线性代数 排列及其逆序数

合集下载

第二节 排列及其逆序数

第二节 排列及其逆序数
例如 排列32514 中, 0 01
32514
1 逆序数为3
故此排列的逆序数为3+1+0+1+0=5.
记做 (3 2 514) 5
排列的奇偶性 逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 例如,在123组成的全排列中,有3个偶排列123, 231,312;有三个奇排列132,213,321 ❖一般说来,n 个数的全排列中,奇偶排列各占一半。
第二排列及其逆序数
1 全排列 2 排列的逆序数 3 逆序数的计算方法
问题 把 n 个不同的元素排成一列,共有几种不 同的排法?
定义1
把 n 个不同的元素排成一列,叫做这 n 个元素的全排列(简称排列).
n 个不同的元素的所有排列的种数,通 常用 Pn 表示.
例如 P3 3 2 1 6.
同理 Pn n (n 1) (n 2) 3 2 1 n!.
32514 5的前面没有比5大的数,其逆序数为0; 1的前面比1大的数有3个,故逆序数为3; 4的前面比4大的数有1个,故逆序数为1;
32514 01 031 于是排列32514的逆序数为
0 1 0 3 1 5. (从头开始法)
例2 计算下列排列的逆序数,并讨论它们的奇 偶性.
1 217986354
分别计算出排列中每个元素前面比它大的数码 个数之和,即从排列中第一个元素开始,依次 算出排列中每个元素的逆序数,这每个元素的 逆序数之总和即为所求排列的逆序数.(从“头” 开始法) 例1 求排列32514的逆序数.
解 在排列32514中,
3排在首位,逆序数为0;
2的前面比2大的数只有一个3,故逆序数为1;
我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准排列(自然 排列).

线性代数第一节排列及其逆序数

线性代数第一节排列及其逆序数

第一章行列式第一节 排列及其逆序数�引言�排列与逆序数一、引言我们在中学曾经学习过求解二元一次线性方程组⎩⎨⎧=+=+2221212111c x b x a c x b x a (1) 当两个方程的未知数系数不成比例,即 2121b b a a ≠时,我们有.b a b ac a c a x ,b a b ac b c b x 122112212122121121−−=−−=(2)为方便记忆,我们引入二阶行列式bc ad db ca −=(3)则(2)可以表示为.b a b ac a c a x ,b a b a b c b c x 221122112221122111==(4)即当(1)的系数行列式0b a b a 2211≠时, (1)的解可以用二阶行列式表示为(4)。

用高斯消元法,对三元一次线性方程组,333323213123232221211313212111⎪⎩⎪⎨⎧=++=++=++b x a x a x a b x a x a x a b x a x a x a (5)我们也可以得到类似的结果。

即如果引入三阶行列式,c c c c c c c c c c c c c c c c c c c c c c c c c c c 322311332112312213322113312312332211333231232221131211−−−++=(6)则当(5)的系数行列式0a a a a a a a a a D 333231232221131211≠=(7)时,方程组(5)的解可以用三阶行列式表示为.a a a a a a a a a b a a b a a b a a x ,a a a a a a a a a a b a a b a a b a x ,a a a a a a a a a a a b a a b a a b x 333231232221131211332312222111211333323123222113121133331232211311123332312322211312113332323222131211===(8)对于n 元一次方程组,是否也有类似于上述(4)、(8)的结果呢?这就是本章要回答的问题。

1-2 全排列及其逆序数

1-2 全排列及其逆序数


3 2 32 8/2=4 4 1 31 21 41 因此,计算排列的逆序数时,对每个元素只需考虑它 与左边(或右边)的元素所构成的逆序.
目录 上页 下页
右 32 31 21 41
排列的逆序数
对于排列中的一个元素,左边比它大的数的个数, 叫做该元素的逆序数 . 排列的逆序数 = 排列中各个元素的逆序数之和. 定义 4 排列的奇偶性 逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 说明 一个排列不是奇排列就是偶排列.
目录
上页
下页
作业
计算以下排列的逆序数,并判断奇偶性
①1 3 4 2 6 5 ;
②2 4 … (2n) (2n-1) (2n-3) … 1
目录
上页
下页
思考题
分别用两种方法求排列 163பைடு நூலகம்2487 的逆序数.
目录
上页
下页
思考题解答
方法 1 求出每个元素的逆序数, 并相加
t 0 011 3 2 01 8
目录
上页
下页
例 1 求排列 32514 的逆序数,并说明它的奇偶性.
分析 3: 排在首位, 逆序数为 0; 2: 前面比 2 大的数只有一个 3, 故逆序数为 1; 5: 前面没有比 5 大的数, 其逆序数为 0; 1: 前面比 1 大的数有 3 个, 故逆序数为 3; 4: 前面比 4 大的数有 1 个, 故逆序数为 1. 解 3 2 5 1 4

n 1 (1) nn 1n 2 3 2 1 n2 nn 1 t n 1 n 2 2 1 0 2 当 n 4k , 4k 1 (kN) 时,为偶排列, 当 n 4k 2, 4k 3 (kN) 时,为奇排列.

1-2线性代数

1-2线性代数

n( n 1 ) , = 2 时为偶排列; 当 n = 4k ,4k + 1 时为偶排列;
t = ( n 1) + ( n 2 ) + L + 2 + 1
时为奇排列. 当 n = 4k + 2,4k + 3 时为奇排列
(4) (2k )1(2k 1)2(2k 2)3(2k 3)L (k + 1)k
于是排列32514的逆序数为 t = 0 + 1 + 0 + 3 + 1 = 5. 的逆序数为 于是排列
计算下列排列的逆序数,并讨论它们的奇偶性. 例2 计算下列排列的逆序数,并讨论它们的奇偶性
(1)
4132
(2) 3712456
(2) )
解(1)4 1 3 2 )
3 7 1 2 4 5 6
0 0 2 2 1 1 1
第二节 全排列及其逆序数
一、排列
定义 由自然数 2, , n 组成的不重复的每一 由自然数1, 种有确定次序的排列, 称为一个n 种有确定次序的排列 称为一个 阶排列 (简称排列 简称排列). 简称排列 都是4 例如 1234 和4312都是 阶排列 都是 阶排列, 24315是一个 阶排列 是一个5 阶排列. 是一个
t = 0 +0 + 2 + 2 + 1 + 1 + 1
0 1 1 2
t = 0+1+1+ 2 = 4
此排列为偶排列 此排列为偶排列. 偶排列
=7
此排列为奇排列 此排列为奇排列. 奇排列
(3)

n(n 1)(n 2 )L 321
n 6444 74444 4 1 8 n(n 1)2 2 )L 321 1 4(n443 44 4 (n 2)

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结一、行列式1、N阶行列式中元素aij的第一个下标i 为行指标(横行),第二个下标j 为列指标(竖列)。

即aij位于行列式的第i 行第j 列。

2、在一个排列中,若数较大的数码排在较小的数码之前则称这两个数组成此排列的一个逆序。

一个排列中所有逆序的总数称为此排列的逆序数。

记为 (每个元素的逆序数之总和即为所求排列的逆序数)逆序数为奇数的为奇排列,偶数为偶排列。

3、上/下三角行列式主对角线以下/上元素都是0,上/下三角行列式的值为主对角线上所有元素乘积。

(详见课本p4)4、(1)行列式与它的转置行列式相等既D=D T。

(把D的各行换成同序号的列的运算就是行列式的转置行列式)(2)行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立。

(3)互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

(4)行列式的某一行(列)中所有的元素都乘以同一数k等于用数k乘此行列式。

因此行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。

(5)行列式中如果有两行(列)元素成比例,则此行列式为零。

(6)若行列式的某一列(行)的元素都是两数之和那么可以把改行列式表达成两个行列式之和。

(详见课本p8)(7)把行列式的某一列(行)的各元素乘以同一数k 然后加到另一列(行)对应的元素上去,行列式的值不变。

(8)计算行列式常用方法:(1)利用定义(详见课本p3);(2)利用性质把行列式化为上三角形行列式,从而算得行列式的值.5、在n阶行列式中,把元素a ij 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素a ij 的余子式,记作M ij叫做元素a ij 的代数余子式=-M ij6、行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即7、行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零既8、一个n 阶行列式,如果其中第i 行所有元素除a ij 外都为零,那末这行列式等于a ij 与它的代数余子式的乘积既D=a ij A ij 二、矩阵及其运算主对角线全为1其余的位置全是0的矩阵称为单位阵()ij ji ij M A +-=144434241343332312423222114131211a a a a a a a a a a a a a a a a D =44424134323114121123a a a a a a a a a M =()2332231M A +-=in in i i i i A a A a A a D +++=L 2211()n i ,,2,1L =.,02211j i A a A a A a jn in j i j i ≠=+++L ??==100010001L L L L L L L n E E(1)两个矩阵的行数相等,列数相等时,称为同型矩阵。

1-2排列及其逆序数

1-2排列及其逆序数
定义⒈⒈ n个不同元素所排成的一列,称为(全)排列。 标准(自然排列):n个不同自然数从小到大的排列。 例: 6 3 2, 2 5 1 3 4 2 3 6, 1 2 3 4 5
p1 p2 p3.......... pn , p N , i 1, 2, , n . 定义⒈⒉ 若在排列 p1 p2 ...... pn 中,某两数不是自然顺序
(4)标准排列是偶排列。
定义⒈⒋ 例: 定理⒈⒈
对换:将排列中某两数位置对调,其余数不动。
6372451 对 换 一 次 1372456 偶排列 奇排列
排列经一次对换,奇偶性改变。
推论 (1):奇(偶)排列调为奇(偶)排列, 须作偶数次对换,奇偶性相同。 (2):奇(偶)排列调为偶(奇)排列, 须作奇数次对换,奇偶性不同。 (3):奇(偶)排列调为标准排列, 须作奇(偶)数次对换,标准排列是偶排列。
例1.2,求排列数的逆序数
(1)6372451 (2)1372456
(3) 1 2 3 …(n-1)n(2n)(2n-1)…(n+1) 解:(1) 排列 p1 p2 p3 p4 p5 p6 p7 6 3 7 2 4 5 1 τi 0 1 0 3 2 2 6
(6372451) i 14
i
排列的一般记法:
(即前数>后数),则称这两数构成一个逆序。 排列 p1 p2 ..... pn 的逆序总数称为逆序数。 记作:
( p1 p2 p3..... pn)
记 逆序数求法:
i 是pi 前比pi 大的数的个数,则 ( p1 p2 ... pn ) 2 3 ... n (1 0)
1 i 0 0 1 2 (n 1) (n 1)n 2 i 1

线性代数 1.1 全排列及其逆序数

线性代数 1.1  全排列及其逆序数

三、排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 定义 把排列中两个元素位置进行对调, 称为对排列作一次对换。 定理:对换改变排列的奇偶性. 证明:先证明是相邻对换的情况,再证非 相邻对换的情况。 推论 将奇(偶)排列变成标准排列需用奇(偶)数 次对换。
第一章
行列式
§1.1 全排列及其对换
一、全排列的定义 n 个不同的元素排成一列,叫做这 n
个元素的全排列,简称排列。 例 123456 是 6 个数的全排列, 53421 是 5 个数的全排列。
二排列的逆序数
对于n 个不同的元素,规定各元素之间由小 到大为标准次序. 定义 当某两个元素的先后次序与标准次序不同 时,就说有一个逆序,一个排列中所有逆序的总 数叫做这个排列的逆序数。 求逆序数的方法: t ( p1 p2 pn ) t1 t2 tn 其中 ti 是排列中与元素 pi 相关的逆序数,即位于 pi前且比 pi 大的的元素个数。
例 (1) 求排列3412中逆序数 .
2 nn 1n 2 321
(1) t (3412) 0 0 2 2 4; 解:
(2) t (n n 1 n 2 321) 0 1 2 (n 1) 1 n(n 1) 2

排列及其逆序数

排列及其逆序数

排列 非自然排列
(逆序数≠0)
奇排列 (逆序数为奇数) 偶排列 (逆序数为偶数)
《线性代数》课题组
《线性代数》课题组
例6: 用两种方法求排列32514 的逆序数
方法1: (3 2 5 1 4 ) 2 1 2 0 5
方法2:
0 0
1
3 2 5 1 4
13Βιβλιοθήκη (3 2 5 1 4 ) 3 1 0 1 0 5
《线性代数》课题组
四、对

将一个排列中某两个数的位置互换,称为对换。 奇 偶
《线性代数》课题组
(3 4 1 2 ) 4
三、逆序数的计算方法
方法1
( i1 i 2
i n ) ( i1 后面比 i1 小的数个数)
+( i 2 后面比 i 2 小的数个数)+ …… +( i n 1 后面比 i n 1 小的数个数)
例5:① (1 5 4 3 2 ) 0 + 3 + 2 + 1 =6 ② 求逆序数. n n 1 n 2 解: 逆序数= (n-1)+
11阶排列
《线性代数》课题组
例3:n(n-1)…21是几阶排列?共有多少种排列? 从n个元素中取定一个放在第一个 位置上有n种放法; 又从剩下的n-1个元素中任取一个放 在第二个位置上有n-1种放法 如此下去,直到最后一个元素放在 第n个位置上只有1种放法。
n ( n 1) 3 2 1 n!种
321
(n-2)+ …... +2+1
( n 1) n 2
《线性代数》课题组
方法2: 任一n阶排列 先看数1,看有多少个比1大的数排在1前面,记为 m 1 ; 再看有多少个比2大的数排在2前面,记为 m 2 ; 继续下去,最后至数n,前面比n大的数显然没有,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a1 al ab1 bm bc1 cn ,
2m 1次相邻对换 a a bb b ac c , 1 l 1 m 1 n
所以一个排列中的任意两个元素对换,排列改变 奇偶性.
推论 奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数. 定理2 在全部 n 阶排列中 n 2 ,奇偶排列各 占一半.
对换与排列的奇偶性的关系
定理1 一个排列中的任意两个元素对换,排列 改变奇偶性. 证明 设排列为
对换 a 与 b
a1 al ab b1 bm
a1 al ba b1 bm ba
除 a , b 外,其它元素的逆序数不改变.
当 a b时,
经对换后 a 的逆序数增加1 ,
当 a b时,
b 的逆序数不变;
例如
排列32514 中,
逆序
3 2 5 1 4
逆序 逆序
定义 一个排列中所有逆序的总数称为此排列
的逆序数.
例如
排列32514 中,
0
0
1
3 2 5 1 4
1
逆序数为3
故此排列的逆序数为3+1+0+1+0=5.
例 1、用多种方法求排列16352487的逆序数. 2、 t (i1i2 in ) 的取值范围? 3、求n(n-1) …21的逆序数。 4、若 ( i1i2 in ) t 求 ( in i2i1 )
b 经对换后 a 的逆序数不变 , 的逆序数减少1.
因此对换相邻两个元素,排列改变奇偶性. 设排列为 a1 al ab1 bm bc1 cn 现来对换 a 与 b .
a1 al a b1 bm b c1 cn
m 次相邻对换
a1 al ab b1 bm c1 cn
m 1 次相邻对换 a a b b a c c 1 l 1 m a 1 n
第二节
排列的逆序数
一、概念的引入 二、排列的逆序数 三、对换 四、小结、思考题
一、排列的逆序数引入说明:
我们已介绍了2、3阶行列式,我们希望将 概念推广到n阶的情况,为此,需引入逆序数 的概念来确定行列式展开式中项的符号.
二、排列的逆序数
排列的逆序数 定义 我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序. 在一个排列 i1 i2 it i s in 中,若数 it i s 则称这两个数组成一个逆序.
排列的奇偶性 逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.
三、对换
定义
在排列中,将任意两个元素对调,其余 元素不动,这种作出新排列的手续叫做 对换. 将相邻两个元素对调,叫做相邻对换. 例如
a1 al a b b1 bm b a1 al b a b1 bm ba
a1 ala b1 bm b c1 cn a1 al b b1 bm a c1 cn a
四、小结
1 n 个不同的元素的所有排列种数为 n!. 2 排列具有奇偶性. 3 计算排列逆序数常用的方法有多种. 4 对换改变排列的奇偶性.
计算法的本质:
本质为计算排列中的每一元与其前面的元
所产生的逆序数,然后逐个相加,即得排 列的逆序数。各种方法的区别在于计算排 列中每一元的逆序数的顺序,第一种方法 是按元本身从小到大计算,而第二种方法 是按元后在的位置从右往左计算。
相关文档
最新文档