计算机视觉第八次作业

合集下载

人工智能 八数码实验

人工智能 八数码实验

人工智能作业八数码问题一、题目八数码问题:初始状态图:目标状态图:二、算符与状态空间算符:左、上、右、下状态空间:状态:A=(X0,X1,X2,X3,X4,X5,X6,X7,X8) 初始状态:S0=(0,4,1,5,2,8,3,6,7);目标状态:Sg=(0,1,7,5,2,8,3,6,4)。

三、搜索树22求解:四、Open 表,Closed 表Open 表: Closed 表:五、程序代码/* 3_13.pro eight puzzle */traceDOMAINSstate=st(in,in,in,in,in,in,in,in,in)in=integerDATABASE-mydatabaseopen(state,integer)closed(integer,state,integer)res(state)mark(state)fail_PREDICATESsolvesearch(state,state)resultsearchingstep4(integer,state)step56(integer,state)equal(state,state)repeatresulting(integer)rule(state,state)GOALsolve.CLAUSESsolve:-search(st(0,4,1,5,2,8,3,6,7),st(0,1,7,5,2,8,3,6,4)),result. search(Begin,End):-retractall(_,mydatabase),assert(closed(0,Begin,0)),assert(open(Begin,0)),assert(mark(End)),repeat,searching,!.result:-not(fail_),retract(closed(0,_,0)),closed(M,_,_),resulting(M), !.result:-beep,write("sorry don't find a road!").searching:-open(State,Pointer),retract(open(State,Pointer)),closed(No,_,_),No2=No+1,asserta(closed(No2,State,Pointer)),!,step4(No2,State).searching:-assert(fail_).step4(_,State):-mark(End),equal(State,End).step4(No,State):-step56(No,State),!,fail.step56(No,StateX):-rule(StateX,StateY),not(open(StateY,_)),not(closed(_,StateY,_)),assertz(open(StateY,No)),fail.step56(_,_):-!.equal(X,X).repeat.repeat:-repeat.resulting(N):-closed(N,X,M),asserta(res(X)),resulting(M).resulting(_):-res(X),write(X),nl,fail.resulting(_):-!.rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),st(X8,X1,X2,X3,X4,X5,X6,X7,X0)):-X0=0.rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),st(X2,X1,X0,X3,X4,X5,X6,X7,X8)):-X0=0.rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),st(X4,X1,X2,X3,X0,X5,X6,X7,X8)):-X0=0.rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),st(X6,X1,X2,X3,X4,X5,X0,X7,X8)):-X0=0.rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),st(X0,X2,X1,X3,X4,X5,X6,X7,X8)):-X1=0.st(X0,X2,X8,X3,X4,X5,X6,X7,X1)):-X1=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X2,X1,X3,X4,X5,X6,X7,X8)):-X2=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X3,X2,X4,X5,X6,X7,X8)):-X2=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X2,X1,X0,X3,X4,X5,X6,X7,X8)):-X2=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X3,X2,X4,X5,X6,X7,X8)):-X3=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X4,X3,X5,X6,X7,X8)):-X3=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X4,X1,X2,X3,X0,X5,X6,X7,X8)):-X4=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X4,X3,X5,X6,X7,X8)):-X4=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X5,X4,X6,X7,X8)):-X4=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X4,X6,X5,X7,X8)):-X5=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X5,X4,X6,X7,X8)):-X5=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X4,X5,X7,X6,X8)):-X6=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X6,X1,X2,X3,X4,X5,X0,X7,X8)):-X6=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X4,X6,X5,X7,X8)):-X6=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X4,X5,X7,X6,X8)):-X7=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X8,X2,X3,X4,X5,X6,X7,X1)):-X8=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X8,X1,X2,X3,X4,X5,X6,X7,X0)):-X8=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X4,X5,X6,X8,X7)):-X8=0.六、运行结果截图编译后:运行后:。

计算机视觉技术练习(习题卷1)

计算机视觉技术练习(习题卷1)

计算机视觉技术练习(习题卷1)说明:答案和解析在试卷最后第1部分:单项选择题,共67题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]逆光拍照时,人脸比较暗,使用伽马矫正对图像进行增强达到逆光也清晰的效果,γ的取值可以选择?()A)0B)0.5C)1D)22.[单选题]阅读以下文字:假设我们拥有一个已完成训练的、用来解决车辆检测问题的深度神经网络模型,训练所用的数据集由汽车和卡车的照片构成,而训练目标是检测出每种车辆的名称(车辆共有10种类型)。

现在想要使用这个模型来解决另外一个问题,问题数据集中仅包含一种车(福特野马)而目标变为定位车辆在照片中的位置。

A)除去神经网络中的最后一层,冻结所有层然后重新训练B)对神经网络中的最后几层进行微调,同时将最后一层(分类层)更改为回归层C)使用新的数据集重新训练模型D)所有答案均不对3.[单选题]在无人机输电线路巡检中以及变电站机器人巡检工作中,基于相关()服务能力,实现设备缺陷、隐患智能辨识。

A)声纹识别B)自然语言处理C)语音识别D)图像识别4.[单选题]坐标为(21,13)和坐标为(22,12)的两个像素在空间上存在什么邻接关系?A)不存在邻接关系B)对角邻接C)8-邻接D)4-邻接5.[单选题]图像识别是以图像的主要( )为基础的A)元素B)像素C)特征D)部件6.[单选题]常用的的灰度内插法不包括()。

A)双线性内插法B)三次多项式C)最近邻元法7.[单选题]经自动标注工具处理后的图像样本状态包括已标注和()?A)未标注B)未审核C)已标注D)无缺陷8.[单选题]在形状检测算法在检测圆柱面时,需要点云提供较为准确的()。

A)点云法向B)点云切向C)点云中心D)点云边缘9.[单选题]一副8位RGB的彩色图像中,(255,255,255)代表什么着色?A)红色B)白色C)黑色D)蓝色10.[单选题]一副照片在存放过程中出现了很多小的噪点,对其扫描件进行()操作去噪效果最好。

《计算机视觉》课程教学大纲.

《计算机视觉》课程教学大纲.

《计算机视觉》课程教学大纲课程编号:50420031课程名称:计算机视觉英文名称:Computer Vision课程类别:专业限选课学分:2学时:40开课学期:二开课周次:11-20开课教研室:自动化系计算机控制教研室任课教师及职称:刘禾教授先修课程:图像处理与分析适用专业:模式识别与智能系统、控制理论与控制工程课程目的和基本要求:课程设置的目的使硕士研究生掌握介绍计算机视觉的基本理论和基本方法。

通过课程学习要求学生觉掌握的计算机视觉基本理论与方法以及计算机视觉的一些典型应用,了解国内外最新研究成果。

通过本课程学习使学生掌握计算机视觉的基本概念、基本理论和方法,初步具有运用相应理论解决实际问题的能力。

课程主要内容:全部课程内容分九章,各章具体内容、学时分配如下:第一章概述(2 学时)内容:计算机视觉的基本概念,Marr视觉计算理论,成像几何基础,计算机视觉的应用。

第二章人类视觉(2 学时)内容:人类视觉简介,视觉信息的多层处理。

第三章边缘检测(4 学时)内容:经典微分算子的边缘检测、LOG滤波器与马尔-希尔德累思边缘检测算子、多灰度图像的边缘聚焦法、坎尼边缘检测算子和基于梯度信息的自适应平滑滤波。

第四章明暗分析(2 学时)内容:图像辐射图,表面方向,反射图,由图像明暗恢复形状。

第五章深度分析(4 学时)内容:三维感知基本理论和方法,立体成像原理,被动立体测定技术和主动立体测定技术。

第六章标定问题(6 学时)内容:图像表征与摄像机标定,其中包括透视投影变换、摄像机的标定、摄像机的运动控制模型,双目立体标定。

第七章三维场景表示(4 学时)内容:三维空间曲面的表示,曲面分割等。

第八章二维运动图像分析(4 学时)内容:图像运动特征提取的基本方法,由局部光流恢复结构与运动参数估计,基于块的运动分析。

第九章三维运动估计(4 学时)内容:三维运动与结构估计、由运动与立体观测恢复3—D结构和基于生物视觉运动感知原理的多速度运动检测;基于CAD模型的三维机器视觉。

计算机视觉与模式识别考试试题

计算机视觉与模式识别考试试题

计算机视觉与模式识别考试试题一、选择题1.下列哪个是计算机视觉的核心任务?A. 图像去噪B. 物体分类C. 文字识别D. 光流估计2.在计算机视觉中,以下哪种方法可以用于目标检测?A. 模板匹配B. 直方图均衡化C. 边缘检测D. 彩色空间转换3.图像分割是指将图像分割成哪些部分?A. 目标和背景B. 目标和噪声C. 前景和背景D. 前景和噪声4.在模式识别中,以下哪个是特征提取的常用方法?A. 主成分分析B. 图像增强C. 图像去噪D. 图像重建5.以下哪种方法常用于人脸识别?A. 支持向量机B. 卡方检验C. 高斯模型D. 卷积神经网络二、简答题1.请解释图像对比度是什么,并简要说明如何增加图像对比度。

图像对比度指的是图像中灰度级之间的差异程度,即图像中亮度的变化程度。

增加图像对比度可以通过以下方法实现:- 直方图均衡化:通过将图像的灰度级重新分布,使得灰度级更均匀地覆盖整个灰度范围,从而增加图像的对比度。

- 对比度拉伸:通过线性或非线性变换,将图像的灰度级重新映射到一个更大的范围,从而增强图像的对比度。

- 局部对比度增强:根据图像的局部特性,使用不同的增强方法对不同的区域进行处理,以增加图像的局部对比度。

2.请解释模板匹配算法的原理,并简要说明其在计算机视觉中的应用。

模板匹配算法是一种基于相似度的图像匹配方法,其原理是通过计算图像中不同位置与给定模板之间的相似度,找到与模板最相似的位置。

模板匹配算法的步骤如下:- 定义相似度度量标准:通常使用均方差、相关性等指标来度量图像之间的相似度。

- 将模板与图像进行滑动窗口匹配:在图像中使用一个固定大小的窗口滑动,并计算窗口内的图像与模板之间的相似度。

- 找到最相似的位置:记录每个窗口位置的相似度值,找到相似度最高的位置,即为与模板最匹配的位置。

模板匹配算法在计算机视觉中的应用广泛,例如目标检测、人脸识别、手势识别等领域。

通过与已知模板进行匹配,可以实现对图像中目标物体的识别和定位。

计算机视觉技术智慧树知到答案章节测试2023年

计算机视觉技术智慧树知到答案章节测试2023年

第一章测试1.人类视觉对()更敏感? A:蓝光 B:红光 C:黄光 D:绿光答案:D2.人类的眼睛更容易关注到图像的边缘区域是人类视觉系统的()特性在起作用。

A:视觉关注 B:视觉掩盖 C:内在推导 D:亮度对比度敏感答案:D3.识别图像中目标与目标之间的关系属于计算机视觉任务层级()。

A:图像跟踪 B:图像识别 C:图像理解 D:图像定位答案:C4.在分析图像前进行去噪、转换、增强等处理,属于()。

A:图像分析 B:图像获取 C:图像预处理 D:特征提取答案:C5.人类视觉系统有哪些视觉特性?() A:视觉掩盖 B:色彩敏感度 C:内在推导D:视觉关注答案:ABCD6.下列选项中属于计算机图像表示形式的有()。

A:二值图 B:灰度图 C:风景图 D:彩色图答案:ABD7.下列选项中,与图像处理相关的库有()。

A:NumPy B:OpenCV C:PillowD:Matplotlib 答案:ABCD第二章测试1.OpenCV的深度学习模块是()。

A:contrib B:photo C:dnn D:core 答案:C2.以下为OpenCV读取图像、显示图像和保存图像函数的选项是()。

A:imread()、imwrite()、imshow() B:iread()、imwrite()、imshow()C:imread()、imshow()、imwrite() D:imread()、imshow()、iwrite() 答案:C 3.下列选项中表示以灰度图模式读取图像的关键字是()。

A:cv2.IMREAD_ANYCOLOR B:cv2.IMREAD_ GRAYSCALE C:cv2.IMREAD_ COLORD:cv2.IMREAD_ ANYDEPTH 答案:B4.将图像由RGB转为灰度图的语句是()。

A:cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) B:cv2.cvtColor(im,cv2.COLOR_RGB2GRAY) C:cv2.cvtColor(im,cv2.COLOR_ GRAY2RGB)D:cv2.cvtColor(im,cv2.COLOR_BGR2RGB) 答案:B5.OpenCV读取图像的默认通道排序顺序是“蓝色-绿色-红色”。

机器视觉作业指导书

机器视觉作业指导书

机器视觉作业指导书一、引言机器视觉作业指导书旨在为学生提供关于机器视觉的基本概念、原理、方法以及实践技巧的指导。

通过本指导书的学习,学生将能够全面了解机器视觉的相关知识,并能够应用所学知识解决实际问题。

二、背景知识1. 机器视觉定义与应用领域机器视觉是指利用摄像机和计算机技术来模拟人类视觉的能力,并对图像或视频进行智能处理和分析的技术领域。

它在工业自动化、医疗诊断、交通管理、安防监控等领域有广泛的应用。

2. 机器视觉基本原理机器视觉基于数字图像处理和模式识别的基本原理,主要包括图像获取、预处理、特征提取、目标检测与跟踪等几个关键步骤。

学生需要掌握图像处理的基本概念和算法,以及常用的模式识别方法。

三、实验指导1. 实验一:图像获取与预处理1. 学生需要准备相机设备,并学会使用相机进行图像的拍摄。

2. 学生需要学习如何进行图像的预处理,包括去噪、增强、平滑等操作。

2. 实验二:特征提取与描述1. 学生需要学习如何从图像中提取出有效的特征,例如边缘、角点、纹理等。

2. 学生需要学习如何用数学描述特征,例如使用特征向量或者特征描述子等。

3. 实验三:目标检测与跟踪1. 学生需要学习目标检测与跟踪的基本概念和方法,例如使用模板匹配、机器学习等技术。

2. 学生需要通过实践掌握如何在图像或视频中检测和跟踪目标。

四、实验报告要求1. 实验目的与背景介绍学生需要在实验报告中清楚地陈述实验目的和所涉及的背景知识,并说明实验的重要性和应用前景。

2. 实验过程与结果分析学生需要详细叙述实验过程,并展示实验结果。

结果分析要求准确、有逻辑性,并结合实验目的进行解释和讨论。

3. 实验总结与心得体会学生需要总结实验的结果和经验,并在心得体会中反思和展望进一步的改进和研究方向。

五、参考资料在完成作业和实验报告的过程中,学生可以参考以下资料:1. 《机器视觉导论》李飞飞等著2. 《计算机视觉:模型、学习和推理》 Simon J. D,等著六、结语机器视觉作业指导书为学生提供了学习机器视觉的基本方法和实践技巧,希望学生通过实验实践和报告撰写的过程,能够深入理解机器视觉的原理和应用,并能够将所学知识应用于实际问题的解决中。

ch8参考答案

ch8参考答案
千里之行,始于足下。
算法作业第八章参考答案
8:23
KRUSKAL 算法找最小生成树
解:首先将图的边按照权值排好序。
每次贪婪选择最小边,检测是否产生回路,并将不形成
回路的边加入生成树的局部解。过程演示如下
1
6
3
4
5
27
37
1
9
3
2
2
4
6
6
1
6
3
4
5
27
37
1
9
3
2
2
4
6
6
第 1 页/共 5 页
千里之行,始于足下。
第 3 页/共 5 页
千里之行,始于足下。
算法作业第八章参考答案
8.31 用 Huffuman 算法构造编码树。 abcdef 7 5 3 2 12 9
构造过程(红色为叶节点,绿色由红色扩展而来):
5
2
3
5
7
d
c
b
a
10
5
5
9 12
f
e
2
3
7
9 12
第 4 页/共 5 页
千里之行,始于足下。
算法作业第八章参考答案
10
5
5
16
2
3
7
9 12
22
10
12
5
5
1
2
3
7
9
参考编码:a : 10
b : 001 c : 0001
e : 01
f : 11
d : 0000
第 5 页/共 5 页
算法作业第八章参考答案
1
6
3

电子科技大学计算机视觉作业答案

电子科技大学计算机视觉作业答案

⎛ 0.0028 − 0.0003 0.2182⎞


H = ⎜ 0.0009 − 0.0048 0.0759⎟
⎜⎝ 0.0000 − 0.0000 0.0011⎟⎠
对输入的图像采用矩阵的逆矩阵,可以得到以下的结果,从这个结果可以看到,图像的失真
表现为尺寸的拉伸。
使用同样的方法和以下数据点处理 edwardVI.pgm:
r=4; z0=40; x0=40; f=24; x=f*((r*sin(phi).*cos(theta)+x0).)/(r*cos(phi)+z0); y=f*((r*sin(phi).*sin(theta)).)/(r*cos(phi)+z0);
plot(x,y,'b') 所以在透视映射下球的投影不是圆。
u = [0,607,0,170]; v = [0,0,170,170]; x = [200,0,200,0]; y = [200,200,0,0];
可以得到以下图像,从这副图可以看到,失真表现为图像朝向观察者方向的拉伸。
类似的,使用这个方法和以下数据处理 Checkerboard.pgm:
u = [113,114,504,471]; v = [305,183,295,174]; x = [0,0,200,200]; y = [0,100,0,100];
u = [183,361,205,358];
v = [109,155,917,805];
x = [0,91,0,91];
y = [182,182,0,0];
这些点在本文中定义为一个 8*9 的矩阵,矩阵的特征向量对应的最小特征值定义为所要求的 H 矩阵。把 H 矩阵重构为一个 3*3 的矩阵可以得到:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档