为:我没有时间也没有进城。
(3)我将进城当且仅当我有时间而且天不下雪。
(4)(Q→R)∧(R→Q) ) ⇔(Q∧R) ∨ (⌝Q ∧⌝ R) ⇔ Q↔R。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题13参考答案
1.图13.9中给出六个偏序集的哈斯图。
判断其中哪些是格。
如果不是格,说明理由。
图13.9
答案:(1),(3),(6)是格。
(2)中的{e,d}没有最大下界。
(4)中的{d,e}没有最大下界。
(5)中的{a,b}没有最大下界。
2.下列各集合对于整除关系都构成偏序集,判断哪些偏序集是格。
(1) L={1,2,3,4,5}
(2) L={1,2,3,6,12}
(3) L={1,2,3,4,6,9,12,18,36}
(4) L={1,2,22,...,2n},n∈Z+
答案:(1)不是格,其他都是。
3.(1)画出Klein四元群的子群格。
(2)画出模12的整数群Z12的子群格。
(3)画出3元对称群S3的子群格。
答案:(1)
(2)
(3)
4.设L是格,求以下公式的对偶式:
(1) a∧(a∨b) a
(2) a∨(b∧c)(a∨b)∧(a∨c)
(3) b∨(c∧a)(b∨c)∧a
答案:(1) a∨(a∧b) a
(2) a∧(b∨c)(a∧b)∨(a∧c)
(3) b∧(c∨a)(b∧c)∨a
5.设L是格,a,b,c∈L,且a b c,证明
a∨b=b∧c
答案:a∨b=b b∧c=b
6.针对图13.10中的格L1,L2和L3,求出他们的所有子格。
图13.10
答案:
L1的子格:{a},{b},{c},{d},{a,b},{a,c},{a,d},
{b,d},{c,d},{a,b,d},{a,c,d},L1
L2的子格:{a1},{d1},L2
L3的子格:{a2},{b2},{c2},{d2},{a2,b2},{a2,c2},
{a2,d2},{b2,c2},{b2,d2},{c2,d2},{a2,b2,c2},
{a2,b2,d2},{a2,c2,d2},{b2,c2,d2},L3
7.针对图13.9中的每个格,如果格中的元素存在补元,则求出这些补元。
答案:(1)a与d互补;b,c没有补元。
(3)a与f互补;b的补元为c,d;c的补元为b,e;d的补元为b,e;e的补元为c,d.
(6)a与f互补;b的补元为e;c和d没有补元;e的补元为b.
8.说明图13.9中的每个格是否为分配格、有补格和布尔格,并说明理由。
答案:
(1)是分配格,因为不包含与钻石格和五角格同构的子格;不是有补格和布尔格,b,c没有补元。
(3)不是分配格,不是布尔格,因为包含五角格作为子格;是有补格,a与f互补,b和e的补元有c,d;c,d的补元有b,e.
(6)是分配格,因为没有5元子格与钻石格或五角格同构;不是有
补格,也不是布尔格,因为c和d没有补元。
9.对以下各小题给定的集合和运算判断它们是哪一类代数系统(半群,独异点,群,环,域,格,布尔代数),并说明理由。
(1) S1={0,1,-1},运算为普通加法和乘法。
(2) S2={a1,a2,...,a n},a i,a j∈S2,a i*a j=a i.这里的n是给定的正整数,且n≥2.
(3) S3={0,1},*为普通乘法。
(4) S4={1,2,5,7,10,14,35,70},和*分别表示求最小公倍数和最大公约数运算。
(5) S5={0,1,2},*为模3加法,为模3乘法。
答案:(1)不是代数系统,对于加法不封闭。
(2)半群,运算封闭,有结合律,没有单位元。
(3)半群与独异点,乘法封闭,有结合律,单位元是1,但是0没有逆元。
(4)格与布尔代数。
两个运算满足交换、相互分配、同一律、补元律。
(5)环与域,{0,1,2}关于模3加构成交换群、{1,2}关于模3乘构成交换群,模3乘关于模3加有分配律。
10.设B是布尔代数,B中的表达式f是
(a∧b)∨(a∧b∧c)∨(b∧c)
(1)化简f.
(2)求f的对偶式f* 。
答案:(1)(a∧b)∨(a∧b∧c)∨(b∧c)=(a∧b)∨(b∧c) (2)f*=(a∨b)∧(b∨c)
11.设<B,∧,∨,',0,1>是布尔代数,在B中化简以下表达式:上定义二元运算*,a,b∈B,
(1)(a∧b)∨(a∧b')∨(a'∨b)
(2)(a∧b)∨(a∧(b∧c)')∨c
答案:(1)(a∧b)∨(a∧b')∨(a'∨b)
=(a∧(b∨b'))∨(a'∨b)= a∨(a'∨b)
=(a∨a')∨b = 1∨b =1
(2) (a∧b)∨(a∧(b∧c)')∨c
=(a∧b)∨(a∧(b'∨c'))∨c
=(a∧b)∨(a∧b')∨(a ∧c')∨c
=a∨(a ∧c')∨c = a∨c
12.对于n=1,...,5,给出所有不同构的n元格,并说明哪些是分配格、有补格和布尔格。
答案:
布尔格:(1),(2),(5)
分配格:(1),(2),(3),(4),(5),(6),(7),(8)
有补格:(1),(2),(5),(9),(10)
13.设<B,∧,∨,',0,1>是布尔代数,在B上定义二元运算,x,y∈B有x y=(x∧y')∨(x'∧y) 问<B,>能否构成代数系统?如果能,指出是哪一种代数系统。
为什么?
答案:构成群,运算封闭。
任取a,b,c
同理有
易见结合律成立。
,0为单位元。
, a为本身的逆元。
命题得证。