电化学阻抗谱实例

合集下载

以DSSC为例,图解EIS(电化学阻抗谱)原理、表征和Zview拟合

以DSSC为例,图解EIS(电化学阻抗谱)原理、表征和Zview拟合

以DSSC为例,图解EIS(电化学阻抗谱)原理、表征和Zview拟合首先以DSSC为例,其工作原理及结构如图1所示:图1 DSSC结构及工作原理DSSC中的电子过程分以下几个部分:图2为上述过程的图解图2. DSSC电子过程1.EIS 工作基本原理电化学阻抗谱方法是一种以小振幅正弦波电位(或电流)为扰动信号的电化学测量方法。

对于一个稳定的线性系统M,如以一个角频率为w的正弦波电信号(电压或电流)x为激励信号输入该系统,相应的从该系统输出一个角频率为w的正弦波电信号(电流或电压)Y,Y即是响应信号。

Y与x之间的关系为:Y= G(w)·X式中G为频率的函数,即频响函数,它反映系统M的频响特性,由M的内部结构所决定。

因而可以从G随x与Y的变化情况获得线性系统内部结构的有用信息。

如染料敏化太阳能电池的内部电子传输过程可以看作一个黑箱模型M, 对M进行动态处理如图3所示如果扰动信号X为正弦波电流信号,而Y为正弦波电压信号,则称G为系统M的阻抗。

对于阻抗一般用z来表示,阻抗是一个随频率变化的矢量,用变量为角频率w的复变函数表示。

即(用Z'表示实部,Z''表示虚部)征,从这两种图中就可以对系统进行阻抗分析。

2.拟合原理和表征利用zview拟合可以直接获得样品的传输电阻(R t)、界面电阻(R ct)、界面电容C ch等等效电路元件信息,从而为研究DSC内部的电子传输特性提供依据图4.DSSC的传输线模型对于理想DSC来说,R t与R ct主要决定电池在稳态下的工作输出。

DSC在EIS测试中的基本相应为高频段是一段直线,一般称作韦伯(warburg)特性,低频段是一个半圆。

直线对应电子传输过程,半圆对应于电子的转移过程。

图5a中可以看到(R t固定为100欧),半圆的直径对应R ct的值,随着R ct的增加而增加;图5(b)显示(R ct固定为300欧),R t的值为直线在实轴上投影的3倍,随着R t的增加,直线的长度增加。

电化学阻抗谱EIS基础、等效电路、拟合及案例分析.ppt

电化学阻抗谱EIS基础、等效电路、拟合及案例分析.ppt

稳定
不稳定
6
阻纳G是一个随变化的矢量,通常用角频率(或一般 频率f,=2f)的复变函数来表示,即:
G() G '() jG ''()
其中: j 1 G'—阻纳的实部, G''—阻纳的虚部
若G为阻抗,则有: Z Z ' jZ ''
阻抗Z的模值:
阻抗的相位角为
Z Z '2 Z ''2
tan
* *
***
Z'
Nyquist 图上为与纵轴(虚部)重合的一条直线
14
2.1.3 电感
Z Z ' jZ ''
X L C 电感的相位角=-/2
写成复数: ZL jX C jL
实部:
Z
' L
0
虚部:
Z
'' L
C
阻抗模值: / Z / C
Nyquist 图上为与纵轴(虚部)重合的一条直线
15
时间常数
当处于高频和低频之间时,有一个特征频率*,在这个特 征频率, RL和Cd 的复合阻抗的实部和虚部相等,即:
RL
1
*Cd* 1RLCd Nhomakorabea2. 1.5 电组R和电容C并联的电路
Z Z ' jZ ''
并联电路的阻抗的倒数是各并联元
件阻抗倒数之和
1 1 1 1 jC
Z Z'
''
虚部Z''
(Z',Z'')
|Z|
实部Z'
7
分析电极过程动 力学、双电层和 扩散等,研究电 极材料、固体电 解质、导电高分 子以及腐蚀防护 机理等。

电化学阻抗谱EIS高级电化学测量技术ppt课件

电化学阻抗谱EIS高级电化学测量技术ppt课件
弦波频率的变化,或者是阻抗的相位角随的变化。
8
EIS技术就是测定不同频率(f)的扰动信号X和响应信
号 Y 的比值,得到不同频率下阻抗的实部Z‘、虚部Z’‘、
模值|Z|和相位角,然后将这些量绘制成各种形式的曲
线,就得到EIS抗谱。
奈奎斯特图
波特图
Nyquist plot
Bode plot
log|Z| / deg
14
2.1.3 电感
Z Z' jZ''
XL C 电感的相位角=-/2
写成复数: ZLjX CjL
实部:
ZL' 0
虚部:
ZL'' C
阻抗模值: /Z/C
Nyquist 图上为与纵轴(虚部)重合的一条直线
15
Z Z' jZ''
2.1.4 电组R和电容C串联的RC电路 串联电路的阻抗是各串联元件阻抗之和
31
对于复杂或特殊的电化学体系,EIS谱的形状将更加复 杂多样。
只用电阻、电容等还不足以描述等效电路,需要引入 感抗、常相位元件等其它电化学元件。
32
3 EIS拟合
3.1 阻抗实验注意点
1. 要尽量减少测量连接线的长度,减小杂散电容、电感的 影响。互相靠近和平行放置的导线会产生电容。长的导线 特别是当它绕圈时就成为了电感元件。测定阻抗时要把仪
器和导线屏蔽起来。
2.频率范围要足够宽 一般使用的频率范围是105-10-4Hz。阻抗测量中特别重视 低频段的扫描。反应中间产物的吸脱附和成膜过程,只 有在低频时才能在阻抗谱上表现出来。测量频率很低时, 实验时间会很长,电极表面状态的变化会很大,所以扫 描频率的低值还要结合实际情况而定。

电化学曲线极化曲线阻抗谱分析

电化学曲线极化曲线阻抗谱分析

电化学曲线极化曲线阻抗谱分析一、极化曲线1.绘制原理铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a)当电极不与外电路接通时,其净电流I总为零。

在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)I(Fe)的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。

图1是Fe在H+中的阳极极化和阴极极化曲线图。

图2 铜合金在海水中典型极化曲线当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。

此时,电化学过程以Fe的溶解为主要倾向。

通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。

当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。

同理,可获得阴极极化曲线rdc。

2.图形分析(1)斜率斜率越小,反应阻力越小,腐蚀速率越大,越易腐蚀。

斜率越大,反应阻力越大,腐蚀速率越小,越耐腐蚀。

(2)同一曲线上各各段形状变化如图2,在section2中,电流随电位升高的升高反而减小。

这是因为此次发生了钝化现象,产生了致密的氧化膜,阻碍了离子的扩散,导致腐蚀电流下降。

(3)曲线随时间的变动以7天和0天两曲线为例,对于Y轴,七天后曲线下移(负移),自腐蚀电位降低,说明更容易腐蚀。

对于X轴,七天后曲线正移,腐蚀电流增大,亦说明更容易腐蚀。

二、阻抗谱1.测量原理它是基于测量对体系施加小幅度微扰时的电化学响应,在每个测量的频率点的原始数据中,都包含了施加信号电压(或电流)对测得的信号电流(或电压)的相位移及阻抗的幅模值。

从这些数据中可以计算出电化学响应的实部和虚部。

阻抗中涉及的参数有阻抗幅模(| Z |)、阻抗实部(Z,)、阻抗虚部(Z,,)、相位移(θ)、频率(ω)等变量,同时还可以计算出导纳(Y)和电容(C)的实部和虚部,因而阻抗谱可以通过多种方式表示。

31 电化学阻抗谱EIS基础、等效电路、拟合及案例分析

31 电化学阻抗谱EIS基础、等效电路、拟合及案例分析

ZC
=
1
j(Q)1
=
1
jC
ZQ
=
1
Y0 n
cos
n
2

j
1
Y0
n
sin
n
2
上面介绍的公式中的n实质上都是经验常数,缺乏确切的物 理意义,但可以把它们理解为在拟合真实体系的阻抗谱时对 电容所做的修正。
2.2.2 电荷传递和扩散过程混合控制的EIS
平板电极上的反应:
电极过程由电荷传递过程和扩散过程共同控制,电化学 极化和浓差极化同时存在时,则电化学系统的等效电路 可简单表示为:
高频区
低频区
9
1.3 EIS的特点 1. 由于采用小幅度的正弦电势信号对系统进行微扰,电
极上交替出现阳极和阴极过程,二者作用相反,因此, 即使扰动信号长时间作用于电极,也不会导致极化现 象的积累性发展和电极表面状态的积累性变化。因此 EIS法是一种“准稳态方法”。
2. 由于电势和电流间存在线性关系,测量过程中电极处 于准稳态,使得测量结果的数学处理简化。
Nyquist 图上为与纵轴(虚部)重合的一条直线
15
Z = Z ' + jZ ''
2.1.4 电组R和电容C串联的RC电路 串联电路的阻抗是各串联元件阻抗之和
Z
=
ZR
+
ZC
=
R−
j( 1 )
C
实部: Z ' = R
虚部: Z '' = −1/ C
RC复合元件频率响应谱的阻抗复平面图
RC复合元件的波特图
5
3. 稳定性条件(stability): 扰动不会引起系统内部结构 发生变化,当扰动停止后,系统能够回复到原先的状 态。可逆反应容易满足稳定性条件;不可逆电极过程, 只要电极表面的变化不是很快,当扰动幅度小,作用 时间短,扰动停止后,系统也能够恢复到离原先状态 不远的状态,可以近似的认为满足稳定性条件。

电化学阻抗谱简介 (EIS) ppt课件

电化学阻抗谱简介 (EIS)  ppt课件
曹楚南pp、t课张件鉴清著,《电化学阻抗谱导论》,42002年
哪些体系适合进行EIS测定?
• 因果性条件
– 当用一个正弦波的电位信号对电极系统进行扰动,要求 电极系统只对该电位信号进行响应。
• 线性条件
– 只有当一个状态变量的变化足够小,才能将电极过程速 度的变化与该状态变量的关系近似作线性处理。
phase angle presentation
Charge-transfer at the platinum counter electrode
High (kHz)
Photoinjected electrons within the TiO2
Nernstian diffusion within the electrolyte
ppt课件
24
Junction Models
T<340 K
340K<T<400 K
p-n-n system
FDR FDR
FDR
340K<T<400 K T>400 K
FDR
ppt课件
Full Depletion Region (FDR)
Band diagrams of pCuInS2 /n-CuInS2 /nTiO2 as a function of temperature at zero applied bias voltag2e5 .
-Z’’~Z’为阻抗复平面图,也称为Nyquist图;
~ log f (或log ) log|Z| ~ log f (或log )
Bode 图
ppt课件
7
EIS测量结果典型示例
Nyquist
特征频率*=1/RC 时间常数=1/ *=RC

《电化学阻抗谱知识点滴基础篇》PPT课件讲义

《电化学阻抗谱知识点滴基础篇》PPT课件讲义
电化学阻抗谱知识点滴基础篇
(Suitable for teaching courseware and reports)
§1 概述 §2 交流信号微扰下电解池体系的等效电路及其简化 §3 电化学极化下的交流阻抗 §4 浓差极化时的交流阻抗 §5 一些常见的电极过程的阻抗谱及等效电路 §6 交流阻抗测量技术 §7 交流阻抗测量实验注意事项 §8 阻抗谱的分析思路
高频率、大面积 RL
用来求溶液电导率。(交频信号下测量电导率的基础)
③ 在①的前提下,实现Zf研→∞
RL→0
RL
Cd研
加入电解质,仪器清除
Cd研
§3 电化学极化下的交流阻抗
3.1 交流电路中的线性元件
电化学阻抗谱(EIS)的测试中,需要在直流电位下叠加交流微扰信号, 测定交流信号所引起的电极响应信号。
先看一下交流电路中线性元件电阻、电容、电感的阻抗。
假设正旋波交流电的电压可表示为: u(t)U0sin t (3-1)
① 纯电阻的阻抗(电阻)
u(t)施加到电阻R上产生的电流
i(t)u(t)U 0s RR
in tI0sin t
(3-2)
如此,
ZR
U0 I0
R
ui 0
显然,电压、电流的位相一致,其交流阻抗ZR就是它的电阻值R。
1.3.3 浓差极化不会积累性发展,但可通过交流阻抗将极化测量出来
① 控制幅度小(电化学极化小); ② 交替进行的阴、阳极过程,消除了极化的积累。
1.3.4 Rr、Cd和RL是线性的,符合欧姆 阻抗与导纳
对于一个稳定的线性系统M,如以一个角频率为 的正弦波电信号(电压或 电流)X为激励信号(在电化学术语中亦称作扰动信号)输入该系统,则相应 地从该系统输出一个角频率也是 的正弦波电信号(电流或电压)Y,Y即是 响应信号。Y与X之间的关系可以用下式来表示:

(完整版)电化学曲线极化曲线阻抗谱分析

(完整版)电化学曲线极化曲线阻抗谱分析

电化学曲线极化曲线阻抗谱分析一、极化曲线1.绘制原理铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a)当电极不与外电路接通时,其净电流I总为零。

在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)I(Fe)的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。

图1是Fe在H+中的阳极极化和阴极极化曲线图。

图2 铜合金在海水中典型极化曲线当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。

此时,电化学过程以Fe的溶解为主要倾向。

通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。

当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。

同理,可获得阴极极化曲线rdc。

2.图形分析(1)斜率斜率越小,反应阻力越小,腐蚀速率越大,越易腐蚀。

斜率越大,反应阻力越大,腐蚀速率越小,越耐腐蚀。

(2)同一曲线上各各段形状变化如图2,在section2中,电流随电位升高的升高反而减小。

这是因为此次发生了钝化现象,产生了致密的氧化膜,阻碍了离子的扩散,导致腐蚀电流下降。

(3)曲线随时间的变动以7天和0天两曲线为例,对于Y轴,七天后曲线下移(负移),自腐蚀电位降低,说明更容易腐蚀。

对于X轴,七天后曲线正移,腐蚀电流增大,亦说明更容易腐蚀。

二、阻抗谱1.测量原理它是基于测量对体系施加小幅度微扰时的电化学响应,在每个测量的频率点的原始数据中,都包含了施加信号电压(或电流)对测得的信号电流(或电压)的相位移及阻抗的幅模值。

从这些数据中可以计算出电化学响应的实部和虚部。

阻抗中涉及的参数有阻抗幅模(| Z |)、阻抗实部(Z,)、阻抗虚部(Z,,)、相位移(θ)、频率(ω)等变量,同时还可以计算出导纳(Y)和电容(C)的实部和虚部,因而阻抗谱可以通过多种方式表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档