线性代数》1-2全排列及其逆序数(精)

合集下载

线性代数1-2全排列及其逆序数1-3n阶行列式的定义1-4对换

线性代数1-2全排列及其逆序数1-3n阶行列式的定义1-4对换
所以,a23a31a42a56a14a65 前边应带正号.
(2) a32a43a14a51a66a25 行标排列341562的逆序数为
t1 0 0 2 0 0 4 6 ,
列标排列234165的逆序数为
t2 0 0 0 3 0 1 4 , t1 t2 10 ,
所以,a32a43a14a51a66a25 前边应带正号.
t 0 1 0 3 1 5.
例2 计算下列排列 nn 1n 2L 321
的逆序数,并讨论它的奇偶性.

t 1 2 L (n 2) n 1
nn 1
,
2
当 n 4k,4k 1 时为偶排列;
当 n 4k 2,4k 3 时为奇排列.
第一章 行列式
第三节 n 阶行列式的定义
一、概念的引入
定理2 n阶行列式也可定义为
D
1 t a p11a p2 2 a pnn
其中 t 为行标排列 p1 p2 pn 的逆序数.
证明 按行列式定义有
D
1 ta1 p1a2 p2 anpn

D1
1 ta p11a p2 2 a pnn
对于 D 中任意一项 1 t a1 p1a2 p2 anpn , 总有且仅有 D1 中的某一项 1 s aq1 a1 q2 2 aqnn ,
三阶行列式
a11 a12 a13 D a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
a31 a32 a33 a13a22a31 a11a23a32 a12a21a33
说明
(1)三阶行列式共有 6 项,即 3! 项.
(2)每项都是位于不同行不同列的三个元素的 乘积.
例1 求排列32514的逆序数. 解 在排列32514中,

1-2 全排列及其逆序数

1-2 全排列及其逆序数


3 2 32 8/2=4 4 1 31 21 41 因此,计算排列的逆序数时,对每个元素只需考虑它 与左边(或右边)的元素所构成的逆序.
目录 上页 下页
右 32 31 21 41
排列的逆序数
对于排列中的一个元素,左边比它大的数的个数, 叫做该元素的逆序数 . 排列的逆序数 = 排列中各个元素的逆序数之和. 定义 4 排列的奇偶性 逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 说明 一个排列不是奇排列就是偶排列.
目录
上页
下页
作业
计算以下排列的逆序数,并判断奇偶性
①1 3 4 2 6 5 ;
②2 4 … (2n) (2n-1) (2n-3) … 1
目录
上页
下页
思考题
分别用两种方法求排列 163பைடு நூலகம்2487 的逆序数.
目录
上页
下页
思考题解答
方法 1 求出每个元素的逆序数, 并相加
t 0 011 3 2 01 8
目录
上页
下页
例 1 求排列 32514 的逆序数,并说明它的奇偶性.
分析 3: 排在首位, 逆序数为 0; 2: 前面比 2 大的数只有一个 3, 故逆序数为 1; 5: 前面没有比 5 大的数, 其逆序数为 0; 1: 前面比 1 大的数有 3 个, 故逆序数为 3; 4: 前面比 4 大的数有 1 个, 故逆序数为 1. 解 3 2 5 1 4

n 1 (1) nn 1n 2 3 2 1 n2 nn 1 t n 1 n 2 2 1 0 2 当 n 4k , 4k 1 (kN) 时,为偶排列, 当 n 4k 2, 4k 3 (kN) 时,为奇排列.

线性代数ppt课件

线性代数ppt课件


x1

b1a22 a11a22
a12b2 a12a21

x2

a11b2 a11a22
b1a21 a12a21

x1

b1a22 a11a22
a12b2 a12a21

x2

a11b2 a11a22
b1a21 a12a21

5
第一章 行列式
我们用符号
aa1211表aa示1222代数和a11a22a12a21
解: 1 3 … (2n-1) 2 4 … 2k… (2n)
D3x24x189x2x212x25x6
即x25x60
x2或x3
值得注意的是:四阶及四阶以上行列式没有像二、三阶 行列式那样的对角线法则
13
第一章 行列式 §1-2 全排列及其逆序数
[引例]用1、2、3三个数字 可以组成多少个没有重复数字的 三位数?
[解依] 次选定百位数、十位数、个位数。 百位数有3种选法 十位数有2种选法 个位数有1种选法 所以可以组成6个没有重复数字的三位数 这6个三位数是 123 132 213 231 312 321
十八世纪开始,行列式开始作为独立的数学概念被研究。 十九世纪以后,行列式理论进一步得到发展和完善。
3
第一章 行列式
莱布尼茨:历史上少见的通才,被誉为 十七世纪的亚里士多德。在数学上,他 和牛顿先后独立发明了微积分。在哲学 上,莱布尼茨的“乐观主义”最为著名 。 他对物理学的发展也做出了重大贡献 。
并称它为三阶行列式。
10
第一章 行列式
2、行列式中的相关术语
行列式的元素、行、列、主对角线、副对角线 3、三阶行列式的计算 (对角线法则或沙路法则 )

§1-2 全排列及其逆序数

§1-2 全排列及其逆序数

1,2,3 ;1,3,2 ; 2,1,3 ; 2,3,1 ;3,1,2 ; 3,2,1
(2)逆序:在一个排列里,如果某一个较大的数排在某一 个 较小的数前面,则称这两个数码构成一个逆序; 例3 :5 阶排列 4,3,5,2,1 中 4,3 、4,2 、4,1 及 3,2 、 3,1
5,2 、5,1 、2,1 等均构成反序,且共8 个反序;
(3)逆序数:在一个排列 i1 , i2 , , in 里,出现的逆序 总个数称为这个排列的逆序数;并记作 i1 , i2 , , in 例4 :例 3 中 5 阶排列 4,3,5,2,1 中,逆序数为 8 即: 4,3,5,2,1 8
逆序数的计算:在一个排列 i1 , i2 , , in 里,先看有多少
特别,称 1,2, , n 为这
例1 :1,2,3,4,5 ; 5,4,3,2,1 ; 3,2,1,5,4 ; 3,4,5,1,2 等等,均为 1,2,3,4,5 这5 个数码的不同排列; 结论: n 个数码 1,2, , n 的所有排列共 n! 个。
例2: 3个数码的不同排列共 3! 6 个,分别为
4,7,5,1,3,6,2 m1 m2 m3 m4 m5 m6 m7
3 5 3 0 11 0 13
(4)奇偶排列:若 i1 , i2 , , in 是奇数,则称 排列 i1 , i2 , , in 为奇排列; 排列 i1 , i2 , , in 为偶排列; 例6: 3 阶排列中 若 i1 , i2 , , in 是偶数,则称
个数排在 1 的前面,设有 m1 个,即有 m1 个数与1 构成反序; 将 1 划去;再看有多少个数排在 2 的前面,设有 m2 个,将 2 划去;‥ ‥ ‥ ,如此下去,设有 mn1 个数排在 n 1 的 前面,将 n 1 划去,最后只剩下数 n ,即 mn 0 则 i1 , i2 , , in m1 m2 mn1 mn 例5 :7 阶排列 4,7,5,1,3,6,2 中,

线性代数1-2全排列及其逆序数1-3n阶行列式的定义1-4对换

线性代数1-2全排列及其逆序数1-3n阶行列式的定义1-4对换

例3 用行列式的定义计算
0 0 0 1 0 0 0 2 0 0 Dn n1 0 0 0 0 0 0 0 0 n
解 Dn 1 t a1,n1a2,n2 an1,1ann
1t 1 2 n 1 n 1t n!, tn 1n 2 21n
01 2L n 3 n 2 0
1234
例3 计算
0 D
4
2
1
0056
0008

1234Βιβλιοθήκη 0421D 00
5
6 a11a22a a 33 44 1 4 5 8 160.
0008
同理可得下三角行列式
a11
0 0 0
a21 a22 0 0
an1
an2
an3 ann
a11a22 ann .
例4 证明对角行列式
1 2
因此对换相邻两个元素,排列改变奇偶性 . 再证一般对换的情形 .
设排列为 a1 alab1 bmbc1 cn , 现来对换 a 与b.
a1 al a b1 bm b c1 cn
m 次相邻对换 a1 al ab b1 bmc1 cn
m 1 次相邻对换 a1 al b b1 bm a c1 cn
t 0 1 0 3 1 5.
例2 计算下列排列 nn 1n 2L 321
的逆序数,并讨论它的奇偶性.

t 1 2 L (n 2) n 1
nn 1
,
2
当 n 4k,4k 1 时为偶排列;
当 n 4k 2,4k 3 时为奇排列.
第一章 行列式
第三节 n 阶行列式的定义
一、概念的引入
1
a a t p1q1 p2q2
a pnqn

线性代数1-2

线性代数1-2

t 0
4 2k 12k 122k 232k 3k 1k

2k 1 2k 1 2 2k 2 3 2k 3k 1 k





0 1
1
2
2
t 0 1 1 2 2 k 1 k 1 k 21 k 1k 1 k k2, 2
p1 p2 pn t p1 p2 pn
1
a1 p1 a2 p2 anpn
说明 1、行列式是一种特定的算式,它是根据求解方 程个数和未知量个数相同的一次方程组的需要而 定义的; 2、 n 阶行列式是 n! 项的代数和; 3、 n 阶行列式的每项都是位于不同行、不同 列 n 个元素的乘积;
a11
a12 a1n
a11a22 ann .
0 a22 a2 n

0 0 ann 展开式中项的一般形式是 a1 p1 a2 p2 anpn .
pn n, pn1 n 1, pn 3 n 3, p2 2, p1 1,
分析
所以不为零的项只有 a11a22 ann . a11 a12 a1n
t 0 1 0 3 1 5.
例2 计算下列排列的逆序数,并讨论它们的奇 偶性.
1 217986354
解:
2 1 7 9 8 6 3 5 4
0 10 0 1 3 4 4 5
t 0 1 0 0 1 3 4 4 5
18
此排列为偶排列.
2 nn 1n 2321 n2 2 0 1
对应于
1t a11a22a33a44 x 3 ,
1
t 1243

1_2排列、逆序与对换

1_2排列、逆序与对换

1.2.1 排列与逆序定义1.2.1由自然数1,2,······,n 组成的一个有序数组称为一个n 元排列.例如:1,2,3,4,55,1,2,3,45,3,2,1,4都是数1,2,3,4,5的一个排列.问题:n 个数的不同排列有个.n !标准排列(自然排列).按数的大小次序,由小到大的排列称为定义n 阶排列1234…n 称为n 阶自然序排列.计算排列的逆序数的方法:分别计算出排在1,2,…,n-1,n前面比它大的数码之和即分别算出1,2,…,n-1,n这n个元素的逆序数,这个元素的逆序数的总和即为所求排列的逆序数例1 求排列32514的逆序数.解在排列32514中,3排在首位,逆序数为0;2的前面比2大的数只有一个3,故逆序数为1;3 2 5 1 401031于是排列32514的逆序数为(32514)01031τ=++++.5=5的前面没有比5大的数,其逆序数为0;1的前面比1大的数有3个,故逆序数为3;4的前面比4大的数有1个,故逆序数为1;例2 计算下列排列的逆序数()2179863541解453689712544310010(217986354)τ=18=54+0100134+++++++()()()212321n n n−−L 解()()(12321)n n n τ−−L ()()12321n n n−−L 0=000000考虑,在1,2,3 的全排列中有个偶排列:有个奇排列:123,231,312 132,213,32133一般说来,在n个数码的全排列中,奇偶排列各占一半.定义1.2.4把一个排列中的任意两个数交换位置,而其余数码不动,叫做对该排列作一次对换,简称对换.将相邻的两个数对换,称为相邻对换.ml b b a a L L 11例如b a ml b b a a a L L 11a b nm l c c b b a a L L L 111n m l c c a b b b a a L L L 111b a a 2.对换定理1 一个排列中的任意两个元素对换,排列改变奇偶性.证明设排列为m l b b ab a a L L 11对换与a bml b b ba a a L L 11除外,其它元素的逆序数不改变.b ,a ba a b 的逆序数不变;经对换后的逆序数增加1 ,当时,b a <当时,b a >经对换后的逆序数不变,的逆序数减少1.a b 因此对换相邻两个元素,排列改变奇偶性.设排列为nm l c bc b ab a a L L L 111现来对换与a .b 次相邻对换m nm l c c b b ab a a L L L 111次相邻对换1+m n m l c c a b b b a a L L L 111,111n m l c bc b ab a a L L L ∴次相邻对换12+m ,111nm l c ac b bb a a L L L 所以一个排列中的任意两个元素对换,排列改变奇偶性.nm l c c b b b a a a L L L 111ab2!n q p ==定理任意一个n 阶排列都可以经过一系列对换变成自然序排列,并且所作对换的次数与该排列有相同的奇偶性.证明用数学归纳证明当n=1时,结论显然成立.假设结论对n-1阶排列成立,现证对n 阶排列也成立..,,,21阶排列是任一设n j j j n L ,n j n =若.1,,,121阶排列个是一则−−n j j j n L 由假设知,121,,,−n j j j L 可经过一系列对换变成自然序排列,从而nn j j j j ,,,,121−L 可经过一系列对换变成自然序排列.),,,n n j n n j 则先作对换(若≠n n n n j j j j j j j j ′′′′−−,,,,,,,,121121L L 变成使这就归结为上面的情形,结论成立.所以任意一个n 阶排列都可以经过一系列对换变成自然序排列.由于自然序排列是偶排列,由定理1可知,对换一个改变排列奇偶性,所以将一奇排列变成自然序排列推论需要作奇数次对换,而将一偶排列变成自然序排列则需要作偶数次对换,证毕.任意两个n 阶排列都可以经过一系列对换互变,而且若这两个排列的奇偶性相同,则所作的则所作的对换次数是奇数.对换次数是偶数;若这两个排列的奇偶性相反,小结1.排列,逆序数,奇排列,偶排列,对换的定义.2.一个排列中的任意两个元素对换,排列改变奇偶性.思考题证明在全部阶排列中,奇偶排列各占一半. n ()2≥n 思考题解答证设在全部阶排列中有个奇排列, 个偶排列,现来证.n s t t s =将个奇排列的前两个数对换,则这个奇排列全变成偶排列,并且它们彼此不同,所以s s .t s ≤若将个偶排列的前两个数对换,则这个偶排列全变成奇排列,并且它们彼此不同,于是有t t .s t ≤故必有.t s =作业:P251(1)(5)2(1)(2)3(2)4(1)56 (1)(3)。

1-2排列及其逆序数

1-2排列及其逆序数
定义⒈⒈ n个不同元素所排成的一列,称为(全)排列。 标准(自然排列):n个不同自然数从小到大的排列。 例: 6 3 2, 2 5 1 3 4 2 3 6, 1 2 3 4 5
p1 p2 p3.......... pn , p N , i 1, 2, , n . 定义⒈⒉ 若在排列 p1 p2 ...... pn 中,某两数不是自然顺序
(4)标准排列是偶排列。
定义⒈⒋ 例: 定理⒈⒈
对换:将排列中某两数位置对调,其余数不动。
6372451 对 换 一 次 1372456 偶排列 奇排列
排列经一次对换,奇偶性改变。
推论 (1):奇(偶)排列调为奇(偶)排列, 须作偶数次对换,奇偶性相同。 (2):奇(偶)排列调为偶(奇)排列, 须作奇数次对换,奇偶性不同。 (3):奇(偶)排列调为标准排列, 须作奇(偶)数次对换,标准排列是偶排列。
例1.2,求排列数的逆序数
(1)6372451 (2)1372456
(3) 1 2 3 …(n-1)n(2n)(2n-1)…(n+1) 解:(1) 排列 p1 p2 p3 p4 p5 p6 p7 6 3 7 2 4 5 1 τi 0 1 0 3 2 2 6
(6372451) i 14
i
排列的一般记法:
(即前数>后数),则称这两数构成一个逆序。 排列 p1 p2 ..... pn 的逆序总数称为逆序数。 记作:
( p1 p2 p3..... pn)
记 逆序数求法:
i 是pi 前比pi 大的数的个数,则 ( p1 p2 ... pn ) 2 3 ... n (1 0)
1 i 0 0 1 2 (n 1) (n 1)n 2 i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义 把 n个不同的元素排成一列,叫做这 n 个
元素的全排列(或排列).
n 个不同的元素的所有排列的种数,通常
用 Pn表示. 由引例 P3 3 2 1 6. 同理 Pn n (n 1) (n 2) 3 2 1 n!.
排列的逆序数
我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序.
第二节
第一章
全排列及其逆序数
一、概念的引入 二、全排列及其逆序数
一、概念的引入
引例 用1、2、3三个数字,可以组成多少个没 有重复数字的三位数?

123
百位 1 十位 1 2 个位 1 2 3
2
3
3种放法
13
2种放法
1种放法
共有 3 2 1 6 种放法.
二、全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有几种不 同的排法?
t n 1 n 2 2 1 nn 1,
2 当 n 4k,4k 1 时为偶排列;
当 n 4k 2,4k 3 时为奇排列.

三、小结
1 n 个不同的元素的所有排列种数为 n!. 2 排列具有奇偶性. 3 计算排列逆序数常用的方法有2 种.
作业
P26 1 (1),(3); 2 (3), (5);
定义 在一个排列 i1i2 it is in 中,若数
it is 则称这两个数组成一个逆序.
例如 排列32514 中, 逆序
32514
逆序 逆序
定义 一个排列中所有逆序的总数称为此排列的 逆序数. 例如 排列32514 中,
0 01
32514
1 逆序数为3
故此排列的逆序数为3+1+0+1+0=5.
例1 求排列32514的逆序数. 解 在排列32514中,
3排在首位,逆序数为0;
2的前面比2大的数只有一个3,故逆序数为1;
5的前面没有比5大的数,其逆序数为0; 1的前面比1大的数有3个,故逆序数为3; 4的前面比4大的数有1个,故逆序数为1;
32514 01 031 于是排列32514的逆序数为 t 0 1 0 3 1 5.
例2 计算下列排列的逆序数,并讨论它们的奇 偶性.
1 217986354

217986354
0 10 0 1 3 4 4 5
t 5 4 4310010
18
此排列为偶排列.
2 nn 1n 2 321
解 n1
nn 1n 2 321 n 2
排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.
计算排列逆序数的方法
方法1
分别计算出排在1,2, ,n 1,n前面比它大的数 码之和即分别算出 1,2, ,n 1,n 这 n个元素
的逆序数,这个元素的逆序数的总和即为所求 排列的逆序数.
方法2 分别计算出排列中每个元素前面比它大的数码 个数之和,即算出排列中每个元素的逆序数, 这每个元素的逆序数之总和即为所求排列的逆 序数.
相关文档
最新文档