第二节 排列及其逆序数
合集下载
1-2线性代数

n( n 1 ) , = 2 时为偶排列; 当 n = 4k ,4k + 1 时为偶排列;
t = ( n 1) + ( n 2 ) + L + 2 + 1
时为奇排列. 当 n = 4k + 2,4k + 3 时为奇排列
(4) (2k )1(2k 1)2(2k 2)3(2k 3)L (k + 1)k
于是排列32514的逆序数为 t = 0 + 1 + 0 + 3 + 1 = 5. 的逆序数为 于是排列
计算下列排列的逆序数,并讨论它们的奇偶性. 例2 计算下列排列的逆序数,并讨论它们的奇偶性
(1)
4132
(2) 3712456
(2) )
解(1)4 1 3 2 )
3 7 1 2 4 5 6
0 0 2 2 1 1 1
第二节 全排列及其逆序数
一、排列
定义 由自然数 2, , n 组成的不重复的每一 由自然数1, 种有确定次序的排列, 称为一个n 种有确定次序的排列 称为一个 阶排列 (简称排列 简称排列). 简称排列 都是4 例如 1234 和4312都是 阶排列 都是 阶排列, 24315是一个 阶排列 是一个5 阶排列. 是一个
t = 0 +0 + 2 + 2 + 1 + 1 + 1
0 1 1 2
t = 0+1+1+ 2 = 4
此排列为偶排列 此排列为偶排列. 偶排列
=7
此排列为奇排列 此排列为奇排列. 奇排列
(3)
解
n(n 1)(n 2 )L 321
n 6444 74444 4 1 8 n(n 1)2 2 )L 321 1 4(n443 44 4 (n 2)
§1-2 全排列及其逆序数

1,2,3 ;1,3,2 ; 2,1,3 ; 2,3,1 ;3,1,2 ; 3,2,1
(2)逆序:在一个排列里,如果某一个较大的数排在某一 个 较小的数前面,则称这两个数码构成一个逆序; 例3 :5 阶排列 4,3,5,2,1 中 4,3 、4,2 、4,1 及 3,2 、 3,1
5,2 、5,1 、2,1 等均构成反序,且共8 个反序;
(3)逆序数:在一个排列 i1 , i2 , , in 里,出现的逆序 总个数称为这个排列的逆序数;并记作 i1 , i2 , , in 例4 :例 3 中 5 阶排列 4,3,5,2,1 中,逆序数为 8 即: 4,3,5,2,1 8
逆序数的计算:在一个排列 i1 , i2 , , in 里,先看有多少
特别,称 1,2, , n 为这
例1 :1,2,3,4,5 ; 5,4,3,2,1 ; 3,2,1,5,4 ; 3,4,5,1,2 等等,均为 1,2,3,4,5 这5 个数码的不同排列; 结论: n 个数码 1,2, , n 的所有排列共 n! 个。
例2: 3个数码的不同排列共 3! 6 个,分别为
4,7,5,1,3,6,2 m1 m2 m3 m4 m5 m6 m7
3 5 3 0 11 0 13
(4)奇偶排列:若 i1 , i2 , , in 是奇数,则称 排列 i1 , i2 , , in 为奇排列; 排列 i1 , i2 , , in 为偶排列; 例6: 3 阶排列中 若 i1 , i2 , , in 是偶数,则称
个数排在 1 的前面,设有 m1 个,即有 m1 个数与1 构成反序; 将 1 划去;再看有多少个数排在 2 的前面,设有 m2 个,将 2 划去;‥ ‥ ‥ ,如此下去,设有 mn1 个数排在 n 1 的 前面,将 n 1 划去,最后只剩下数 n ,即 mn 0 则 i1 , i2 , , in m1 m2 mn1 mn 例5 :7 阶排列 4,7,5,1,3,6,2 中,
线性代数1-2全排列及其逆序数1-3n阶行列式的定义1-4对换

例3 用行列式的定义计算
0 0 0 1 0 0 0 2 0 0 Dn n1 0 0 0 0 0 0 0 0 n
解 Dn 1 t a1,n1a2,n2 an1,1ann
1t 1 2 n 1 n 1t n!, tn 1n 2 21n
01 2L n 3 n 2 0
1234
例3 计算
0 D
4
2
1
0056
0008
解
1234Βιβλιοθήκη 0421D 00
5
6 a11a22a a 33 44 1 4 5 8 160.
0008
同理可得下三角行列式
a11
0 0 0
a21 a22 0 0
an1
an2
an3 ann
a11a22 ann .
例4 证明对角行列式
1 2
因此对换相邻两个元素,排列改变奇偶性 . 再证一般对换的情形 .
设排列为 a1 alab1 bmbc1 cn , 现来对换 a 与b.
a1 al a b1 bm b c1 cn
m 次相邻对换 a1 al ab b1 bmc1 cn
m 1 次相邻对换 a1 al b b1 bm a c1 cn
t 0 1 0 3 1 5.
例2 计算下列排列 nn 1n 2L 321
的逆序数,并讨论它的奇偶性.
解
t 1 2 L (n 2) n 1
nn 1
,
2
当 n 4k,4k 1 时为偶排列;
当 n 4k 2,4k 3 时为奇排列.
第一章 行列式
第三节 n 阶行列式的定义
一、概念的引入
1
a a t p1q1 p2q2
a pnqn
1.2排列与逆序数

τ (45321) = 3 + 3 + 2 + 1 = 9
例 在n级排列1,2,…,n中,各数是按照由小到大的 自然顺序排列,这一排列称为n元自然序排列, n元自然序排列 由于其中任何一个数对都不构成逆序,因此
τ (12⋯n) = 0
另外
τ (n, n − 1,⋯,1)
= (n − 1) + (n − 2) + ⋯ + 1
二、逆序数
1、逆序和逆序数 在n级排列
j1 , j2 ,⋯ , jn 中, 如果有一个较大的数
js 排在较小的数 jt 的前面,即
j s > jt ( s < t )
构成一个逆序 逆序。 逆序
称这一对数
js , jt
一个排列中逆序中的总数,称为这个排列的逆序数 逆序数, 逆序数 记为: τ
( j1 , j 2 , ⋯ , j n )
2、例题 例 求排列45321的逆序数 解 在排列45321中, 4和后面的数形成的逆序有3个:43,42,41; 5和后面的数形成的逆序有3个:53,52,51; 3和后面的数形成的逆序有2个:32,31; 2和后面的数形成的逆序有1个:21; 1排在最后不产生逆序,故有0个逆序; 于是排列45321的逆序数为:
第一章 行列式
第一节、 第一节、二阶与三阶行列式 第二节、 第二节、排列与逆序数 第三节、线性相关与线性无关 第三节、 第四节、 第四节、行列式的性质 第五节、行列式按行( 第五节、行列式按行(列)展开 第六节、 第六节、拉普拉斯定理 第七节、 第七节、克莱姆法则
第二节 排列与逆序数
一、排列
1、排列 由n个自然数1,2,…,n组成的一个有序数组:
n(n − 1) = 2
线性代数第一章行列式第二节全排列及其逆序数

1,2显,然3叫,做百元位素上.可上以述从问1,题2就,是3三:个把数三字个中不任同选的
元一素个排,所 成一以有列,3种共放有法几;种十不位同上的只排能法从?剩下的两个 数字中选一个,所以有2种放法; 而个位上只能放 最后剩下的一个数字,所以只有1种放法. 因此,
二、全排列
对于 n 个不同的元素,也可以提出类似的问 题: 把 n 个不同的元素排成一列,共有几种不同 的排法? 为此先给出全排列的定义.
定义 把 n 个不同的元素排成一列,叫做这 n 个元素的全排列(也简称排列).
n 个不同元素的所有排列的种数,通常用 Pn 表
示. 由引例 用1的,结2,果3可三知个P数3 =字3可·以2 ·组1 成= 6多. 少个没
有重复数字的三位数?
解 这个问题相当于说,把三个数字分别放在
为了得出计算 Pn 的公式,可以仿照引例 用1,2
进行讨论:
有重复数字的三位
从 n 个元素中任取一个放在第一个位解置上这位与个数
从剩下的 n – 1 个元素中任取一个放在显第然二,百位上
个位置上,有 n – 1 种取法;
一个,所以有3种放
这样继续下去,直到最后只剩下数一字个中元选素一放个,所
在第 n 个位置上,只有 1 种取法. 于最是后剩下的一个数
2. 计算方法
下面来讨论计算排列的逆序数的方法. 不失一般性,不妨设 n 个元素为 1 至 n 这 n 个 自然数, 并规定由小到大为标准次序. 设
p1 p2 pn
为这 n 个自然数的一个排列,考虑元素 pi (i = 1, 2, … , n), 如果比 pi 大的且排在 pi 前面的元素有 ti 个,就说 pi 这个元素的逆序数是 ti . 全体元素的 逆序数之和
1-2排列及其逆序数

定义⒈⒈ n个不同元素所排成的一列,称为(全)排列。 标准(自然排列):n个不同自然数从小到大的排列。 例: 6 3 2, 2 5 1 3 4 2 3 6, 1 2 3 4 5
p1 p2 p3.......... pn , p N , i 1, 2, , n . 定义⒈⒉ 若在排列 p1 p2 ...... pn 中,某两数不是自然顺序
(4)标准排列是偶排列。
定义⒈⒋ 例: 定理⒈⒈
对换:将排列中某两数位置对调,其余数不动。
6372451 对 换 一 次 1372456 偶排列 奇排列
排列经一次对换,奇偶性改变。
推论 (1):奇(偶)排列调为奇(偶)排列, 须作偶数次对换,奇偶性相同。 (2):奇(偶)排列调为偶(奇)排列, 须作奇数次对换,奇偶性不同。 (3):奇(偶)排列调为标准排列, 须作奇(偶)数次对换,标准排列是偶排列。
例1.2,求排列数的逆序数
(1)6372451 (2)1372456
(3) 1 2 3 …(n-1)n(2n)(2n-1)…(n+1) 解:(1) 排列 p1 p2 p3 p4 p5 p6 p7 6 3 7 2 4 5 1 τi 0 1 0 3 2 2 6
(6372451) i 14
i
排列的一般记法:
(即前数>后数),则称这两数构成一个逆序。 排列 p1 p2 ..... pn 的逆序总数称为逆序数。 记作:
( p1 p2 p3..... pn)
记 逆序数求法:
i 是pi 前比pi 大的数的个数,则 ( p1 p2 ... pn ) 2 3 ... n (1 0)
1 i 0 0 1 2 (n 1) (n 1)n 2 i 1
p1 p2 p3.......... pn , p N , i 1, 2, , n . 定义⒈⒉ 若在排列 p1 p2 ...... pn 中,某两数不是自然顺序
(4)标准排列是偶排列。
定义⒈⒋ 例: 定理⒈⒈
对换:将排列中某两数位置对调,其余数不动。
6372451 对 换 一 次 1372456 偶排列 奇排列
排列经一次对换,奇偶性改变。
推论 (1):奇(偶)排列调为奇(偶)排列, 须作偶数次对换,奇偶性相同。 (2):奇(偶)排列调为偶(奇)排列, 须作奇数次对换,奇偶性不同。 (3):奇(偶)排列调为标准排列, 须作奇(偶)数次对换,标准排列是偶排列。
例1.2,求排列数的逆序数
(1)6372451 (2)1372456
(3) 1 2 3 …(n-1)n(2n)(2n-1)…(n+1) 解:(1) 排列 p1 p2 p3 p4 p5 p6 p7 6 3 7 2 4 5 1 τi 0 1 0 3 2 2 6
(6372451) i 14
i
排列的一般记法:
(即前数>后数),则称这两数构成一个逆序。 排列 p1 p2 ..... pn 的逆序总数称为逆序数。 记作:
( p1 p2 p3..... pn)
记 逆序数求法:
i 是pi 前比pi 大的数的个数,则 ( p1 p2 ... pn ) 2 3 ... n (1 0)
1 i 0 0 1 2 (n 1) (n 1)n 2 i 1
1-2全排列及逆序数

即 n 个不同的元素一共有n! 种不同的排法.
(这里暂时Байду номын сангаас把元素想象成是写有编号的小球)
3个不同的元素一共有3! = 6种不同的排法
123,132,213,231,312,321
所有6种不同的排法中,只有一种排法 (123)中的数字是按从小到大的自然 顺序排列的,而其他排列中都有大的 数排在小的数之前. 因此大部分的排列都不是“顺序”, 而是乱序的,或者说其中有“逆序”.
练习1:求排列 453162 的逆序数. (奇排列)
解: (t 453162) 0+2+3+0+4 9
练习2: 求排列 463152 的逆序数. (偶排列)
t(463152) 0+0+2+3+1+4 10
猜想:对换一次改变排列的奇偶性?书P5
二、对换的定义
定义
在排列中,将任意两个元素对调,其余的元素 不动,这种作出新排列的手续叫做对换.
将相邻两个元素对换,叫做相邻对换.
例如
a1 al a b b1 bm a1 al b a b1 bm
a1 al a b1 bmb c1 cn a1 al b b1 bma c1 cn
三、对换与排列奇偶性的关系
定理1 对换改变排列的奇偶性.
证明 先考虑相邻对换的情形.
t ta1
tal ta tb tb1
§2 全排列和对换
为了研究 n 阶行列式的定义,我们首 先来学习全排列和逆序数的概念
一、排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的
排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
(这里暂时Байду номын сангаас把元素想象成是写有编号的小球)
3个不同的元素一共有3! = 6种不同的排法
123,132,213,231,312,321
所有6种不同的排法中,只有一种排法 (123)中的数字是按从小到大的自然 顺序排列的,而其他排列中都有大的 数排在小的数之前. 因此大部分的排列都不是“顺序”, 而是乱序的,或者说其中有“逆序”.
练习1:求排列 453162 的逆序数. (奇排列)
解: (t 453162) 0+2+3+0+4 9
练习2: 求排列 463152 的逆序数. (偶排列)
t(463152) 0+0+2+3+1+4 10
猜想:对换一次改变排列的奇偶性?书P5
二、对换的定义
定义
在排列中,将任意两个元素对调,其余的元素 不动,这种作出新排列的手续叫做对换.
将相邻两个元素对换,叫做相邻对换.
例如
a1 al a b b1 bm a1 al b a b1 bm
a1 al a b1 bmb c1 cn a1 al b b1 bma c1 cn
三、对换与排列奇偶性的关系
定理1 对换改变排列的奇偶性.
证明 先考虑相邻对换的情形.
t ta1
tal ta tb tb1
§2 全排列和对换
为了研究 n 阶行列式的定义,我们首 先来学习全排列和逆序数的概念
一、排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的
排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
线性代数1-2

所以
Dn 1
n1 n 2
2
n!.
思考题
分别用两种方法求排列16352487的逆序数.
思考题解答
解 用方法1
1 6 3 5 2 4 8 7
N 0 31 21 01 0 8
用方法2 由前向后求每个数的逆序数.
N 0 0 1 1 3 2 0 1 8.
2的前面比2大的数只有一个3,故逆序数为1;
5的前面没有比5大的数,其逆序数为0; 1的前面比1大的数有3个,故逆序数为3;
4的前面比4大的数有1个,故逆序数为1;
3 2 5 1 4 0 1 0 3 1 于是排列32514的逆序数为
N 32541 0 1 0 3 1 5.
第二节 n 阶行列式
一、排列与逆序
二、n 阶行列式的定义 三、对换
一、排列与逆序
定义1 由自然数 1,2,, n 组成的不重复的每一种有 确定次序的排列, 称为一个 n 级排列(或排列). 例: 1234和 4213 都是4级排列, 54123和 35142 都是5级排列. 注: n 级排列的总的个数:
2 当 k 为偶数时,排列为偶排列,
k
21 k 1k 1
2 k k ,
当 k 为奇数时,排列为奇排列.
二、n 阶行列式的定义
观察三阶行列式
a11 D a 21 a 31
说明
a12 a 22 a 32
a13 a 23 a11a22a33 a12a23a31 a13a21a32 a a11a23a32 a12a21a33 a13a22a31
解
Dn 1 a1,n1a2 ,n2 an1,1ann
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如 排列32514 中, 0 01
32514
1 逆序数为3
故此排列的逆序数为3+1+0+1+0=5.
记做 (3 2 514) 5
排列的奇偶性 逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 例如,在123组成的全排列中,有3个偶排列123, 231,312;有三个奇排列132,213,321 ❖一般说来,n 个数的全排列中,奇偶排列各占一半。
第二排列及其逆序数
1 全排列 2 排列的逆序数 3 逆序数的计算方法
问题 把 n 个不同的元素排成一列,共有几种不 同的排法?
定义1
把 n 个不同的元素排成一列,叫做这 n 个元素的全排列(简称排列).
n 个不同的元素的所有排列的种数,通 常用 Pn 表示.
例如 P3 3 2 1 6.
同理 Pn n (n 1) (n 2) 3 2 1 n!.
32514 5的前面没有比5大的数,其逆序数为0; 1的前面比1大的数有3个,故逆序数为3; 4的前面比4大的数有1个,故逆序数为1;
32514 01 031 于是排列32514的逆序数为
0 1 0 3 1 5. (从头开始法)
例2 计算下列排列的逆序数,并讨论它们的奇 偶性.
1 217986354
分别计算出排列中每个元素前面比它大的数码 个数之和,即从排列中第一个元素开始,依次 算出排列中每个元素的逆序数,这每个元素的 逆序数之总和即为所求排列的逆序数.(从“头” 开始法) 例1 求排列32514的逆序数.
解 在排列32514中,
3排在首位,逆序数为0;
2的前面比2大的数只有一个3,故逆序数为1;
我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准排列(自然 排列).
定义2 在一个排列 i1i2 it is in 中,若数
it is 则称这两个数组成一个逆序.
例如 排列32514 中, 逆序
32514
逆序 逆序
定义 一个排列中所有逆序的总数称为此排列的
逆序数.记做 ( p1 p2 pn ) 。
解
2 1 7 9 8 6 3 5 4 (从“1”开始)
0 10 0 1 3 4 4 5
10 4454301
18
此排列为偶排列.
2 nn 1n 2 321
解 n1
nn 1n 2 321 n 2
n 1 n 2 2 1
nn 1,
2 当 n 4k,4k 1 时为偶排列;
当 n 4k 2,4k 3 时为奇排列.
(3) 1 3 (2n 1)(2n)(2n 2) 4 2
(从“头”开始)
解 1 3 (2n 1)(2n)(2n 2)(2n 4) 4 2
00 0 0 2
4 2n 2
0 0 2 4 2n 1
32514
1 逆序数为3
故此排列的逆序数为3+1+0+1+0=5.
记做 (3 2 514) 5
排列的奇偶性 逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 例如,在123组成的全排列中,有3个偶排列123, 231,312;有三个奇排列132,213,321 ❖一般说来,n 个数的全排列中,奇偶排列各占一半。
第二排列及其逆序数
1 全排列 2 排列的逆序数 3 逆序数的计算方法
问题 把 n 个不同的元素排成一列,共有几种不 同的排法?
定义1
把 n 个不同的元素排成一列,叫做这 n 个元素的全排列(简称排列).
n 个不同的元素的所有排列的种数,通 常用 Pn 表示.
例如 P3 3 2 1 6.
同理 Pn n (n 1) (n 2) 3 2 1 n!.
32514 5的前面没有比5大的数,其逆序数为0; 1的前面比1大的数有3个,故逆序数为3; 4的前面比4大的数有1个,故逆序数为1;
32514 01 031 于是排列32514的逆序数为
0 1 0 3 1 5. (从头开始法)
例2 计算下列排列的逆序数,并讨论它们的奇 偶性.
1 217986354
分别计算出排列中每个元素前面比它大的数码 个数之和,即从排列中第一个元素开始,依次 算出排列中每个元素的逆序数,这每个元素的 逆序数之总和即为所求排列的逆序数.(从“头” 开始法) 例1 求排列32514的逆序数.
解 在排列32514中,
3排在首位,逆序数为0;
2的前面比2大的数只有一个3,故逆序数为1;
我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准排列(自然 排列).
定义2 在一个排列 i1i2 it is in 中,若数
it is 则称这两个数组成一个逆序.
例如 排列32514 中, 逆序
32514
逆序 逆序
定义 一个排列中所有逆序的总数称为此排列的
逆序数.记做 ( p1 p2 pn ) 。
解
2 1 7 9 8 6 3 5 4 (从“1”开始)
0 10 0 1 3 4 4 5
10 4454301
18
此排列为偶排列.
2 nn 1n 2 321
解 n1
nn 1n 2 321 n 2
n 1 n 2 2 1
nn 1,
2 当 n 4k,4k 1 时为偶排列;
当 n 4k 2,4k 3 时为奇排列.
(3) 1 3 (2n 1)(2n)(2n 2) 4 2
(从“头”开始)
解 1 3 (2n 1)(2n)(2n 2)(2n 4) 4 2
00 0 0 2
4 2n 2
0 0 2 4 2n 1