集合与常用逻辑用语不等式试题一含答案
高一数学集合与常用逻辑用语试题答案及解析

高一数学集合与常用逻辑用语试题答案及解析1.集合的元素个数是().A.59B.31C.30D.29【答案】C【解析】由2n-1<60,得n<,又∵n∈N*,∴满足不等式n<的正整数一共有30个.即集合M中一共有30个元素,可列为1,3,5,7,9,…,59,组成一个以a1=1,a30=59,n=30的等差数列.集合M中一共有30个元素。
【考点】集合问题2.已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5}B.{1,2,3,4,5,6}C.{1,3,5}D.{3,5,6}【答案】A【解析】所求是两个集合的公共元素组成的集合,所以.【考点】集合的运算3.(本题满分12分)计算:(1)集合集合求和(2)【答案】(1);(2)【解析】(1)由集合的运算性质可得;(2)利用对数与指数的运算性质,以及公式化简可得试题解析:(1)(2)【考点】1.集合的运算性质;2.对数与指数的运算性质4.(本题满分12分)已知全集,,,(1)求;(2)若,求实数的取值范围.【答案】(1),(2)【解析】(1)首先求解集合A中函数的定义域得到集合A,A,B两集合的交集是由两集合的相同元素构成的集合,A,B并集是由两集合的所有元素构成的集合;(2)由已知得两集合的子集关系,从而得到两集合边界值的大小关系,解不等式求解的取值范围.试题解析:(1)(2)∵∴∴得∴实数的取值范围为【考点】1.集合的交并集运算;2.集合的子集关系5.含有三个实数的集合既可表示成,又可表示成,.【答案】-1【解析】由两集合相等可得【考点】集合相等与集合元素特征6.满足的集合A的个数是_______个.【答案】7【解析】符合条件的集合A可以为,,,,,,,共7个.【考点】集合间的关系.7.设全集集合则.【答案】【解析】集合M表示的是直线除去点(2,3)的所有点;集合P表示的是不在直线上的所有点,显然表示的是平面内除去点(2,3)的所有点,故.【考点】集合运算.8.(本小题满分14分)已知集合,.(1)求:,;(2)已知,若,求实数的取值集合【答案】(1);(2).【解析】(1)画数轴先求,再求.(2)画数轴分析可得关于关于的不等式,从而可求得的范围.试题解析:解:(1)(2)【考点】集合的运算.9.在①;②;③;④上述四个关系中,错误的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】,所以①错;,所以②错;③④正确.【考点】1.元素与集合的关系;2.集合与集合的关系.10.已知集合,,则A.或B.C.D.【答案】B【解析】由交集的定义可知,,故选B.【考点】集合的运算及表示.【易错点睛】本题主要考查集合的运算与集合的表示方法,属容易题.集合A中的代表元素用的字母为,集合B中的代表元素用的字母为,学生会误认为是两个不同类型的集合,选D,即对两个集合均为数集的含义不清楚导致错误.11.设全集是实数集.,.(1)当时,求和;(2)若,求实数的取值范围.【答案】(1);(2)【解析】(1)由题意,求出集合,然后将代入就交集和并集即可;(2)若分和求出的取值范围,周求并集即可试题解析:(1)根据题意,由于,当时,,而,所以,,(2),若,则,若,则,,综上,【考点】集合的运算,子集12.(10分)已知,。
高中数学必修一第一章集合与常用逻辑用语专项训练题(带答案)

高中数学必修一第一章集合与常用逻辑用语专项训练题单选题1、设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4答案:B分析:由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 求解二次不等式x 2−4≤0可得:A ={x|−2≤x ≤2},求解一次不等式2x +a ≤0可得:B ={x|x ≤−a 2}. 由于A ∩B ={x|−2≤x ≤1},故:−a 2=1,解得:a =−2. 故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.2、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2] 答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C3、设全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2}, B ={−3,0,2,3},则A ∩(∁U B )=( )A .{−3,3}B .{0,2}C .{−1,1}D .{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B={−2,−1,1},则A∩(∁U B)={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.4、下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为()A.3B.2C.1D.0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x2=2时,只能得到x为±√2,由此可判断;对于③,方程x2+1=0无实数解;对于④,作差可判断.解:x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=±√2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题.对∀x∈R,x2+1≠0,∴③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.5、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.6、若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(∁U A)∩B=().A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}答案:A分析:根据补集的定义和运算求出∁U A,结合交集的概念和运算即可得出结果.由题意知,∁U A={1,3,5},又B={3,4},所以(∁U A)∩B={3}.故选:A7、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:∵B⊆A,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,综上,实数a的取值范围是[−13,1).故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.8、已知集合满足{1,2}⊆A⊆{1,2,3},则集合A可以是()A.{3}B.{1,3}C.{2,3}D.{1,2}答案:D分析:由题可得集合A可以是{1,2},{1,2,3}.∵{1,2}⊆A⊆{1,2,3},∴集合A可以是{1,2},{1,2,3}.故选:D.多选题9、下列存在量词命题中真命题是()A.∃x∈R,x≤0B.至少有一个整数,它既不是合数,也不是素数C.∃x∈{x|x是无理数},x2是无理数D.∃x0∈Z,1<5x0<3答案:ABC分析:结合例子,逐项判断即可得解.对于A,∃x=0∈R,使得x≤0,故A为真命题.对于B,整数1既不是合数,也不是素数,故B为真命题;对于C,若x=π,则x∈{x|x是无理数},x2是无理数,故C为真命题.对于D,∵1<5x0<3,∴15<x0<35,∴∃x0∈Z,1<5x0<3为假命题.故选:ABC.10、对任意实数a、b、c,给出下列命题,其中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件答案:CD分析:利用特殊值法以及充分条件、必要条件的定义可判断A、B选项的正误;利用必要条件的定义可判断C 选项的正误;利用充要条件的定义可判断D选项的正误.对于A,因为“a=b”时ac=bc成立,ac=bc且c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A错;对于B,a=−1,b=−2,a>b时,a2<b2;a=−2,b=1,a2>b2时,a<b.所以“a>b”是“a2>b2”的既不充分也不必要条件,故B错;对于C,因为“a<3”时一定有“a<5”成立,所以“a<3”是“a<5”的必要条件,C正确;对于D“a+5是无理数”是“a是无理数”的充要条件,D正确.故选:CD.小提示:本题考查充分条件、必要条件的判断,考查了充分条件和必要条件定义的应用,考查推理能力,属于基础题.11、非空集合A具有下列性质:①若x,y∈A,则xy∈A;②若x,y∈A,则x+y∈A.下列选项正确的是()A.−1∉A B.20202021∉AC.若x,y∈A,则xy∈A D.若x,y∈A,则x−y∉A答案:AC分析:若−1∈A,利用条件可得当x=−1∈A,y=0∈A时,不满足xy∈A,可判断A,利用条件可得若x≠0且x∈A,进而得2020∈A,2021∈A,可判断B,利用题设可得若x,y∈A,则xy∈A,x−y=1∈A可判断CD.对于A,若−1∈A,则−1−1=1∈A,此时−1+1=0∈A,而当x=−1∈A,y=0∈A时,−1显然无意义,不满足xy∈A,所以−1∉A,故A正确;对于B,若x≠0且x∈A,则1=xx∈A,所以2=1+1∈A,3=2+1∈A,以此类推,得对任意的n∈N∗,有n∈A,所以2020∈A,2021∈A,所以20202021∈A,故B错误;对于C,若x,y∈A,则x≠0且y≠0,又1∈A,所以1y ∈A,所以xy=x1y=∈A,故C正确;对于D,取x=2,y=1,则x−y=1∈A,故D错误.故选:AC.填空题12、设集合A={1,2,a},B={2,3}.若B⊆A,则a=_______.答案:3分析:由题意可知集合B是集合A的子集,进而求出答案.由B⊆A知集合B是集合A的子集,所以3∈A⇒a=3,所以答案是:3.13、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k= 0,1,2,3,4;给出下列四个结论:①2015∈[0];②−3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.答案:3分析:根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明④的真假.①由2015÷5=403,所以2015∈[0],故①正确;②由−3=5×(−1)+2,所以−3∉[3],故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故③正确;④假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,④正确;所以答案是:3小提示:本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.14、设P为非空实数集满足:对任意给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P,则称P为幸运集.①集合P={−2,−1,0,1,2}为幸运集;②集合P={x|x=2n,n∈Z}为幸运集;③若集合P1、P2为幸运集,则P1∪P2为幸运集;④若集合P为幸运集,则一定有0∈P;其中正确结论的序号是________答案:②④解析:①取x=y=2判断;②设x=2k1∈P,y=2k2∈P判断;③举例P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}判断;④由x、y可以相同判断;①当x=y=2,x+y=4∉P,所以集合P不是幸运集,故错误;②设x=2k1∈P,y=2k2∈P,则x+y=2(k1+k2)∈A,x−y=2(k1−k2)∈A,xy=2k1⋅k2∈A,所以集合P是幸运集,故正确;③如集合P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}为幸运集,但P1∪P2不为幸运集,如x=2,y=3时,x+y=5∉P1∪P2,故错误;④因为集合P为幸运集,则x−y∈P,当x=y时,x−y=0,一定有0∈P,故正确;所以答案是:②④小提示:关键点点睛:读懂新定义的含义,结合“给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P”,灵活运用举例法.解答题15、已知集合A={x|x=m+√6n,其中m,n∈Q}.(1)试分别判断x1=−√6,x2=√2−√3+√2+√3与集合A的关系;(2)若x1,x2∈A,则x1x2是否一定为集合A的元素?请说明你的理由.答案:(1)x1∈A,x2∈A(2)x1x2∈A,理由见解析分析:(1)将x1,x2化简,并判断是否可以化为m+√6n,m,n∈Q的形式即可判断关系.(2)由题设,令x1=m1+√6n1,x2=m2+√6n2,进而判断是否有x1x2=m+√6n,m,n∈Q的形式即可判断.(1)x1=−√6=0+√6×(−1)∈A,即m=0,n=−1符合;x2=√(√3−1)22+√(√3+1)22=√6=0+√6×1∈A,即m=0,n=1符合.(2)x1x2∈A.理由如下:由x1,x2∈A知:存在m1,m2,n1,n2∈Q,使得x1=m1+√6n1,x2=m2+√6n2,∴x1x2=(m1+√6n1)(m2+√6n2)=(m1m2+6n1n2)+√6(m1n2+m2n1),其中m1m2+6n1n2,m1n2+ m2n1∈Q,∴x1x2∈A.。
高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
命题热点自测1 集合、常用逻辑用语、不等式

命题热点自测(一) 集合、常用逻辑用语、不等式一、选择题1.(2021·北京师范大学天津附属中学月考)已知全集U ={x ∈N |0<x <6},A ={3,4,5},B ={2,3},则B ∪(∁U A )=( )A .{1,2,3}B .{2,3,4}C .{2,3}D .{2}A [由题知,∁U A ={1,2},故B ∪(∁U A )={1,2,3}.故选A .] 2.命题“∀x ≥1,x 2≥1”的否定形式是( ) A .∀x ≥1,x 2<1 B .∃x ≥1,x 2<1C .∀x <1,x 2<1D .∃x <1,x 2<1B [命题“∀x ≥1,x 2≥1”的否定形式是:∃x ≥1,x 2<1.故选B .] 3.(2021·安徽省阜阳第一中学月考)已知a ∈R ,则“a >1”是“1a <1”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件A [由a >1得,a 是正数,因此1a <11=1,充分性成立;反之,取a =-1,适合1a <1,但不适合a >1,所以必要性不成立.]4.(2021·山东省实验中学高三月考)在下列选项中,能正确表示集合A ={-3,0,3}和B ={x |x 2-3x =0}关系的是( )A .A =B B .A ⊇BC .A ⊆BD .A ∩B =∅B [因为B ={x |x 2-3x =0}={0,3},A ={-3,0,3},所以A ⊇B .故选B .] 5.(2021·河北石家庄二中高三月考)若正数x ,y 满足x +3y =5xy ,当3x +4y 取得最小值时,x +4y 的值为( )A .2B .3C .4D .5B [因为正数x ,y 满足x +3y =5xy ,所以1y +3x =5, 所以3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x=15⎝ ⎛⎭⎪⎫3xy +9+4+12y x ≥15⎝⎛⎭⎪⎫13+23x y ·12y x =5, 当且仅当3x y =12yx ,即x =2y 时取等号, 因为x +3y =5xy ,所以解得x =1,y =12, 所以当x =1,y =12时,3x +4y 取得最小值, 所以x +4y =1+4×12=3.故选B .]6.(多选)“关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立”的一个必要不充分条件是( )A .0<a <1B .0<a <2C .0<a <12D .a >0BD [由题意得:Δ=(-2a )2-4a <0⇒0<a <1, ∴所选的正确选项是0<a <1的必要不充分条件, ∴0<a <1应是正确选项的一个真子集.故选BD .]7.(多选)(2021·南京市第十三中学高三月考)设A ={x | x 2-8x +12=0},B ={x |ax -1=0},若A ∩B =B ,则实数a 的值可以是( )A .0B .16C .12D .2ABC [由题意,A ={2,6},因为A ∩B =B ,所以B ⊆A , 若a =0,则B =∅,满足题意;若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a ,因为B ⊆A ,所以1a =2或1a =6,则a =12或a =16.综上,实数a 的值是a =0或a =12或a =16.故选ABC .]8.(多选)(2021·山东省实验中学高三月考)若a >b >1,c <0,则下列不等式中一定成立的是( )A .a -1a >b -1bB .a -1a <b -1a C .ln(a -b )>0D .⎝ ⎛⎭⎪⎫a b c <⎝ ⎛⎭⎪⎫b a cAD [对于A ,因为a >b >1,所以1a <1b ,所以-1a >-1b ,所以a -1a >b -1b ,故A 正确;对于B ,因为a >b >1,所以a -1a >b -1a ,故B 错误;对于C ,因为a >b >1,a -b >0,当a -b =1e 时,ln(a -b )=ln 1e =-1<0,故C 错误;对于D ,因为a >b >1,则0<b a <1,a b >1,又c <0,所以⎝ ⎛⎭⎪⎫a b c <1,⎝ ⎛⎭⎪⎫b a c>1,故D正确.故选AD .]二、填空题9.(2021·山东省实验中学高三月考)命题“∃x ∈(-1,2),2x 2+a =0”是真命题,则实数a 的取值范围是________.(-8,0] [若命题“∃x ∈(-1,2),2x 2+a =0”是真命题, 则2x 2+a =0在x ∈(-1,2)有解, 所以a =-2x 2在x ∈(-1,2)有解. 因为x ∈(-1,2),所以-2x 2∈(-8,0], 所以a ∈(-8,0].]10.(2021·江苏如皋高三开学考试)若∀x ∈(0,+∞),4x 2+1x ≥m ,则实数m 的取值范围为________.(-∞,4] [∀x ∈(0,+∞),4x 2+1x ≥m ,则m ≤⎝ ⎛⎭⎪⎫4x 2+1x min , 由基本不等式可得4x 2+1x =4x +1x ≥24x ·1x =4,当且仅当4x =1x ,即x =12时,等号成立,所以m ≤4,因此实数m 的取值范围是(-∞,4].]11.(2021·重庆一中月考)学校举办运动会时,高一某班共有30名同学参加,有15人参加游泳比赛,有9人参加田径比赛,有13人参加球类比赛,同时参加游泳比赛和田径比赛的有2人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.只参加球类一项比赛的有________人.8 [不妨设同时参加球类比赛和田径比赛的有x 人,结合已知条件可知,只参加游泳比赛的有10人,只参加球类比赛的有10-x 人,只参加田径比赛的有7-x 人,故10+2+7-x +3+x +10-x =30,解得x =2, 从而只参加球类一项比赛的有8人.]12.(2021·江苏泰州模拟)“勾股容方”问题出自我国汉代数学名著《九章算术》,该问题可以被描述为:“设一直角三角形(如图1)的两直角边长分别为a 和b ,求与该直角三角形具有公共直角的内接正方形的边长”,公元263年,数学家刘徽为《九章算术》作注,在注中他利用出入相补原理给出了上述问题如图2和图3所示的解答,则图1中与直角三角形具有公共直角的内接正方形的边长为________,当内接正方形的面积为1时,则图3中两个标有“朱”的三角形和两个标有“青”的三角形的面积总和的最小值为________.图1图2图3ab2[设内接正方形的边长为x,则图2的面积为ab,图3的面积为(a a+b+b) x,,故内接正方因为图2和图3的面积相等,则有ab=(a+b)x,解得x=aba+b形的边长为ab.因为内接正方形的面积为1,所以内接正方形的边长x=1,则a+b有a+b=ab,利用基本不等式可得,a+b=ab≥2ab,故ab≥4,当且仅当a=b=2时取等号,所以两个标有“朱”的三角形和两个标有“青”的三角形的面积总和为ab-2≥2,故图3中两个标有“朱”的三角形和两个标有“青”的三角形的面积总和的最小值为2.]三、解答题13.已知集合A={x|-1≤x≤2},B={x|x2-2mx+m2-1≤0}.(1)命题p:x∈A,命题q:x∈B,且p是q的必要不充分条件,求实数m的取值范围;(2)若∀x∈A,x2+m≥4+3x恒成立,求实数m的取值范围.[解](1)解不等式x2-2mx+m2-1≤0,即(x-m)2≤1,解得m-1≤x≤m+1,所以B ={x |m -1≤x ≤m +1}. 由于p 是q 的必要非充分条件,则B A ,所以⎩⎪⎨⎪⎧m -1≥-1,m +1≤2,解得0≤m ≤1,因此,实数m 的取值范围是[0,1]. (2)由∀x ∈A ,都有x 2+m ≥4+3x , 得m ≥-x 2+3x +4,x ∈[-1,2],令y =-x 2+3x +4=-⎝ ⎛⎭⎪⎫x -322+254,x ∈[-1,2],当x =32时,y 取最大值为254,所以,m ≥254. 因此,实数m 的取值范围是⎣⎢⎡⎭⎪⎫254,+∞.14.(2021·佛山市第二中学月考)已知二次函数y =ax 2+bx -a +2.(1)若关于x 的不等式ax 2+bx -a +2>0的解集是{x |-1<x <3},求实数a ,b 的值;(2)若b =2,a >0,解关于x 的不等式ax 2+bx -a +2>0.[解] (1)因为关于x 的不等式ax 2+bx -a +2>0的解集是{x |-1<x <3}, 所以-1和3是方程ax 2+bx -a +2=0的两根, 所以⎩⎪⎨⎪⎧-1+3=-ba ,-1×3=2-aa ,解得⎩⎪⎨⎪⎧a =-1,b =2,所以a =-1,b =2.(2)当b =2时,ax 2+bx -a +2>0,即ax 2+2x -a +2>0, 可化为(x +1)(ax -a +2)>0, 因为a >0,所以(x +1)⎝ ⎛⎭⎪⎫x -a -2a >0,所以方程(x +1)⎝ ⎛⎭⎪⎫x -a -2a =0的两根为-1和a -2a ,当-1<a -2a ,即a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >a -2a , 当-1=a -2a ,即a =1时,不等式的解集为{x |x ≠-1}, 当-1>a -2a ,即0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a -2a 或x >-1. 综上所述:当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a -2a 或x >-1, 当a =1时,不等式的解集为{x |x ≠-1}, 当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >a -2a .。
数学课件第一章必刷小题1集合常用逻辑用语不等式

3.(2022·百师联盟联考)命题“∀x>0,cos x>-12x2+1”的否定是
A.∀x>0,cos x≤-12x2+1
B.∀x≤0,cos x>-12x2+1
√C.∃x>0,cos x≤-12x2+1
D.∃x≤0,cos x≤-12x2+1
D,构造函数
f(x)=lnx
x,其中
0<x<e,则
f′(x)=1-xl2n
x .
当0<x<e时,f′(x)>0,则函数f(x)在(0,e)上单调递增,因为0<a<b<1,
则 f(a)<f(b),即lnaa<lnbb,可得 ab<ba,所以,a+ab<b+ba,D 正确.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10.以下命题中是真命题的是 A.∃x∈R,使ex<x+1成立 B.∀θ∈R,函数f(x)=sin(2x+θ)都不是偶函数
√C.“a,b∈R,a>b”是“a|a|>b|b|”的充要条件 √D.“x∈A”是“x∈A∩B”的必要不充分条件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.关于x的一元二次不等式ax2+bx+1>0的解集为 x-1<x<31
,则ab的值为
√
因为关于 x 的一元二次不等式 ax2+bx+1>0 的解集为x-1<x<13
,
专题1 集合与常用逻辑用语、不等式-数学

第1讲 集合与常用逻辑用语1.(2016·课标全国乙)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B 等于( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3答案 D解析 由A ={x |x 2-4x +3<0}={x |1<x <3},B ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x >32, 得A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪32<x <3=⎝⎛⎭⎫32,3,故选D. 2.(2016·北京)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 D解析 若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a |=|b |不一定成立,所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件. 3.(2016·浙江)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2 B .∀x ∈R ,∀n ∈N *,使得n <x 2 C .∃x ∈R ,∃n ∈N *,使得n <x 2 D .∃x ∈R ,∀n ∈N *,使得n <x 2 答案 D解析 原命题是全称命题,条件为∀x ∈R ,结论为∃n ∈N *,使得n ≥x 2,其否定形式为特称命题,条件中改量词,并否定结论,只有D 选项符合.1.集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年有时也会出现一些集合的新定义问题.2.高考中考查命题的真假判断或命题的否定,考查充要条件的判断.热点一 集合的关系及运算 1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解.例1 (1)已知集合A ={x |x -1x +2<0},B ={y |y =sin n π2,n ∈Z },则A ∩B 等于( )A .{x |-1<x <1}B .{-1,0,1}C .{-1,0}D .{0,1}(2)若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,空集∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合X ={a ,b ,c },对于下面给出的四个集合τ: ①τ={∅,{a },{c },{a ,b ,c }}; ②τ={∅,{b },{c },{b ,c },{a ,b ,c }}; ③τ={∅,{a },{a ,b },{a ,c }};④τ={∅,{a ,c },{b ,c },{c },{a ,b ,c }}.其中是集合X 上的一个拓扑的集合τ的所有序号是__________. 答案 (1)C (2)②④解析 (1)因为A ={x |x -1x +2<0}={x |-2<x <1},B ={y |y =sin n π2,n ∈Z }={0,-1,1},所以A ∩B={-1,0}.(2)①τ={∅,{a },{c },{a ,b ,c }},但是{a }∪{c }={a ,c }∉τ,所以①错;②④都满足集合X 上的一个拓扑的集合τ的三个条件.所以②④正确;③{a ,b }∪{a ,c }={a ,b ,c }∉τ,故③错.所以答案为②④.思维升华 (1)关于集合的关系及运算问题,要先对集合进行化简,然后再借助Venn 图或数轴求解.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.跟踪演练1 (1)已知集合A ={y |y =sin x ,x ∈R },集合B ={x |y =lg x },则(∁R A )∩B 为( ) A .(-∞,-1)∪(1,+∞) B .[-1,1] C .(1,+∞)D .[1,+∞)(2)设集合M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A.13 B.23 C.112D.512答案 (1)C (2)C解析 (1)因为A ={y |y =sin x ,x ∈R }=[-1,1], B ={x |y =lg x }=(0,+∞). 所以(∁R A )∩B =(1,+∞). 故答案为C.(2)由已知,可得⎩⎪⎨⎪⎧m ≥0,m +34≤1,即0≤m ≤14, ⎩⎪⎨⎪⎧n -13≥0,n ≤1,即13≤n ≤1,取m 的最小值0,n 的最大值1, 可得M =⎣⎡⎦⎤0,34,N =⎣⎡⎦⎤23,1. 所以M ∩N =⎣⎡⎦⎤0,34∩⎣⎡⎦⎤23,1=⎣⎡⎦⎤23,34. 此时集合M ∩N 的“长度”的最小值为34-23=112.故选C.热点二 四种命题与充要条件1.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假.2.若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p ,q 互为充要条件. 例2 (1)下列命题:①已知m ,n 表示两条不同的直线,α,β表示两个不同的平面,并且m ⊥α,n ⊂β,则“α⊥β”是“m ∥n ”的必要不充分条件;②不存在x ∈(0,1),使不等式log 2x <log 3x 成立;③“若am 2<bm 2,则a <b ”的逆命题为真命题. 其中正确的命题序号是________.(2)已知ξ服从正态分布N (1,σ2),a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式⎝⎛⎭⎫ax +1x 23的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件 D .充要条件 答案 (1)① (2)A解析 (1)①当α⊥β时,n ⊂β可以是平面内任意一直线,所以得不到m ∥n ,当m ∥n 时,m ⊥α,所以n ⊥α,从而α⊥β,故“α⊥β”是“m ∥n ”的必要不充分条件.所以①正确.②log 2x =lg xlg2,log 3x =lg x lg3,因为lg2<lg3,所以1lg2>1lg3,当x ∈(0,1)时,lg x lg2<lg xlg3,即log 2x <log 3x 恒成立,所以②错误.③中原命题的逆命题为:若a <b ,则am 2<bm 2,显然当m 2=0时不正确,所以③错误.所以答案应填①. (2)由P (ξ>a )=0.5,知a =1.∵二项式⎝⎛⎭⎫ax +1x 23展开式的通项公式为T k +1=C k 3(ax )3-k ⎝⎛⎭⎫1x 2k =a 3-k C k 3x 3-3k,令3-3k =0,得k =1,∴其常数项为a 2C 13=3a 2=3,解得a =±1,∴“P (ξ>a )=0.5”是“关于x 的二项式⎝⎛⎭⎫ax +1x 23的展开式的常数项为3”的充分不必要条件,故选A.思维升华 充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题. 跟踪演练2 (1)下列四个结论中正确的个数是( )①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”; ③“若x =π4,则tan x =1”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0. A .1B .2C .3D .4(2)已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( )A .[2,+∞)B .[1,+∞)C .(2,+∞)D .(-∞,-1]答案 (1)A (2)A解析 (1)对于①,x 2+x -2>0⇔x >1或x <-2,故“x 2+x -2>0”是“x >1”的必要不充分条件,所以①错误;对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,∵tan x=1推出的是x =π4+k π,k ∈Z .所以③错误.对于④,log 32≠-log 23,所以④错误.②正确.故选A. (2)由3x +1<1,可得3x +1-1=-x +2x +1<0, 所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.热点三 逻辑联结词、量词1.命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.2.命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ).3.“∀x ∈M ,p (x )”的否定为“∃x 0∈M ,綈p (x 0)”;“∃x 0∈M ,p (x 0)”的否定为“∀x ∈M ,綈p (x )”.例3 (1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列选项中正确的是( ) A .p 真q 假 B .p 假q 真 C .“p ∧q ”为假D .“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是( ) A .a ≤-2或a =1 B .a ≤-2或1≤a ≤2 C .a >1D .-2≤a ≤1答案 (1)C (2)C解析 (1)△ABC 中,C >B ⇔c >b ⇔2R sin C >2R sin B (R 为△ABC 外接圆半径),所以C >B ⇔sin C >sin B .故“C >B ”是“sin C >sin B ”的充要条件,命题p 是假命题.若c =0,当a >b 时,则ac 2=0=bc 2,故a >b ⇏ac 2>bc 2,若ac 2>bc 2,则必有c ≠0,则c 2>0,则有a >b ,所以ac 2>bc 2⇒a >b ,故“a >b ”是“ac 2>bc 2”的必要不充分条件,故命题q 也是假命题,故选C.(2)命题p 为真时a ≤1;“∃x 0∈R ,x 20+2ax 0+2-a =0”为真,即方程x 2+2ax +2-a =0有实根,故Δ=4a 2-4(2-a )≥0,解得a ≥1或a ≤-2.(綈p )∧q 为真命题,即(綈p )真且q 真,即a >1.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算. 跟踪演练3 (1)已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈⎝⎛⎭⎫0,π2,x >sin x ,则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为真D .p ∨q 为假(2)若“∀x ∈⎣⎡⎦⎤-π4,π4,m ≤tan x +1”为真命题,则实数m 的最大值为________. 答案 (1)B (2)0解析 (1)由于三角函数y =sin x 的有界性:-1≤sin x 0≤1,所以p 假;对于q ,构造函数y =x -sin x ,求导得y ′=1-cos x ,又x ∈⎝⎛⎭⎫0,π2,所以y ′>0,y 为单调递增函数,有y >0恒成立,即∀x ∈⎝⎛⎭⎫0,π2,x >sin x , 所以q 真.判断可知,B 正确.(2)令f (x )=tan x +1,则函数f (x )在⎣⎡⎦⎤-π4,π4上为增函数,故f (x )的最小值为f ⎝⎛⎭⎫-π4=0,∵∀x ∈⎣⎡⎦⎤-π4,π4,m ≤tan x +1,故m ≤(tan x +1)min ,∴m ≤0,故实数m 的最大值为0.1.已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∪(∁R N )等于( ) A .{x |-1≤x <1} B .{x |x >-1} C .{x |x <1}D .{x |x ≥1}押题依据 集合的运算在历年高考中的地位都很重要,已成为送分必考试题.集合的运算常与不等式(特别是一元一次不等式、一元二次不等式)的求解、函数的定义域、函数的值域等知识相交汇. 答案 C解析 M ={x |1-x 2>0}={x |-1<x <1},N ={x |1+x >0}={x |x >-1},∴∁R N ={x |x ≤-1}, ∴M ∪(∁R N )={x |-1<x <1}∪{x |x ≤-1}={x |x <1},故选C.2.已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“Ω集合”.给出下列4个集合: ①M ={(x ,y )|y =1x };②M ={(x ,y )|y =e x -2}; ③M ={(x ,y )|y =cos x }; ④M ={(x ,y )|y =ln x }.其中是“Ω集合”的所有序号为( ) A .②③ B .③④ C .①②④D .①③④押题依据 以新定义为背景,考查元素与集合的关系,是近几年高考的热点,解题时可从集合的性质(元素的性质、运算性质)作为突破口. 答案 A解析 对于①,若x 1x 2+y 1y 2=0,则x 1x 2+1x 1·1x 2=0,即(x 1x 2)2=-1,可知①错误;对于④,取(1,0)∈M ,且存在(x 2,y 2)∈M ,则x 1x 2+y 1y 2=1×x 2+0×y 2=x 2>0,可知④错误.同理,可证得②和③都是正确的.故选A.3.设υ∈R ,则“υ=0”是“f (x )=cos(x +υ)(x ∈R )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件押题依据 充分、必要条件的判定一直是高考考查的重点,该类问题必须以其他知识为载体,综合考查数学概念. 答案 A解析 当υ=0时,f (x )=cos(x +υ)=cos x 为偶函数成立;但当f (x )=cos(x +υ)为偶函数时,υ=k π,k ∈Z ,所以υ=0时,必要条件不成立.故选A. 4.给出下列四个命题,其中正确的命题有( )①函数y =sin2x +cos2x 在x ∈⎣⎡⎦⎤0,π2上的单调递增区间是⎣⎡⎦⎤0,π8; ②a 1,a 2,b 1,b 2均为非零实数,集合A ={x |a 1x +b 1>0},B ={x |a 2x +b 2>0},则“a 1a 2=b 1b 2”是“A =B ”的必要不充分条件;③若p ∨q 为真命题,则p ∧q 也为真命题;④命题∃x 0∈R ,x 20+x 0+1<0的否定为∀x ∈R ,x 2+x +1<0.A .0个B .1个C .2个D .3个押题依据 常用逻辑用语中命题真假的判断、充要条件、全称量词、存在量词及逻辑联结词是数学学习的重要工具,也是高考考查的热点问题. 答案 C解析 ①y =sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π4, 由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),得k π-3π8≤x ≤k π+π8(k ∈Z ),又x ∈⎣⎡⎦⎤0,π2,因此递增区间是⎣⎡⎦⎤0,π8; ②充分性不成立,如a 1=1,b 1=1,a 2=-1=b 2,满足a 1a 2=b 1b 2,但A ={x |x +1>0}=(-1,+∞),B ={x |-x -1>0}=(-∞,-1),A ≠B ; 必要性成立:A =B ⇒a 1a 2>0⇒-b 1a 1=-b 2a 2⇒a 1a 2=b 1b 2;③p ∨q 为真命题时,p ,q 不一定全真,因此p ∧q 不一定为真命题;④命题∃x 0∈R ,x 20+x 0+1<0的否定应为∀x ∈R ,x 2+x +1≥0.所以①②为真,选C.A 组 专题通关1.已知集合A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B 等于( ) A .{-2,-1} B .{-2} C .{-1,0,1} D .{0,1}答案 A解析 A ={x |x >-1},所以∁R A ={x |x ≤-1}, 所以有(∁R A )∩B ={-2,-1},故选A.2.已知集合M ={x |log 2x <3},N ={x |x =2n +1,n ∈N },则M ∩N 等于( ) A .(0,8) B .{3,5,7} C .{0,1,3,5,7} D .{1,3,5,7} 答案 D解析 由M 中不等式变形得:log 2x <3=log 28, 即0<x <8,∴M ={x |0<x <8}, ∵N ={x |x =2n +1,n ∈N }, ∴M ∩N ={1,3,5,7},故选D.3.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为( ) A .5 B .6 C .12 D .13 答案 D解析 若x =5∈A ,y =1∈A ,则x +y =5+1=6∈B ,即点(5,1)∈C ;同理,(5,2)∈C ,(4,1)∈C ,(4,2)∈C ,(4,3)∈C ,(3,2)∈C ,(3,3)∈C ,(3,4)∈C ,(2,3)∈C ,(2,4)∈C ,(2,5)∈C ,(1,4)∈C ,(1,5)∈C .所以C 中所含元素的个数为13,应选D. 4.已知集合M ={x |y =lg 1-xx},N ={y |y =x 2+2x +3},则(∁R M )∩N 等于( ) A .{x |0<x <1} B .{x |x >1} C .{x |x ≥2} D .{x |1<x <2} 答案 C解析 由1-x x >0得0<x <1,故M ={x |0<x <1},∁R M ={x |x ≤0或x ≥1},y =(x +1)2+2≥2, 故N ={y |y ≥2},则(∁R M )∩N ={x |x ≥2}.5.设命题甲:ax 2+2ax +1>0的解集是实数集R ;命题乙:0<a <1,则命题甲是命题乙成立的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既非充分又非必要条件答案 C解析 由命题甲ax 2+2ax +1>0的解集是实数集R ,可知a =0时,原式=1>0恒成立,当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a <0, 解得0<a <1,所以0≤a <1,所以由甲不能推出乙,而由乙可推出甲,因此命题甲是命题乙成立的必要不充分条件,故选C.6.设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为假 D .p ∨q 为真答案 C解析 p 是假命题,q 是假命题,因此只有C 正确.7.已知命题p :2xx -1<1,命题q :(x +a )(x -3)>0,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .(-3,-1] B .[-3,-1] C .(-∞,-1] D .(-∞,-3]答案 C解析 由p :2xx -1<1,得x +1x -1<0,-1<x <1,而p 是q 的充分不必要条件,即p ⇒q ,q ⇏p ,所以-a ≥1,a ≤-1.故选C.8.①命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”; ②“x =1”是“x 2-4x +3=0”的充要条件; ③若p ∧q 为假命题,则p 、q 均为假命题;④对于命题p :∃x 0∈R ,x 20+2x 0+2≤0,则綈p :∀x ∈R ,x 2+2x +2>0.上面四个命题中正确的是( ) A .①② B .②③ C .①④ D .③④答案 C解析 对于命题:若p ,则q ,其逆否命题是若綈q ,则綈p ,故①对;答案从A ,C 中选;②x =1时x 2-4x +3=0成立,所以“x =1”是“x 2-4x +3=0”的充分条件,当x 2-4x +3=0时x =1或x =3,所以“x =1”不是“x 2-4x +3=0”的必要条件;所以“x =1”是“x 2-4x +3=0”的充分不必要条件.故②错,故选C.9.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =________.答案 (-1,2)解析 由不等式的解法,可得M ={x |x 2<4}={x |-2<x <2},N ={x |x 2-2x -3<0}={x |-1<x <3},由交集的计算方法可得,M ∩N ={x |-1<x <2}.10.已知集合A ={x |-1<x ≤5},B ={x |m -5<x ≤2m +3},且A ⊆B ,则实数m 的取值范围是________.答案 [1,4]解析 ⎩⎪⎨⎪⎧m -5≤-1,2m +3≥5,解得1≤m ≤4.故应填[1,4]. 11.“a >1”是“函数f (x )=a ·x +cos x 在R 上单调递增”的______________.(空格处请填写“充分不必要条件”、“必要不充分条件”、“充要条件”或“既不充分也不必要条件”) 答案 充分不必要条件解析 f (x )=a ·x +cos x 在R 上单调递增⇒f ′(x )=a -sin x ≥0在R 上恒成立⇒a ≥(sin x )max =1,所以“a >1”是“函数f (x )=a ·x +cos x 在R 上单调递增”的充分不必要条件.12.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因为由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.B 组 能力提高13.下列说法中,不正确的是( )A .已知a ,b ,m ∈R ,命题“若am 2<bm 2,则a <b ”为真命题B .命题“∃x 0∈R ,x 20+x 0-2>0”的否定是:“∀x ∈R ,x 2+x -2≤0”C .命题“p 或q ”为真命题,则命题p 和命题q 均为真命题D .“x >3”是“x >2”的充分不必要条件答案 C解析 A 正确,因为此时m 2>0;B 正确,特称命题的否定就是全称命题;C 不正确,因为命题“p 或q ”为真命题,那么p ,q 有一个真,p 或q 就是真命题;D 项,小集合是大集合的充分不必要条件.故选C.14.已知p :∃x 0∈R ,mx 20+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[1,+∞)B .(-∞,-1]C .(-∞,-2]D .[-1,1]答案 A解析 ∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假命题, 得綈p :∀x ∈R ,mx 2+2>0为真命题,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题,得綈q :∃x 0∈R ,x 20-2mx 0+1≤0为真命题,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②得m ≥1.故选A.15.下列选项错误的是( )A .命题“若x ≠1,则x 2-3x +2≠0”的逆否命题是“若x 2-3x +2=0,则x =1”B .“x >2”是“x 2-3x +2>0”的充分不必要条件C .若“命题p :∀x ∈R ,x 2+x +1≠0”,则“綈p :∃x 0∈R ,x 20+x 0+1=0”D .若“p ∨q ”为真命题,则p ,q 均为真命题答案 D解析 对于若“p ∨q ”为真命题,则p 、q 中至少有一个为真命题,∴D 选项错误.故选D.16.已知集合M =⎩⎨⎧⎭⎬⎫x |ax -5x 2-a <0,若3∈M,5∉M ,则实数a 的取值范围是____________. 答案 ⎣⎡⎭⎫1,53∪(9,25]解析 ∵集合M =⎩⎨⎧⎭⎬⎫x |ax -5x 2-a <0, 得(ax -5)(x 2-a )<0,当a =0时,显然不成立,当a >0时,原不等式可化为⎝⎛⎭⎫x -5a ()x -a (x +a )<0, 若a <5a ,只需满足⎩⎪⎨⎪⎧ a <3<5a ,a ≥1,解得1≤a <53; 若a >5a ,只需满足⎩⎪⎨⎪⎧ 5a <3<a ,a ≤5,解得9<a ≤25,当a <0时,不符合条件,综上,答案为⎣⎡⎭⎫1,53∪(9,25]. 17.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.答案 ②④解析 对于①:取k =12,点(1,1)∈{(x ,y )|x 2≥y },但(12,12)∉{(x ,y )|x 2≥y },故①是不具有性质P 的点集.对于②:∀(x ,y )∈{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(kx ,ky )也在椭圆2x 2+y 2=1的内部,即(kx ,ky )∈{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:(x +12)2+(y +1)2=54,点(12,-12)在此圆上,但点(14,-14)不在此圆上,故③是不具有性质P 的点集.对于④:∀(x ,y )∈{(x ,y )|x 3+y 3-x 2y =0},对于k ∈(0,1),因为(kx )3+(ky )3-(kx )2·(ky )=0⇒x 3+y 3-x 2y =0,所以(kx ,ky )∈{(x ,y )|x 3+y 3-x 2y =0},故④是具有性质P 的点集.综上,具有性质P 的点集是②④.。
完整版)集合与常用逻辑用语测试题及详解

完整版)集合与常用逻辑用语测试题及详解本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.(文)(2011·巢湖市质检)设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()。
A。
A⊆BB。
A∩B={2}C。
A∪B={1,2,3,4,5}D。
A∩(∁U B)={1}答案:C解析:由集合的定义可知,XXX表示A是B的子集,即A中的每个元素都在B中出现。
显然,A不是B的子集,排除A选项。
XXX表示A和B的交集,即A和B中都出现的元素构成的集合。
根据A和B的定义可知,它们的交集为{2,3},因此排除B选项。
A∪B表示A和B的并集,即A和B中所有元素构成的集合。
根据A和B的定义可知,它们的并集为{1,2,3,4,5},因此选C。
A∩(∁U B)表示A和B的补集的交集,即除去B中所有元素后,A中剩余的元素构成的集合。
根据A和B的定义可知,它们的补集分别为{4,5}和{1},因此A∩(∁U B)={1},排除D选项。
2.(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()。
A。
M=NB。
MNC。
NMD。
M∩N=∅答案:C解析:根据集合N的定义可知,N中的元素是由M中的元素相乘得到的,其中a≠b。
因此,当a=-1时,b为0或1,x 为-1或0;当a=0时,x为0;当a=1时,b为-1或0,x为-1或0.综上所述,N={-1,0},因此M和N的关系是NM。
3.(2011·福州期末)已知p:|x|<2;q:x^2-x-2<0,则綈p是綈q的()。
A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习(附答案)

[答案解析]因为
1 ,所以
|
2
C. |3
16
|0
16 ;因为
4 ,所以
}.所以 ∩
|
A.
1 ,2
|0
B. 1 ,2
1|
1 ,得 1
2 ,所以 ∩
9. [2022 北京,4 分]已知全集
1 ,则∁
A.
2,1
16
|3
| |
1|
(B)
[答案解析]由|
历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习
考点: 集合
一、选择题
2 , 1 ,0,1,2 ,
1. [2023 新高考卷Ⅰ,5 分]已知集合
6
A.
0 ,则 ∩
(C)
2 , 1 ,0,1
B. 0 ,1,2
2
C.
|
[答案解析]解法一因为
∩
|
6
0
1 ,3 ,
1 ,2,4 ,则
C. 1 ,2,4
D. 1 ,2,4,5
1 ,2,4 ,所以∁
3 ,5 ,又
1 ,3 ,
1 ,3,5 .故选A .
4. [2023 全国卷甲,5 分]设全集
∪
0 .当
(A)
A. 1 ,3,5
|
2
1 ,0,1 ,满足 ⊆ .所以
3. [2023 天津,5 分]已知集合
2 ,故选A .
2 ,4,6 ,则 ∪
B. 1 ,2
C. 2 ,4,6
[答案解析]由集合并集的定义,得 ∪
7. [2022 新高考卷Ⅰ,5 分]若集合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合与常用逻辑用语、不等式试题一、选择1.设集合{}{}2|lg(3),|540A x y x B x x x ==-=-+<,则A B =( B )A .∅B .()3,4C .()2,1-D .()4.+∞2.集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B =,则a 的值为( D ) A.0 B.1 C.2 D.43.已知集合{}6,5,4=P ,{}3,2,1=Q ,定义{}Q q P p q p x x Q P ∈∈-==⊕,,|,则集合Q P ⊕的所有真子集的个数为( B )A .32B .31C .30D .以上都不对4.已知)(,13)(R x x x f ∈+=,若a x f <-|4)(|的充分条件是b x <-|1|,)0,(>b a ,则b a ,之间的关系是 ( B ) A .3ba ≤B . 3a b ≤C .3a b >D .3b a >5.下列说法错误的是 ( C ) A .命题“若x 2 — 3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2—3x +2≠0” B .“x >1”,是“|x |>1”的充分不必要条件 C .若p ∧q 为假命题,则p 、q 均为假命题 D .若命题p :“∃x ∈R ,使得x 2+x +1<0”,则⌝p :“∀x ∈R ,均有x 2+x +1≥0” 6.集合{1,0,1}A =-,A 的子集中,含有元素0的子集共有 ( B ) A.2个 B.4个 C.6个 D.8个7.设集合A={x|1≤x ≤2},B={x|x ≥a }.若A ⊆B 则a 的范围是( B )A. a <1B. a ≤1C. a <2D. a ≤2 8.已知集合{}{}4),(,2),(=-==+=y x y x B y x y x A ,那么集合A B 为(D)A .1,3-==y xB .)1,3(-C .{}1,3-D .{})1,3(-9.命题“所有能被2整除的数都是偶数”的否定..是( D ) A.所有不能被2整除的数都是偶数 B.所有能被2整除的数都不是偶数 C.存在一个不能被2整除的数是偶数 D.存在一个能被2整除的数不是偶数 10.设,x y ∈R ,那么“0x y <<”是“1xy>”的( B ) A .必要不充分条件 B .充分不必要条件C .充要条件D .既不充分又不必要条件11.已知直线22x y +=与x 轴,y 轴分别交于,A B 两点,若动点(,)P a b 在线段AB 上,则ab 的最大值为( A )A .12B .2C .3D .31 12.已知f (x )为R 上的减函数,则满足f )1(x>f (1)的实数x 的取值范围是 ( D )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+ ∞) 13.下列结论正确的是( B ) A .当101,lg 2lg x x x x >≠+≥且时B .10,2x x x >+≥当时C .x x x 1,2+≥时当的最小值为2 D .当102,x x x<≤-时无最大值 14.已知正数x 、y 满足⎩⎨⎧≥+-≤-05302y x y x ,则yx z +=22的最大值为( B )A .8B .16C .32D .64 15. 下列三个不等式中,恒成立的个数有( B ) ①12(0)x x x+≥≠; ②(0)c c a b c a b <>>>;③(,,0,)a m a a b m a b b m b+>><+。
A .3B.2C.1D.016.在平面直角坐标系中,若不等式组20,20,x y x y x t +-⎧⎪-+⎨⎪⎩≥≥≤表示的平面区域的面积为4,则实数t 的值为 (B )A .1B .2C .3D .417.不等式20ax x c -+>的解集为{|21}x x -<<,则函数2y ax x c =++的图象大致为( C )18.若不等式x a -<1成立的充分条件为04<<x ,则实数a 的取值范围为( )(A ))3[∞+,(B ) [)1,+∞ (C )(]-∞,3 (D )]1(,-∞ 【答案】A19.已知点(,)P x y 的坐标满足条件1,2,220,x y x y ≤⎧⎪≤⎨⎪+-≥⎩那么22x y +的取值范围是( D )(A )[1,4](B )[1,5](C )4[,4]5(D )4[,5]5二、填空1.若全集U =R,集合A ={2|430x x x ++>},B ={3|log (2)1x x -≤},则()UC AB14. 答案:{x |1-≤x 或2≥x }2.命题“,cos 1x x ∀∈≤R ”的否定是 . 【答案】,cos 1x R x ∃∈>3.已知集合{}13A x x =≤≤,{}3B x a x a =+≤≤,若A B ⊆,则实数a 的取值范围为 . 【答案】[]0,14.当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 。
【答案】(]5,--∞5.若变量x y ,满足23,23,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则z x y =+的最大值是【答案】26.设D 是不等式组21023041x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤,≥,≤≤,≥表示的平面区域,则D 中的点()P x y ,到直线10x y +=距离的最大值是 .【答案】7.已知关于x 的不等式()()11ax x -+<0的解集是1(,1)(,)2-∞--+∞.则a = . 【答案】—28.若实数x,y 满足不等式组⎪⎩⎪⎨⎧≥-≤-≥+0422y x y x y x ,则y x 32+的最小值是_______【答案】4;9.已知函数3()1+2+(0)f x x x x=>在x =a 时取到最小值,则a =________. 答案:6210. 若{}n a 是等差数列,,,m n p 是互不相等的正整数,则有:()()()0p m n m n a n p a p m a -+-+-=,类比上述性质,相应地,对等比数列{}n b ,有 . 【答案】11.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .【答案】35,10 三、解答 1.(本小题满分12分)已知函数23()log (2)f x x x =-++的定义域为集合A ,2()22,g x x x x R =-+∈的值域为集合B ,U [6,)=-+∞. (1)求A 和B ; (2)求A B ⋂、()U C A B ⋃.【答案】解:(1) 解220x x -++>得,12x -<<{|12}A x x ∴=-<< ……………………………………3分2222(1)11y x x x =-+=-+≥2{|22,}{|1}B y y x x x R y y ∴==-+∈=≥ ……………………………6分(2) 由(1)得,-1,2[1,[1,2)A B ⋂=⋂+∞())=……………………………8分 -1,2[1,(1,)A B ⋃=⋃+∞=-+∞())……………………………10分 所以,()[6,1]U C A B ⋃=--……………………………12分2.设A={x|x 2+ax+b=0},B={x|x 2+cx+15=0},又A B={3,5},A∩B={3},求实数a,b,c 的值. 解:∵A∩B={3},∴3∈B ,∴32+3c+15=0,∴c= -8.由方程x 2-8x+15=0解得x=3或x=5,∴B={3,5}.由A ⊆(A B )={3,5}知, 3∈A ,5∉A (否则5∈A∩B ,与A∩B={3}矛盾) 故必有A={3},∴方程x 2+ax+b=0有两相同的根3, 由韦达定理得3+3= -a ,3×3=b ,即a= -6,b=9,c= -8. 3.已知命题p :113x --≤2,命题q :x 2-2x+1-m 2≤0(m >0), 若¬p 是¬q 的充分不必要条件,试求实数m 的取值范围.答案:{m|0<m≤3} 解析:由113x --≤2,得-2≤x≤10.∴ ¬p:A={x|x <-2或10<x},由 x 2-2x+1-m 2≤0(m >0)得1-m≤x≤1+m .¬q:B={x|x <1-m 或1+m <x,m >0}.∵¬p 是¬q 的充分非必要条件,且m >0,从而有集合A 是B 的真子集,必有m >0且1+m≤10且-2≤1-m ,解得0<m≤3.故实数m 的取值范围是{m|0<m≤3}4.设命题p :{x|x 2-4ax+3a 2<0}(a >0),命题q :{x|x 2-x-6≤0,且x 2+2x-8>0}(1)如果a=1,且p ∧q 为真时,求实数x 的取值范围; (2)若¬p 是¬q 的充分不必要条件时,求实数a 的取值范围. ¬解析:(1) 当a >0时, {x|x 2-4ax+3a 2<0}={x|(x-3a)(x-a)<0}={x|a <x <3a},如果a=1时,则x 的取值范围是{x|1<x <3},而{x|x 2-x-6≤0,且x 2+2x-8>0}={x|2<x≤3},因为p ∧q 为真,所以有{x|1<x <3}∩{x|2<x≤3}={x|2<x <3}.故实数x 的取值范围是{x|2<x≤3}. (2) 若¬p 是¬q 的充分不必要条件,表明q 是p 的充分不必要条件.由(1)知,{x|2<x≤3}是{x|a <x <3a}(a >0)的真子集,易知a≤2且3<3a,解得{a|1<a≤2}.故实数a 的取值范围是{a|1<a≤2}.5.(本小题满分12分)某化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨。