海南省2020年九年级中考模拟题(二)数学科
海南省2020年中考数学模拟试题及答案

海南省2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。
①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。
备战2020中考海口市中考模拟考试数学试题【含多套模拟】

中学数学二模模拟试卷一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.02.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣14.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣210.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.512.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.参考答案与试题解析一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是整数,是有理数,故选项不符合题意;B、是分数,是有理数,故选项不符合题意;C、是无理数,故选项符合题意;D、0是整数,是有理数,故选项不符合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:356万=3.56×106.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式不能合并,不符合题意;C、原式=a3,不符合题意;D、原式=x2﹣1,符合题意,故选:D.【点评】此题考查了平方差公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.4.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形【分析】根据既是矩形又是菱形的四边形是正方形进行判断.【解答】解:A、两条对角线互相垂直的矩形是正方形,故选项不符合题意;B、两条对角线相等的菱形是正方形,故选项不符合题意;C、两条对角线垂直且相等的平行四边形是正方形,故选项不符合题意;D、应是两条对角线垂直且相等的平行四边形是正方形,故选项符合题意.故选:D.【点评】本题考查了正方形的判定,通过这道题可以掌握正方形和矩形,菱形的关系.6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是3个小正方形,第二层右边2个小正方形,第三层右边2个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:不等式组整理得:,∴不等式组的解集为x<1,故选:A.【点评】此题考查了解一元一次方程组,熟练掌握运算法则是解本题的关键.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.【分析】先根据一次函数的性质得出关于a的不等式,再解不等式即可求出a的取值范围.【解答】解:∵一次函数y=(3﹣a)x+3,函数值y随自变量x的增大而增大,∴3﹣a>0,解得a<3.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣2【分析】根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵y=5x2先向右平移3个单位,再向上平移2个单位后的顶点坐标为(3,2),∴所得的抛物线的解析式为y=5(x﹣3)2+2.故选:C.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式求解更简便.10.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°【分析】连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.【解答】解:连接OA,OB,∵CA、CB切⊙O于点A、B,∴∠CAO=∠CBO=90°,∵∠C=56°,∴∠AOB=360°﹣∠CAO﹣∠CBO﹣∠C=360°﹣90°﹣90°﹣56°=124°.由圆周角定理知,∠D=∠AOB=62°,故选:D.【点评】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度.熟练掌握:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等等知识是解题的关键.11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.5【分析】作AE⊥BC,AF⊥BD,由i=3:4,可设AF=3x,DF=4x,结合AD=10,利用勾股定理可求得x的值,解直角三角形即可得到结论.【解答】解:如图,过点A作AE⊥BC于点E,过点A作AF⊥BD,交BD延长线于点F,由i=3:4,可设AF=3x,DF=4x,∵AD=10,∴9x2+16x2=100,解得:x=2(负值舍去),则AF=BE=6,DF=8,∴AE=DF+BD=8+12=20,∵∠CAE=45°,∴CE=AE=20,则BC=CE+BE=20+6=26,故选:B.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解题的关键是能根据题意构造直角三角形并结合图形利用三角函数解直角三角形.12.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.【分析】首先判断出△ABE≌△BCF,即可判断出∠BAE=∠CBF,再根据∠BAE+∠BEA =90°,可得∠CBF+∠BEA=90°,所以∠APB=90°;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值为多少.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故选:A.【点评】此题还考查了全等三角形的判定和性质的应用,正方形的性质和应用,直角三角形的性质和应用,以及勾股定理的应用,解答此题的关键是判断出什么情况下,CP的长度最小.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=3(a+2)(a﹣2).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣12=3(a+2)(a﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后要继续利用平方差公式进行因式分解,分解因式要彻底,直到不能再分解为止.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是(,).【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【解答】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案是:(,).【点评】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是24.【分析】设盒子中白色棋子有x个,根据概率公式列出关于x的方程,解之可得.【解答】解:设盒子中白色棋子有x个,根据题意,得:=,解得:x=24,经检验:x=24是原分式方程的解,所以白色棋子有24个,故答案为:24.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为216°.【分析】利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.【解答】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为﹣5<x<3.【分析】先根据抛物线的对称性得到A点坐标(3,0),由y=ax2+bx+c>0得函数值为正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c >0的解集.【解答】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为:﹣5<x<3.【点评】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于45.【分析】先证明△ADF∽△CEF,可知=,然后根据相似三角形的性质可知=()2,再根据,从而可求出三角形ACD的面积.【解答】解:在▱ABCD中,AD∥CE,AD=BC∴△ADF∽△CEF,∴,∵CE=2EB,∴CE=BC=AD,∴=,∴=()2=,∴S△CEF=12,∵,∴S△CFD=18,∴S△ACD=S△AFD+S△CDF=27+18=45,故答案为:45【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2≤a≤2的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:===,当a=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了80名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)【分析】(1)由给的图象解题,根据自行车所占比例为30%,而频数分布直方图知一共有24人骑自行车上学,从而求出总人数;(2)由扇形统计图知:步行占20%,而由(1)总人数已知,从而求出步行人数,补全频数分布直方图;(3)自行车、步行、公交车、私家车、其他交通工具所占比例之和为100%,再由直方图具体人数来相减求解.(4)画树状图列出所有等可能结果,从中找到到第二个路口时第二次遇到红灯的结果数,根据概率公式计算可得.【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).故答案为:80;(2)被抽到的学生中,步行的人数为80×20%=16人,直方图:(3)被抽到的学生中,乘公交车的人数为80﹣(24+16+10+4)=26,∴全校所有学生中乘坐公交车上学的人数约为×2400=780人.(4)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第二次遇到红灯的结果数为1,所以到第二个路口时第二次遇到红灯的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.【分析】(1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;(2)过点D作DH⊥BC,由锐角三角函数可求DH的长,即可求菱形DGCE的面积.【解答】证明:(1)∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形,且DE=EC∴四边形DGCE是菱形(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=GC=4,DG∥EC在Rt△DGH中,∠DGB=60°∴DH=DG cos30°=2∴菱形DGCE的面积=GC×DH=8【点评】本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.【分析】(1)根据题意,易得,解可得x的值,进而可得答案;(2)根据题意,可得关系式y=15m+20(m﹣1),化简可得y=35m﹣20,根据一次函数的性质分析可得答案.【解答】解:(1)根据题意,每天甲、乙两人共加工35个零件,设甲每天加工x个,则乙每天加工35﹣x;根据题意,易得,解得x=15,经检验,x=15是原方程的解,且符合题意.35﹣15=20,答:甲每天加工15个,乙每天加工20个;(2)y=15m+20(m﹣1),即y=35m﹣20,∵在y=35m﹣20中,y是m的一次函数,k=35>0,y随m的增大而增大,又由已知得:3≤m≤5,∴当m=5时,y最大值=155,当m=3时,y最小值=85.【点评】此题主要考查了分式方程的应用,能根据题意,列出关系式,进而结合一次函数的性质得到结论或求解方程是解题关键.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.【分析】(1)连接OE,证明∠GEO=90°,即GE⊥OE,于是EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,得到GE2=GC•GD,又GF=GE,所以GF2=GC •GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,,在Rt△HOC中,由勾股定理得,由△AHC∽△MEO,所以.【解答】解:(1)证明:如图,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠F AH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,∴,∴GE2=GC•GD,又∵GF=GE,∴GF2=GC•GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,∵,∴,在Rt△HOC中,∵OC=r,,,∴,∴,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴.【点评】本题考查了圆,熟练运用圆的切线定理、相似三角形的性质以及勾股定理是解题的关键.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.【分析】(1)△ADC与△ABC关于AC所在的直线对称,则CD=BC=2,∠ACD=∠ACB =30°,过点D作DE⊥BC于点E,∠DCE=60°,则,即可求解;(2)求出A,D坐标,两个点在同一反比例函数上,则,即可求解;(3)分P为直角顶点、D为直角顶点,两种情况分别求解即可.【解答】解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF~△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH~△DPG,,,解得:k=0(舍),综上:存在.【点评】本题考查的是反比例函数综合运用,涉及到一次函数、三角形相似等知识点,此类题目的关键是,通过设线段长度,确定图象上点的坐标,进而求解.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是①②④(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.【分析】(1)由“雅垂矩形”的两邻边比为1:4可以得出正比例函数的系数k的值,从而得出答案;(2)由题意知A(m,m2﹣2m),C(3m,9m2﹣6m).由0<m<0.5知CD=3m﹣m=2m,BC=m2﹣2m﹣(9m2﹣6m)=4m2﹣8m,从而得L=2(CD+BC)=﹣16m2﹣12m=﹣16(m﹣0.375)2+2.25,据此可得答案;。
2020-2021学年海南省中考数学模拟试卷(二)及答案解析

海南省中考数学模拟试卷(二)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的1.﹣2的绝对值等于()A.﹣2 B.﹣C.D.22.计算(a2)3,正确结果是()A.a5B.a6C.a8D.a93.在平面直角坐标系中,点P(2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.如图所示的几何体的主视图是()A.B.C.D.5.据国家财政部估算,初步预计2009年全国财政收入将为65720亿元,用科学记数法表示为()A.6.572×1010B.6.572×1011C.6.572×1012D.6.572×10136.若分式有意义,则x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x≠07.样本数据10,10,x,8的众数与平均数相同,那么这组数据的中位数是()A.8 B.9 C.10 D.128.方程3x﹣1=0的根是()A.3 B.C.﹣D.﹣39.在正方形网格中,∠α的位置如图所示,则tanα的值是()A.B.C.D.210.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,则下列三角形中,与△BOC一定相似的是()A.△ABD B.△DOA C.△ACD D.△ABO11.如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论不一定成立的是()A.AD=BD B.BD=CD C.∠1=∠2 D.∠B=∠C12.在反比例函数y=的图象的任一支上,y都随x的增大而增大,则k的值可以是()A.﹣1 B.0 C.1 D.213.如图,已知直线AB、CD相交于点O,∠1=80°,如果DE∥AB,那么∠D的度数是()A.80°B.90°C.100°D.110°14.某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费,超过20吨则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费()A.20元 B.24元 C.30元 D.36元二、填空题(本大题满分12分,每小题3分)15.分解因式:x2﹣4= .16.某工厂计划a天生产60件产品,则平均每天生产该产品件.17.如图,在△ABC中,AB=AC=3cm,AB的垂直平分线交AC于点N,△BCN的周长是5cm,则BC的长等于cm.18.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD= •三、解答题(本大题满分56分)19.(1)计算:10﹣(﹣)×32;(2)解方程:﹣1=0.20.从相关部门获悉,2010年海南省高考报名人数共54741人,下图是报名考生分类统计图.根据以上信息,解答下列问题:(1)2010年海南省高考报名人数中,理工类考生人;(2)请补充完整图中的条形统计图和扇形统计图(百分率精确到0.1%);(3)假如你绘制图中扇形统计图,你认为文史类考生对应的扇形圆心角应为°(精确到1°).21.如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向右平移5个单位长度,画出平移后的△A1B1C1;(2)画出△ABC关于x轴对称的△A2B2C2;(3)将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(4)在△A1B1C1、△A2B2C2、△A3B3C3中,△与△成轴对称;△与△成中心对称.22.某校师生到距学校20千米的文明生态村进行社会实践活动,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,两种车的速度各是多少?23.如图,直线m过正方形ABCD的顶点A,过点D、B分别作m的垂线,垂足分别为点E、F.(1)求证:△ADE≌△BAF;(2)EF与DE、BF有怎样的数量关系?并证明你的结论;(3)若A为EF的中点,四边形EFBD是什么特殊四边形?请证明.24.如图,已知抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴和A、B、C三点的坐标;(2)写出并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的1.﹣2的绝对值等于()A.﹣2 B.﹣C.D.2【考点】绝对值.【分析】根据绝对值的含义以及求法,可得:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.据此解答即可.【解答】解:﹣2的绝对值等于:|﹣2|=2.故选:D.2.计算(a2)3,正确结果是()A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【分析】根据幂的乘方法则进行计算即可.【解答】解:由幂的乘方与积的乘方法则可知,(a2)3=a2×3=a6.故选B.3.在平面直角坐标系中,点P(2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】点P(2,3)的横、纵坐标均为正,可确定在第一象限.【解答】解:点P(2,3)的横、纵坐标均为正,所以点P在第一象限,故选A.4.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从前面看所得到的图形即可.【解答】解:从前面看可得到左边有2个正方形,右边有1个正方形,所以选A.5.据国家财政部估算,初步预计2009年全国财政收入将为65720亿元,用科学记数法表示为()A.6.572×1010B.6.572×1011C.6.572×1012D.6.572×1013【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:65720=6572000000000=6.572×1012,故选C.6.若分式有意义,则x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x≠0【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选C.7.样本数据10,10,x,8的众数与平均数相同,那么这组数据的中位数是()A.8 B.9 C.10 D.12【考点】中位数;算术平均数;众数.【分析】根据平均数的定义先求出x.求中位数可将一组数据从小到大依次排列,中间数据(或中间两数据的平均数)即为所求.【解答】解:若x=8,则样本有两个众数10和8平均数=(10+10+8+8)÷4=9,与已知中样本众数和平均数相同不符所以样本只能有一个众数为10则平均数也为10,(10+10+x+8)÷4=10,求得x=12.将这组数据从小到大重新排列后为:8,10,10,12;最中间的那两个数的平均数即中位数是10.故选C.8.方程3x﹣1=0的根是()A.3 B.C.﹣D.﹣3【考点】解一元一次方程.【分析】先移项,再化系数为1,从而得到方程的解.【解答】解:移项得:3x=1,化系数为1得:x=,故选B.9.在正方形网格中,∠α的位置如图所示,则tanα的值是()A.B.C.D.2【考点】锐角三角函数的定义.【分析】此题可以根据“角的正切值=对边÷邻边”求解即可.【解答】解:由图可得,tanα=2÷1=2.故选D.10.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,则下列三角形中,与△BOC一定相似的是()A.△ABD B.△DOA C.△ACD D.△ABO【考点】相似三角形的判定.【分析】根据平行线定理可得∠OBC=∠ODA,∠OCB=∠OAD,∠AOD=∠BOC,即可判定△BOC∽△DOA,即可解题.【解答】解:∵AD∥BC,∴∠OBC=∠ODA,∠OCB=∠OAD,∵∠AOD=∠BOC,∴△BOC∽△DOA,故选B.11.如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论不一定成立的是()A.AD=BD B.BD=CD C.∠1=∠2 D.∠B=∠C【考点】等腰三角形的性质.【分析】由在△ABC中,AB=AC,AD⊥BC,根据等边对等角与三线合一的性质求解即可求得答案.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,∠1=∠2,∠B=∠C.故A错误,B,C,D正确.故选A.12.在反比例函数y=的图象的任一支上,y都随x的增大而增大,则k的值可以是()A.﹣1 B.0 C.1 D.2【考点】反比例函数的性质.【分析】根据反比例函数的单调性结合反比例函数的性质可得出关于k的一元一次不等式,解不等式即可得出k的取值范围,再结合四个选项即可得出结论.【解答】解:∵在反比例函数y=的图象的任一支上,y都随x的增大而增大,∴1﹣k<0,解得:k>1.故选D.13.如图,已知直线AB、CD相交于点O,∠1=80°,如果DE∥AB,那么∠D的度数是()A.80°B.90°C.100°D.110°【考点】平行线的性质.【分析】两直线平行,同旁内角互补,由题可知,∠D和∠1的对顶角互补,根据数值即可解答.【解答】解:∵∠1=80°,∴∠BOD=∠1=80°∵DE∥AB,∴∠D=180﹣∠BOD=100°.故选C.14.某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费,超过20吨则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费()A.20元 B.24元 C.30元 D.36元【考点】一元一次方程的应用.【分析】设小明家六月用水x吨,根据小明家六月份的水费是平均每吨1.25元可列出关于x的一元一次方程,解方程求出x值,进而即可得出结论.【解答】解:设小明家六月用水x吨,由题意得:1.2×20+1.5×(x﹣20)=1.25x,解得:x=24,∴1.25x=30.故选C.二、填空题(本大题满分12分,每小题3分)15.分解因式:x2﹣4= (x+2)(x﹣2).【考点】因式分解-运用公式法.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).16.某工厂计划a天生产60件产品,则平均每天生产该产品件.【考点】列代数式(分式).【分析】工作效率=工作总量÷工作时间,把相关数值代入即可.【解答】解:∵工作总量为60,工作时间为a,∴平均每天生产该产品件.故答案为.17.如图,在△ABC中,AB=AC=3cm,AB的垂直平分线交AC于点N,△BCN的周长是5cm,则BC的长等于 2 cm.【考点】线段垂直平分线的性质.【分析】由AB的垂直平分线交AC于点N,根据线段的垂直平分线的性质得到NA=NB,而BC+BN+NC=5cm,则BC+AN+NC=5cm,由AC=AN+NC=3cm,即可得到BC的长.【解答】解:∵AB的垂直平分线交AC于点N,∴NA=NB,又∵△BCN的周长是5cm,∴BC+BN+NC=5cm,∴BC+AN+NC=5cm,而AC=AN+NC=3cm,∴BC=2cm.故答案为:2.18.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD= 80°•【考点】切线的性质;圆周角定理.【分析】连接AD,推出AD⊥BD,∠DAC=∠B=90°﹣∠C=40°,推出∠AOD=80°.【解答】解:连接AD,∵AB是⊙O的直径,AC是⊙O的切线,∴AD⊥BD,AB⊥AC,∵∠C=50°,∴∠DAC=∠B=90°﹣∠C=40°,∴∠AOD=80°.故答案为:80°.三、解答题(本大题满分56分)19.(1)计算:10﹣(﹣)×32;(2)解方程:﹣1=0.【考点】解分式方程;有理数的混合运算.【分析】(1)根据有理数的混合运算计算即可;(2)观察方程可得最简公分母是:x﹣1,两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】(1)原式=10﹣(﹣)×9,=10﹣(﹣3),=10+3,=13;(2)两边都乘以(x﹣1)得:1﹣(x﹣1)=0,1﹣x+1=0,解得x=2检验:当x=2时入x﹣1=1≠0,所以原方程的根是x=2.20.从相关部门获悉,2010年海南省高考报名人数共54741人,下图是报名考生分类统计图.根据以上信息,解答下列问题:(1)2010年海南省高考报名人数中,理工类考生33510 人;(2)请补充完整图中的条形统计图和扇形统计图(百分率精确到0.1%);(3)假如你绘制图中扇形统计图,你认为文史类考生对应的扇形圆心角应为123 °(精确到1°).【考点】扇形统计图;条形统计图.【分析】(1)用总人数﹣报考文史类人数﹣报考体育类人数﹣报考其他类人数即可;(2)报考各类别人数÷报考总人数得到其所占百分比,再完成统计图的绘制;(3)用360°×文史类考生所占百分比即可.【解答】解:(1)54741﹣18698﹣1150﹣1383=33510人;(2)文史类考生所占百分比为18698÷54741=34.2%体育类考生所占百分比为1150÷54741=2.1%理工类考生所占百分比为33510÷54741=61.2%其他类考生所占百分比为1383÷54741=2.5%;如图所示;(3)文史类考生对应的扇形圆心角为360°×34.2=123°.故答案为33510、123.21.如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向右平移5个单位长度,画出平移后的△A1B1C1;(2)画出△ABC关于x轴对称的△A2B2C2;(3)将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(4)在△A1B1C1、△A2B2C2、△A3B3C3中,△△A2B2C2与△△A3B3C3成轴对称;△△A1B1C1与△△A3B3C3成中心对称.【考点】作图-旋转变换;作图-轴对称变换;作图-平移变换.【分析】(1)将各点向右平移5个单位,然后连接即可;(2)找出各点关于x轴对称的点,连接即可;(3)根据旋转角度、旋转方向、旋转点找出各点的对应点,顺次连接即可得出.(4)根据所作的图形结合轴对称的性质即可得出答案.【解答】解:(1)△A1B1C1如图所示:(2)△A2B2C2如图所示:(3)△A3B3C3如图所示:(4)根据图形可得:△A2B2C2与△A3B3C3;△A1B1C1与△A3B3C3成轴对称图形.故答案为:△A2B2C2、△A3B3C3、△A1B1C1、△A3B3C322.某校师生到距学校20千米的文明生态村进行社会实践活动,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,两种车的速度各是多少?【考点】分式方程的应用.【分析】关键描述语为:“甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达”;等量关系为:甲班师生行驶的时间﹣=乙班师生行驶的时间.【解答】解:设自行车速度为x千米/时,则汽车速度为2.5x千米/时.由题意可列方程为﹣=.解这个方程,得x=16.经检验,x=16适合题意.故2.5x=40.答:自行车速度为16千米/时,汽车速度为40千米/时.23.如图,直线m过正方形ABCD的顶点A,过点D、B分别作m的垂线,垂足分别为点E、F.(1)求证:△ADE≌△BAF;(2)EF与DE、BF有怎样的数量关系?并证明你的结论;(3)若A为EF的中点,四边形EFBD是什么特殊四边形?请证明.【考点】三角形综合题.【分析】(1)根据正方形的性质就可以得出AB=AD,∠BAD=90°,再根据余角的性质就可以得出∠EDA=∠BAF,从而根据AAS可以证明△ADE≌△BAF;(2)①由△ADE≌△BAF得出AE=BF,ED=FA就可以得出结论;②同①的方法得到结论EF=AE﹣CF;(3)由(2)①AE=BF,ED=FA,从而得出DE=BF,再判断出DE∥BF,得出四边形EFBD是平行四边形,最后由∠DEA=90°,得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵DE⊥直线m、BF⊥直线m,∴∠DEA=∠AFB=90°,∴∠ADE+∠DAE=90°,∵∠DAE+∠BAF=180°﹣∠ABAD=180°﹣90°=90°,∴∠EDA=∠BAF(同角的余角相等).在△DEA与△AFB中∵∴△DEA与△AFB(AAS),(2)①B、D两顶点在直线m同侧由(1)有,△DEA与△AFB∴DE=AF,AE=BF (全等三角形的对应边相等).∵EF=AE+AF,∴EF=DE+BF(等量代换)②当B、D两顶点在直线m的两侧时(如图2),结论:EF=AE﹣CF理由:同(1)的方法得到,△DEA与△AFB(AAS),∴DE=AF,AE=BF (全等三角形的对应边相等).∵EF=AF﹣AE,∴EF=DE﹣BF(等量代换)(3)结论:四边形EFBD是矩形,∵A为EF的中点,∴B、D两顶点在直线m同侧如图3,由(2)①得到,DE=AF,AE=BF,∵点A为EF的中点,∴AE=AF,∴DE=BF,∵DE⊥直线m、BF⊥直线m,∴DE=BF,∴四边形EFBD是平行四边形,由(1)∠DEA=90°,∴平行四边形EFBD是矩形.24.如图,已知抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴和A、B、C三点的坐标;(2)写出并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令x=0,可求出C点坐标,由BC∥x轴可知B,C关于抛物线的对称轴对称,可求出B点坐标,根据AC=BC可求出A点坐标.(2)把点A坐标代入y=ax2﹣5ax+4中即可解决问题.(3)分三种情况讨论:N的①以AB为腰且顶角为∠A,先求出AB的值,再利用等腰三角形的性质结合勾股定理求出P1长,即可求出P1的坐标;的长,求出P2的纵坐标,已知其横坐标,可得②以AB为腰且顶角为角B,根据MN的长和MP2其坐标;CK∽Rt△BAQ即可求出OK和P3K的长,可得P3坐标.③以AB为底,顶角为角P时,依据Rt△P3【解答】解:(1)由抛物线y=ax2﹣5ax+4可知C(0,4),对称轴x=﹣=,则BC=5,B(5,4),又AC=BC=5,OC=4,在Rt△AOC中,由勾股定理,得AO=3,∴A(﹣3,0)B(5,4)C(0,4)(2)把点A坐标代入y=ax2﹣5ax+4中,解得a=﹣,故y=﹣x2+x+4.(2)存在符合条件的点P共有3个.以下分三类情形探索.设抛物线对称轴与x轴交于N,与CB交于M.过点B作BQ⊥x轴于Q,易得BQ=4,AQ=8,AN=5.5,BM=.AB.①以AB为腰且顶角为角A的△PAB有1个:△P1则AB2=AQ2+BQ2=82+42=80在Rt△ANP1中,P1N====,∴P1(,﹣).AB.②以AB为腰且顶角为角B的△PAB有1个:△P2在Rt△BMP2中MP2====,则P2=(,).AB.③以AB为底,顶角为角P的△PAB有1个,即△P3画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C.过点P3作P3K垂直y轴,垂足为K,∵∠CP3K=∠ABQ,∠CKP3=∠AQB,∴Rt△P3CK∽Rt△BAQ.∴==.∵P3K=2.5∴CK=5于是OK=1,∴P3(2.5,﹣1).。
2020年海南省中考数学模拟试卷(含答案)

2020年海南省中考数学模拟试卷一.选择题(满分42分,每小题3分)1.﹣4的倒数是()A.B.﹣C.4 D.﹣42.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3 3.如果2m2﹣m+1=3,那么4m2﹣2m﹣5=()A.﹣1 B.1 C.﹣2 D.24.一组数据5,8,8,12,12,12,44的众数是()A.5 B.8 C.12 D.445.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A.B.C.D.6.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是()A.9.2×108B.92×107C.0.92×109D.9.2×107 7.如图,在△ABC中,DE∥BC,EF∥CD,那么下列结论错误的是()A.=B.=C.=D.=8.解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3 D.2﹣(x+2)=3(x﹣1)9.一个两位数,个位上的数字是a,十位上的数字比个位的数字小1,则这个两位数可以表示为()A.a(a﹣1)B.(a+1)a C.10(a﹣1)+a D.10a+(a﹣1)10.已知A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系的是()A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y1>y3y1>y2 11.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为()A.B.C.D.12.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率,该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.150 m2B.300 m2C.330 m2D.450 m213.下列说法中正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的面积相等C.全等三角形是指面积相等的两个三角形D.等边三角形都全等14.如图,在平面直角坐标系中,四边形ABCD是平行四边形,A(﹣1,3)、B(1,1)、C(5,1).规定“把▱ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2018次变换后,▱ABCD的顶点D的坐标变为()A.(﹣2015,3)B.(﹣2015,﹣3)C.(﹣2016,3)D.(﹣2016,﹣3)二.填空题(满分16分,每小题4分)15.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.16.已知一次函数y=ax+b,且2a+b=1,则该一次函数图象必经过点.17.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是,第(2018)个三角形的直角顶点的坐标是.18.如图,在菱形ABCD中,AC与BD交于点O,若AC=8,BD=6,则菱形ABCD的面积为.三.解答题(共6小题,满分62分)19.(10分)(1)计算:()﹣1+4cos60°﹣(3.14﹣π)0(2)解不等式组:,并将其解集表示在数轴上.20.(8分)某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A型号自行车与3辆B型号自行车共需560元,求A、B 两种型号自行车的购买价各是多少元?21.(8分)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:组别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n请根据统计图表回答下列问题:(1)本次被调查的市民共有多少人?并求m和n的值;(2)请补全条形统计图,并计算扇形统计图中扇形区域D所对应的圆心角的度数;(3)若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.22.(9分)如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿某一方向直航140海里的海岛B,其速度为14海里/小时;乙船速度为20海里/小时,先沿正东方向航行3小时后,到达C港口接旅客,停留1小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求海岛B到航线AC的距离;(2)甲船在航行至P处,发现乙船在其正东方向的Q处,问此时两船相距多少?23.(13分)如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A(0,m),B(n,0),(m>n>0),点E在AD上,AE=AB,点F在y轴上,OF=OB,BF的延长线与DA的延长线交于点M,EF与AB交于点N.(1)试求点E的坐标(用含m,n的式子表示);(2)求证:AM=AN;(3)若AB=CD=12cm,BC=20cm,动点P从B出发,以2cm/s的速度沿BC向C运动的同时,动点Q从C出发,以vcm/s的速度沿CD向D运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.24.(14分)如图①抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.参考答案一.选择题1.解:﹣4的倒数是﹣.故选:B.2.解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.3.解:∵2m2﹣m+1=3,∴4m2﹣2m﹣5=2(2m2﹣m+1)﹣7=2×3﹣7=6﹣7=﹣1故选:A.4.解:∵一组数据5,8,8,12,12,12,44,∴这组数据的众数是12,故选:C.5.解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.6.解:9.2亿=9.2×108.故选:A.7.解:∵DE∥BC、EF∥CD,∴△ADE∽△ABC、△AFE∽△ADC,则==、==,故A正确;∴=,即=,故B正确;由=、=知=,即=,故D正确;故选:C.8.解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选:D.9.解:∵个位上的数字是a,十位上的数字比个位的数字小1,∴十位上的数字为a﹣1,∴这个两位数可表示为10(a﹣1)+a,故选:C.10.解:∵反比例函数y=中的k=5>0,∴在每个象限内,y随x的增大而减小,∵A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,﹣3<0<1<2,∴y1>y2>y3,故选:C.11.解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432;∴排出的数是偶数的概率为:=12.解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:A.13.解:A、全等三角形是指形状、大小完全相同的两个三角形,错误;B、全等三角形的面积相等,正确;C、全等三角形是指形状、大小完全相同的两个三角形,面积相等不一定是全等三角形,错误;D、等边三角形都相似,不是全等,错误;故选:B.14.解:∵四边形ABCD是平行四边形,A(﹣1,3)、B(1,1)、C(5,1),∴D(3,3),把▱ABCD先沿x轴翻折,再向下平移1个单位后,∴D(2,﹣3),观察,发现规律:D0(3,3),D1(2,﹣3),D2(1,3),D3(0,﹣3),D4(﹣1,3),…,∴D2018(﹣2015,3).故选:A.二.填空题15.解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.16.解:∵2a+b=1,∴相当于y=ax+b中,当x=2时,y=1,∴一次函数图象必过点(2,1),故答案为:(2,1).17.解:∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)个三角形的直角顶点的坐标是(4,);∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(,),∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(8068,).故答案为:(16,);(8068,)18.解:∵四边形ABCD是菱形,∴AC⊥BD,∵AC=8,BD=6,∴菱形ABCD的面积为AC×BD=×8×6=24;故答案为:24.三.解答题19.解:(1)原式==6;(2),由①得:x>﹣1;由②得:x<2;∴原不等式组的解集为:﹣1<x<2,解集表示在数轴上为:20.解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.21.解:(1)本次被调查的市民共有:90÷45%=200人,∵C组的人数是200×15%=30(人)、D组的人数是200﹣90﹣60﹣30=20(人),∴m=×100%=30%,n=×100%=10%;(2)补全的条形统计图如下图所示:扇形区域D所对应的圆心角的度数为:360°×10%=36°;(3)100×(45%+30%)=75(万).∴若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.22.解:(1)过点B作BD⊥AE于D,在Rt△BCD中,∠BCD=60°,设CD=x,则BD=x,∵在Rt△BDA中,∠BDA=90°∴AD2+BD2=AB2,得1402=(60+x)2+(x)2x2+30x﹣4000=0,∴x=50或﹣80(舍弃),∴BD=50.(2)设运动时间为t,则AP=14t,CQ=20(t﹣4).BC=100 若点Q在点P的正东方向,则PQ∥AC,∴=,即:=,得t=8,由∵△BPQ∽△BAC,∴=,即:=,得PQ=12.23.解:(1)过E作EG⊥AO于G.∵∠EGA=∠EAB=∠AOB=90°,∴∠EAG+∠AEG=90°,∠EAG+∠BAO=90°,∴∠BAO=∠AEG,∵AE=AB,∴△EGA≌△AOB(AAS),∴EG=OA=m,AG=OB=n∴E(m,m+n).(2)∵OB=OF,∠BOF=90°,∴∠OFB=∠OBF=45°,∵△EGA≌△AOB,∴AG=OB=OF,∴OA=FG=EG,∴∠GFE=45°,∴∠EFB=90°,∴∠NAE=∠NFB=90°,∵∠ANE=∠F NB,∴∠AEN=∠ABM,∵∠EAN=∠BAM=90°,EA=BA,∴△EAN≌△BAM(ASA),∴AN=AM.(3)如图,∵△ABP与△PCQ全等,∠ABP=∠PCQ=90°∴有两种情形:①当AB=CD,PB=CP时,t==5(s),∴v=(cm/s),②当AB=PC,CQ=PB时,PB=20﹣12=8,∴t==4(s),∴v===2(cm/s).24.解:如图:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)存在.理由如下:y=﹣x2+2x+3=﹣(x﹣1)2+4.∵点D(2,m)在第一象限的抛物线上,∴m=3,∴D(2,3),∵C(0,3)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=2,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(3,0)代入,得k=﹣,b=1,∴BP解析式为y BP=﹣x+1.y BP=﹣x+1,y=﹣x2+2x+3当y=y BP时,﹣x+1=﹣x2+2x+3,解得x1=﹣,x2=3(舍去),∴y=,∴P(﹣,).(3)M1(﹣2,﹣5),M2(4,﹣5),M3(2,3).。
2024年海南省海南中学中考数学模拟试卷(二)(含答案)

2024年海南省海南中学中考数学模拟试卷(二)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.实数3的绝对值是( )A. −3B. ±3C. 3D. 132.“致中和,天地位焉,万物育焉.”(出自《礼记》)对称美是我国古人和谐平衡思想的体现,常被用于建筑、绘画、标识等设计上.下列数学经典图形中,是轴对称图形的是( )A. B. C. D.3.新能源汽车已经成为全球汽车产业转型发展的主要方向.据中国乘用车协会统计,2024年1−4月我国新能源汽车销量为294万辆,数据2940000用科学记数法表示为( )A. 2.94×106B. 2.94×107C. 29.4×105D. 294×1044.四个大小相同的正方体搭成的几何体如图所示,它的主视图是( )A. B. C. D.5.某校举行“遵守交通安全,从我做起”演讲比赛,7位评委给选手甲的评分如下:91,95,89,93,88,94,95,则这组数据的众数和中位数分别是( )A. 95,92B. 93,93C. 93,92D. 95,936.下列计算正确的是( )A. (a2)3=a6B. a6÷a2=a3C. a3⋅a4=a12D. a2−a=a7.已知蓄电池的电压为定值,使用某蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则当电阻为6Ω时,电流为( )A. 3AB. 4AC. 6AD. 8A8.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.以点A为圆心,适当长MN的为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12长为半径画弧,两弧交于点P,射线AP与BC交于点D,DE⊥AB,垂足为E.则BE为( )A. 3B. 4C. 4.5D. 59.分式方程xx−2=12−x的解是( )A. x=−1B. x=1C. x=2D. x=310.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A. 10°B. 15°C. 18°D. 30°11.如图,在平面直角坐标系中,菱形OABC的边长为26,点B在x轴的正半轴上,且∠AOC=60°,将菱形OABC绕原点O逆时针方向旋转60°,得到四边形OA′B′C′(点A′与点C重合),则点B′的坐标是( )A. (36,32)B. (32,36)C. (32,62)D. (62,36)12.七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为( )A. 25cm2B. 1003cm2 C. 50cm2D. 75cm2二、填空题:本题共4小题,每小题3分,共12分。
2020年海南省海口市中考数学二模试卷

中考数学二模试卷一、选择题(本大题共12小题,共36.0分)1.2019的倒数是()A. 2019B. -2019C.D. -2.下列计算正确的是()A. a2+a3=a5B. a2•a4=a8C. a6÷a2=a3D. (-2a3)2=4a63.由m=4-x,m=y-3,可得出x与y的关系是()A. x+y=7B. x+y=-7C. x+y=1D. x+y=-14.若反比例函数y=的图象经过点(-3,4),则它的图象也一定经过的点是()A. (-4,-3)B. (-3,-4)C. (2,-6)D. (6,2)5.一个不等式组的解集在数轴上表示如图所示,则该不等式组的解集为()A. x>-2B. x<1C. -2≤x≤1D. -2<x<16.如图所示的几何体的主视图是()A.B.C.D.7.近年来,“快递业”成为我国经济的一匹“黑马”,2017年我国快递业务量为400亿件,2019年快递量将达到600亿件,设快递量平均每年增长率为x,则下列方程中正确的是()A. 400(1+x)=600B. 400(1+2x)=600C. 400(1+x)2=600D. 600(1-x)2=4008.如图,在△ABC中,DE垂直平分AC,若BC=6,AD=4,则BD等于()A. 1.5B. 2C. 2.5D. 39.将四边形纸片ABCD按如图的方式折叠使C′P∥AB.若∠B=120°,∠C=90°,则∠CPR等于()A. 30°B. 45°C. 60°D. 90°10.如图,菱形ABCD的周长为20,对角线AC与BD交于点O,BD=6,则AC等于()A. 6B. 8C. 10D. 1211.如图,△ABC是半径为1的⊙O的内接正三角形,则圆的内接矩形BCDE的面积为()A. 3B.C.D.12.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是()A. B. C. D.二、填空题(本大题共4小题,共16.0分)13.比较大小:5______3.14.若代数式和的值相等,则x=______.15.如图,在△ABC中,AB=AC=8,点D是BC边上一点,且DE∥AB,DF∥AC,则四边形DEAF的周长为______.16.如图是一个量角器和一个含30°的直角三角板放置在一起的示意图,其中点B在半圆O的直径DE的延长线上,AB切半面O于点F,且BC=OE=2.若以O、B、F 为顶点的三角形与△ABC相似,则OB的长为______.三、计算题(本大题共1小题,共12.0分)17.(1)计算:(-1)3+6×()-1-;(2)先化简,再求值,其中a=.四、解答题(本大题共5小题,共56.0分)18.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价之和为231元,2件甲种玩具的进价与3件乙种玩具的进价之和为141元.(1)求甲、乙两种玩具每件的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可享受7折优惠,若购进n件甲种玩具需要花费w元,请写出w与n的函数关系式.19.某工厂甲、乙两个部门各有员工200人,为了了解这两个部门员工的生产技能情况,相关部门进行了抽样调查,过程如下:【收集数据】从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制,单位:分)如下:【整理、描述数据】按分数段整理以上两组样本数据后,绘制甲、乙两部门员工成绩的频数分布图(如图)(说明:测试成绩80分及以上为优秀,70~79分为良好,60-69分为合格)()请将上述不完整的频数分布图补充完整;(2)请分别求出乙部门员工测试成绩的平均数,中位数和众数填入表中;(3)请根据以上统计过程进行下列推断;①估计乙部门生产技能优秀的员工约有______人;②你认为甲,乙哪个部门员工的生产技能水平较高,请说明理由,(至少从两个不同的角度说明推晰的合理性)20.如图,小岛A在港口P的南偏西45方向,距离港口81海里处,甲船从A出发,沿AP方向以9海里时的速度驶向港口,乙船从港口P出发,沿南偏东60°方向,以18海里时的速度驶离港口,现两船同时出发,求出发后几小时乙舶在甲船的正东方向(结果精确到0.1小时)(参考数据:=1.414,≈1.72)21.如图1,矩形AEFG的两顶点E、G分别落在矩形ABCD的边BC和射线CD上,连结AC、FC,并过点F作FH⊥BC,交BC的延长线于点B(1)如图11.1,当AB=BC时,①求证:△ABE≌△ADG;②求证:矩形AEFG是正方形.③猜想AC与FC的位置关系,并证明你的猜想.(2)如图2,当AB≠BC时,在(1)③中的猜想是否成立?若不成立,请说明理由;若成立,请给出证明.22.如图1,抛物线与x轴交于A、B两点,与y轴交于点C(0,3),且OB=OC=3AO.直线y=x+1与抛物线交于A、D两点,与y轴交于点E.设直线AD上方的抛物线上的动点P的横坐标为t.(1)求该抛物线的表达式及点D的坐标;(2)如图1,当t为何值时,S△PAD=S△DAB;(3)如图2,过点P作PF∥x轴,交直线AD于点F,PG⊥AD于点G,GH⊥x轴于点H.①求△PFG的周长的最大值;②当PF=GH时,求t的值.答案和解析1.【答案】C【解析】解:2019的倒数是:.故选:C.直接利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.此题主要考查了倒数,正确把握相关定义是解题关键.2.【答案】D【解析】【分析】根据合并同类项,同底数幂的乘法、除法以及幂的乘法和积的乘方法则进行判断.本题考查了合并同类项、同底数幂的乘除法以及幂的乘法和积的乘方.同底数幂的除法,底数不变指数相减.【解答】解:A.a2+a3不能合并,此选项错误;B.a2•a4=a6,此选项错误;C.a6÷a2=a4,此选项错误;D.(-2a3)2=4a6,此选项正确.故选D.3.【答案】A【解析】解:因为m=4-x,m=y-3,所以有4-x=y-3,利用等式的性质两边同时加上x+3,可得:4+3=x+y,所以有:x+y=7,故选:A.由条件可得4-x=y-3,再利用等式的性质两边同时加上x+3可得出关系式.本题主要考查等式的性质,解题的关键是由条件得出4-x=y-3.4.【答案】C【解析】解:根据k=xy=(-3)×4=-12∴将A,B,C,D各个点坐标代入反比例函数y=得到k1=12,k2=12,k3=-12,k4=12故选:C.根据题意得k=-12,将A,B,C,D各个点坐标代入反比例函数y=可求解.本题考查了反比例函数图象上点的坐标特征,关键是熟练运用k=xy解决问题.5.【答案】D【解析】解:根据数轴得:该不等式组的解集为-2<x<1,故选:D.观察数轴,确定出所求解集即可.此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答案】A【解析】解:几何体的主视图为:故选:A.从正面看几何体,确定出主视图即可.此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.7.【答案】C【解析】解:设快递量平均每年增长率为x,依题意,得:400(1+x)2=600.故选:C.设快递量平均每年增长率为x,根据我国2017年及2019年的快递业务量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.【答案】B【解析】解:∵DE垂直平分AC,∴DC=DA=4,∴BD=BC-DC=2,故选:B.根据线段的垂直平分线的性质得到DC=DA=4,计算即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.【答案】C【解析】解:∵C′P∥AB,∴∠BPC′=180°-∠B=60°,∴∠CPC′=180°-∠BPC′=120°,∴∠CPR==60°.故选:C.根据平行线的性质得∠BPC′=180°-∠B=60°,由此可得∠CPC′=120°,再根据折叠的性质可得∠CPR==60°.主要考查了平行线的性质和翻折变换,根据平行线的性质得出∠BPC′的度数是解答本题的关键.10.【答案】B【解析】解:∵菱形ABCD的周长为20,BD=6∴AB=5,BO=DO=3,AC⊥BD∴AO==4∴AC=2AO=8故选:B.根据菱形的周长可以计算菱形的边长,菱形的对角线互相垂直平分,已知AB,BO根据勾股定理即可求得AO的值,即可求AC的值.本题考查了菱形对角线互相垂直平分的性质,注意菱形各边长相等的性质,勾股定理在直角三角形中的运用,利用勾股定理求AO的值是解题的关键.11.【答案】C【解析】解:连接BD,如图所示:∵△ABC是等边三角形,∴∠BAC=60°,∴∠BDC=∠BAC=60°,∵四边形BCDE是矩形,∴∠BCD=90°,∴BD是⊙O的直径,∠CBD=90°-60°=30°,∴BD=2,CD=BD=1,∴BC==,∴矩形BCDE的面积=BC•CD=×1=;故选:C.连接BD,由等边三角形的性质和圆周角定理得出∠BDC=∠BAC=60°,由矩形的性质和圆周角定理证出BD是⊙O的直径,得出BD=2,CD=BD=1,由勾股定理得出=,即可求出矩形BCDE的面积.本题考查了正多边形和圆、等边三角形的性质、含30°角的直角三角形的性质、勾股定理、圆周角定理等知识;熟练掌握等边三角形的性质,由圆周角定理证出BD是直径是解决问题的关键.12.【答案】B【解析】解:因为后3位是3,6,8三个数字共6种排列情况,而正确的只有1种,故第一次就拨通电话的概率是.故选:B.让1除以总情况数即为所求的概率.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.【答案】>【解析】解:∵3<<4,4<<5∴8<5+<9,7<3+<8∴5>3.故答案为:>.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.14.【答案】7【解析】解:根据题意得:=,去分母得:2x+1=3x-6,解得:x=7,经检验x=7是分式方程的解.故答案为:x=7.根据题意列出分式方程,求出分式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.【答案】16【解析】解:∵AB=AC,∴∠B=∠C,∵DE∥AB,∴∠B=∠CDE,∴CE=DE,同理可得BF=DF,∴四边形DEAF的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC,∵AB=AC=8,∴四边形DEAF的周长=8+8=16.故答案为:16.根据等角对等边可得∠B=∠C,再根据两直线平行,同位角相等可得∠B=∠CDE,然后根据等角对等边可得CE=DE,同理可得BF=DF,然后求出四边形DEAF的周长=AB+AC,代入数据进行计算即可得解.本题主要考查了等腰三角形的判定与性质,平行线的性质,熟记等腰三角形的性质与判定求出四边形DEAF的周长=AB+AC是解题的关键.16.【答案】或4【解析】解:若△OBF∽△ACB,∴,∴OB=,∵∠A=30°,∠ABC=90°,BC=OE=2,∴AC=4,AB=2.又∵OF=OE=2,∴OB==;若△BOF∽△ACB,∴,∴OB=,∴OB==4;综上,OB=或4;故答案为:或4.根据相似三角形的性质列方程即可得到结论.本题考查了相似三角形的性质,切线的性质,熟练掌握相似三角形的性质是解题的关键.17.【答案】解:(1)原式=-1+9=;(2)原式=-=-=,当a=时,原式==;【解析】(1)根据实数的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.【答案】解:(1)设甲、乙两种玩具每件的进价分别是x元、y元,,解得,,答:甲、乙两种玩具每件的进价分别是30元、27元;(2)由题意可得,当0<n≤20时,w=30n,当n>20时,w=30×20+(n-20)×30×0.7=21n+180,即w与n的函数关系式是w=.【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以求得甲、乙两种玩具每件的进价分别是多少元;(2)根据题意可以写出w与n的函数关系式,本题得以解决.本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用一次函数的性质和二元一次方程组的知识解答.19.【答案】78 80.5 81 120【解析】解:(1)补全图表如下:2故答案为:,,;(3)①估计乙部门生产技能优秀的员工人数是200×=120人;②甲或乙,1°、甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;2°、甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;或1°、乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;2°、乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.(1)根据题干数据整理即可得;(2)利用平均数、中位数及众数的定义直接写出答案即可.(3)①总人数乘以样本中优秀的人数所占比例;②根据中位数和众数等意义解答可得.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.20.【答案】解:设出发后x小时乙船在甲船的正东方向,如图所示,此时甲、乙两船的位置分别在点C,D处.连接CD,过点P作PE⊥CD,垂足为E.则点E在点P的正南方向.由题可知,PC=81-9x,PD=18x.∵在Rt△CEP中,∠CPE=45°,∴PE=PC•cos45°.∵在Rt△PED中,∠EPD=60°,∴PE=PD•cos60°.∴PC•cos45°=PD•cos60°.∴(81-9x)cos45°=18x•cos60°.解得x=9(-1)≈9×0.41≈3.7.答:出发后约3.7小时乙船在甲船的正东方向.【解析】过点P作PE⊥CD,垂足为E.则点E在点P的正南方向,则得到相等关系,C、D两点到在南北方向上经过的距离相等,因而根据方程就可以解决.考查了解直角三角形的应用-方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.21.【答案】解:(1)①证明:当AB=BC时,矩形ABCD是正方形.∴AB=AD时,∠ABE=∠ADG=90°.∵∠BAD=∠EAG=90°,∴∠BAD-∠EAD=∠EAG-∠EAD,∴∠BAE=∠DAG,∴△ABE≌△ADG(ASA).②∵△ABE≌△ADG,∴AE=AG,∵四边形AEFG是矩形,∴四边形AEFG是正方形.③猜想:AC⊥FC.证明:∵矩形AEFG是正方形,∴AE=EF,∠AEF=90°,∴∠AEB+∠FEH=90°.又∵∠AEB+∠EAB=90°,∴∠EAB=∠FEH.∵∠ABE=∠EHF=90°,∴△AEB≌△EFH.∴BE=HF,AB=EH.∴BC=EH,∴BE=CH,∴HF=CH.∴∠FCH=45°.∵AC是正方形ABCD的对角线,∴∠ACB=45°.∴∠ACF=90°,∴AC⊥FC.(2)当AB≠BC时,AC⊥FC仍然成立.证明:由(1)可知:∠EAB=∠FEH,∠ABE=∠EHF,∴△AEB∽△EFH,∴=,易证△AGD≌△EFH,∴AD=EH,DG=HF,∵AD=BC,∴BC=EH,∴BE=CH.∴=,即=,∵∠CHF=∠ABC=90°,∴△CHF∽△ABC,∴∠HCF=∠BAC.∵∠BAC+∠ACB=90°,∴∠HCF+∠ACB=90°,∴∠ACF=90°,∴AC⊥FC.【解析】(1)①根据ASA证明△ABE≌△ADG即可.②由已知条件可先判定四边形AEFG为矩形,再根据邻边相等(AB=BC)的矩形为正方形即可判定四边形AEFG为正方形;③由①可知AE=EF,∠AEF=90°,再由已知条件判定△AEB≌△EFH,进而证明∠ACF=90°,即AC⊥FC;(2)当AB≠BC时,AC⊥FC仍然成立,首先判定△AEB∽△EFH,再判定△CHF∽△ABC,利用相似三角形的性质:对应角相等即可证明AC⊥FC.本题属于四边形综合题,本题考查了矩形的判定方法、正方形的判定方法和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.22.【答案】解:(1)∵OB=OC=3AO=3,则点A、B的坐标为:(-1,0)、(3,0),二次函数表达式为:y=a(x+1)(x-3)=a(x2-2x-3),即-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3,将抛物线的表达式与y=x+1联立并解得:x=2或-1,故点D(3,2);(2)过点P作y轴的平行线交直线AD于点D,设点P(t,-t2+2t+3),则点M(t,t+1),S△PAD=S△DAB,即:×PM×(x D-x A)=×AB×y D,-t2+2t+3-t-1=×4×3,解得:t=0或1;(3)①过点P作y轴的平行线交直线AD于点Q,设点P(t,-t2+2t+3),则点Q(t,t+1),∵直线AD的倾斜角为45°,PF∥x轴,∴△PQF、△PDG均为等腰直角三角形,则PG=GF,PQ=PF,△PFG的周长=PF+2PG=(+1)PF=(+1)PF=(+1)(-t2+2t+3-t-1),=-()(t-)+,∵-()<0,∴当t=时,△PFG的周长有最小值为;②由点P(t,-t2+2t+3)可知,点F、G的坐标分别为(-t2+2t+2,-t2+2t+3)、(-t2++1,-t2++2),∵PF=GH,即:2(-t2+t+2)=-t2++2,解得:t=或-1(舍去-1),故:t=.【解析】(1)OB=OC=3AO=3,则点A、B的坐标为:(-1,0)、(3,0),即可求解;(2)S△PAD=S△DAB,即:×PM×(x D-x A)=×AB×y D,即可求解;(3)①△PFG的周长=PF+2PG=(+1)PF即可求解;②由点P(t,-t2+2t+3)可知,点F、G的坐标分别为(-t2+2t+2,-t2+2t+3)、(-t2++1,-t2++2),即可求解主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2020-2021学年海南省中考数学第二次模拟试题及答案解析
最新海南省中考数学二模试卷一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.﹣的相反数是()A.2 B.﹣2 C.D.﹣2.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()A.B.C.D.3.如图,直线a,b被直线c所截,如果a∥b,那么()A.∠1>∠2 B.∠1=∠2 C.∠1<∠2 D.∠1+∠2=180°4.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤55.一组数据从小到大排列为1,2,4,x,6,9.这组数据的中位数是5,那么这组数据的众数为()A.4 B.5 C.5.5 D.66.下列计算错误的是()A.(﹣2x)2=﹣2x2B.(﹣2a3)2=4a6C.(﹣x)9÷(﹣x)3=x6D.﹣a2•a=﹣a37.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是()A.b=a•sinB B.a=b•cosB C.a=b•tanB D.b=a•tanB8.从标有号数1到100的100张卡片中,随意抽取一张,其号数为3的倍数的概率是()A.B.C.D.无法确定9.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AC=BD D.AB=BC10.抛物线向左平移8个单位,再向下平移9个单位后,所得抛物线关系式是()A.B.C.D.11.若反比例函数y=的图象经过点(﹣2,1),则此函数的图象一定经过点()A.(﹣2,﹣1)B.(2,﹣1)C.(,2)D.(,2)12.下列关于二次函数的说法错误的是()A.抛物线y=﹣2x2+3x+1的对称轴是直线x=B.点A(3,0)不在抛物线y=x2﹣2x﹣3的图象上C.二次函数y=(x+2)2﹣2的顶点坐标是(﹣2,﹣2)D.函数y=2x2+4x﹣3的图象的最低点在(﹣1,﹣5)13.一次函数y=kx+b(k,b是常数,k≠0)的图象如上图所示,则不等式kx+b>0的解集是()A.x>﹣2 B.x>0 C.x<﹣2 D.x<014.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题(本大题满分16分,每小题4分)15.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第6个图形需棋子枚.16.如图,现有一个圆心角为90°,半径为16cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为cm.17.方程2x2﹣x﹣5m=0有一个根为0,则它的另一个根是,m= .18.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1:1.5,上底宽为6m,路基高为4m,则路基的下底宽为m.三、解答题(本大题满分62分)19.(1)计算:|﹣3|﹣()﹣1+﹣2cos60°;(2)计算:.20.在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1),(1)写出A、B两点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1;(3)画出△ABC绕点C旋转180°后得到的△A2B2C2.22.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.23.如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.24.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B 两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.﹣的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.2.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()A.B.C.D.【考点】由三视图判断几何体.【分析】从正面看可看到每列正方体的最多个数分别为2,2,1,表示为平面图形即可,【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是2,2,1.故选C.3.如图,直线a,b被直线c所截,如果a∥b,那么()A.∠1>∠2 B.∠1=∠2 C.∠1<∠2 D.∠1+∠2=180°【考点】平行线的性质;对顶角、邻补角.【分析】要探讨∠1和∠2的关系,根据平行线的性质以及对顶角相等的性质就可解决.【解答】解:∵a∥b,∴∠1=∠3,又∵∠3=∠2,∴∠1=∠2.故选B.4.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤5【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选C.5.一组数据从小到大排列为1,2,4,x,6,9.这组数据的中位数是5,那么这组数据的众数为()A.4 B.5 C.5.5 D.6【考点】众数;中位数.【分析】先根据中位数的定义可求得x,再根据众数的定义就可以求解.【解答】解:根据题意得,(4+x)÷2=5,得x=6,则这组数据的众数为6.故选D.6.下列计算错误的是()A.(﹣2x)2=﹣2x2B.(﹣2a3)2=4a6C.(﹣x)9÷(﹣x)3=x6D.﹣a2•a=﹣a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据积的乘方,可判断A、B,根据同底数幂的除法,可判断C,根据同底数幂的乘法底数不变指数相加,可判断D.【解答】解:A、(﹣2x)2=(﹣2)2x2=4x2,故A错误,B、(﹣2a3)2=4a6,故B正确;C、(﹣x)9÷(﹣x)3=(﹣x)6=x6,故C正确;D、﹣a2•a=﹣a3,故D正确;故选:A.7.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是()A.b=a•sinB B.a=b•cosB C.a=b•tanB D.b=a•tanB【考点】锐角三角函数的定义.【分析】根据三角函数的定义即可判断.【解答】解:A、∵sinB=,∴b=c•sinB,故选项错误;B、∵cosB=,∴a=c•cosB,故选项错误;C、∵tanB=,∴a=,故选项错误;D、∵tanB=,∴b=a•tanB,故选项正确.故选D.8.从标有号数1到100的100张卡片中,随意抽取一张,其号数为3的倍数的概率是()A.B.C.D.无法确定【考点】概率公式.【分析】由从标有号数1到100的100张卡片中,随意抽取一张,其号数为3的倍数的有33个,直接利用概率公式求解即可求得答案.【解答】解:∵从标有号数1到100的100张卡片中,随意抽取一张,其号数为3的倍数的有33个,∴随意抽取一张,其号数为3的倍数的概率是:.故选A.9.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AC=BD D.AB=BC【考点】矩形的判定.【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【解答】解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:C.10.抛物线向左平移8个单位,再向下平移9个单位后,所得抛物线关系式是()A.B.C.D.【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,把抛物线向左平移8个单位得到抛物线;由“上加下减”的原则可知,把抛物线向下平移9个单位得到抛物线﹣9.故选A.11.若反比例函数y=的图象经过点(﹣2,1),则此函数的图象一定经过点()A.(﹣2,﹣1)B.(2,﹣1)C.(,2)D.(,2)【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数y=的图象经过点(﹣2,1)求出k的值,再根据k=xy对各选项进行逐一判断即可.【解答】解:∵反比例函数y=的图象经过点(﹣2,1),∴k=(﹣2)×1=﹣2,A、∵(﹣2)×(﹣1)=2≠﹣2,∴此点不在函数图象上,故本选项错误;B、∵2×(﹣1)=﹣2,∴此点在函数图象上,故本选项正确;C、∵(﹣)×2=﹣1≠﹣2,∴此点不在函数图象上,故本选项错误;D、∵×2=1≠﹣2,∴此点不在函数图象上,故本选项错误.故选B.12.下列关于二次函数的说法错误的是()A.抛物线y=﹣2x2+3x+1的对称轴是直线x=B.点A(3,0)不在抛物线y=x2﹣2x﹣3的图象上C.二次函数y=(x+2)2﹣2的顶点坐标是(﹣2,﹣2)D.函数y=2x2+4x﹣3的图象的最低点在(﹣1,﹣5)【考点】二次函数的性质.【分析】根据抛物线的顶点坐标公式,点的坐标与抛物线解析式的关系,逐一检验.【解答】解:A、根据抛物线对称轴公式,抛物线y=﹣2x2+3x+1的对称轴是直线x=,正确;B、当x=3时,y=0,所以点A(3,0)在它的图象上,错误;C、二次函数y=(x+2)2﹣2的顶点坐标是(﹣2,﹣2),正确;D、函数y=2x2+4x﹣3=2(x+1)2﹣5,图象的最低点在(﹣1,﹣5),正确.故选:B.13.一次函数y=kx+b(k,b是常数,k≠0)的图象如上图所示,则不等式kx+b>0的解集是()A.x>﹣2 B.x>0 C.x<﹣2 D.x<0【考点】一次函数与一元一次不等式.【分析】观察函数图象吗,写出函数图象在x轴上方所对应的自变量的范围即可.【解答】解:因为当x=﹣2时,y=0,所以当x>﹣2时,kx+b>0,即不等式kx+b>0的解集为x>﹣2.故选A.14.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.二、填空题(本大题满分16分,每小题4分)15.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第6个图形需棋子19 枚.【考点】规律型:图形的变化类.【分析】在4的基础上,依次多3个,得到第n个图中共有的棋子数.【解答】解:观察图形,发现:在4的基础上,依次多3个.即第n个图中有4+3(n﹣1)=3n+1.当n=6时,即原式=19.故第6个图形需棋子19枚.16.如图,现有一个圆心角为90°,半径为16cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 4 cm.【考点】圆锥的计算.【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【解答】解:圆锥的底面周长是:=8πcm.设圆锥底面圆的半径是r,则2πr=8π.解得:r=4cm.故答案是:4.17.方程2x2﹣x﹣5m=0有一个根为0,则它的另一个根是,m= 0 .【考点】一元二次方程的解;根与系数的关系.【分析】把一个根0代入方程可以求出m的值,再根据根与系数的关系,由两根之和求出另一个根.【解答】解:把x=0代入方程有:﹣5m=0∴m=0.设另一个根是x1,则:x1+0=∴x1=故答案分别是:,0.18.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1:1.5,上底宽为6m,路基高为4m,则路基的下底宽为18 m.【考点】解直角三角形的应用-坡度坡角问题.【分析】过C作CF⊥AB,过D作CF⊥AB,根据CF的长和坡度即可求得AE、BF的值,根据AB=AE+EF+BF即可计算AB,即可解题.【解答】解:如右图,过C作CF⊥AB,过D作DE⊥AB,DE=CF=4m坡度===,∴AE=BF=6m,∴AB=AE+EF+FB=6+6+6(m)=18m.故答案为18.三、解答题(本大题满分62分)19.(1)计算:|﹣3|﹣()﹣1+﹣2cos60°;(2)计算:.【考点】二次根式的混合运算;分式的混合运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂、特殊角的三角函数值得到原式=3﹣2+﹣2×,然后化简后合并即可;(2)先把括号内通分,再把分子分母因式分解,然后把除法运算化为乘法运算后约分即可.【解答】解:(1)原式=3﹣2+﹣2×=1+2﹣1=2;(2)解:原式=÷=•=.20.在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.【考点】扇形统计图;条形统计图.【分析】(1)扇形统计图中,各部分的数量=总体×所占百分比,据此求得各中型号的数量;(2)由题意得,,求解即可.【解答】解:(1)240×55%=132,240×(1﹣55%﹣25%)=48,240×25%=60.(2)由题意得,,16(2a﹣2)=12×8解之,得a=4,经检验a=4是原分式方程的解.2a﹣2=2×4﹣2=6.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1),(1)写出A、B两点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1;(3)画出△ABC绕点C旋转180°后得到的△A2B2C2.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)结合直角坐标系可直接写出A、B两点的坐标.(2)找到A、B、C三点关于y轴的对称点,然后顺次连接可得出△A1B1C1;(3)旋转180°也即是中心对称,找到A、B、C三点关于C的中心对称点,顺次连接即可.【解答】解:(1)A(﹣1,2)B(﹣3,1);(2)画图答案如图所示:(3)画图答案如图所示:22.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【考点】一次函数的应用.【分析】(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x的取值范围,再根据y随着x的增大而增大,得出x的值.【解答】解:(1)因为购买大型客车x辆,所以购买中型客车(20﹣x)辆.y=62x+40(20﹣x)=22x+800.(2)依题意得20﹣x<x.解得x>10.∵y=22x+800,y随着x的增大而增大,x为整数,∴当x=11时,购车费用最省,为22×11+800=1042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1042万元.23.如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.【考点】等边三角形的性质;全等三角形的判定与性质.【分析】(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=DF,而∠MDN和∠FDE都是60°加上一个∠NDF,因此三角形MDF和EDN就全等了(ASA).由此可得出EN=MF,∠DNE=∠DMB,已知了BD=DF,DM=DN,因此三角形DBM ≌三角形DFN,因此∠DFN=∠DBM=120°,因此∠DFN是三角形DFE的外角因此N,F,E在同一直线上.(2)(3)证法同(1)都要证明三角形MDF和EDN全等,证明过程中都要作出三角形的三条中位线,然后根据三条中位线分成的小等边三角形的边和角相等来得出两三角形全等的条件,因此结论仍然成立.【解答】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上,(2)成立.连接DF,NF,证明△DBM和△DFN全等(AAS),∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴EF=DF=BF.∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,∴∠BDM=∠FDN,在△DBM和△DFN中,,∴△DBM≌△DFN,∴BM=FN,∠DFN=∠FDB=60°,∴NF∥BD,∵E,F分别为边AC,BC的中点,∴EF是△ABC的中位线,∴EF∥BD,∴F在直线NE上,∵BF=EF,∴MF=EN.(3)如图③,MF与EN相等的结论仍然成立(或MF=NE成立).连接DF、DE,由(2)知DE=DF,∠NDE=∠FDM,DN=DM,在△DNE和△DMF中,∴△DNE≌△DMF,∴MF=NE.24.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B 两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)可通过构建直角三角形来求解.过C作CH⊥AB于H,在直角三角形ACH中,根据半径及C点的坐标即可用三角形函数求出∠ACB的值.(2)根据垂径定理可得出AH=BH,然后在直角三角形ACH中可求出AH的长,再根据C点的坐标即可得出A、B两点的坐标.(3)根据抛物线和圆的对称性,即可得出圆心C和P点必在抛物线的对称轴上,因此可得出P点的坐标为(1,3).然后可用顶点式二次函数通式来设抛物线的解析式.根据A或B 的坐标即可确定抛物线的解析式.(4)如果OP、CD互相平分,那么四边形OCPD是平行四边形.因此PC平行且相等于OD,那么D点在y轴上,且坐标为(0,2).然后将D点坐标代入抛物线的解析式中即可判定出是否存在这样的点.【解答】解:(1)作CH⊥x轴,H为垂足,∵CH=1,半径CB=2,∵∠BCH=60°,∴∠ACB=120°.(2)∵CH=1,半径CB=2∴HB=,故A(1﹣,0),B(1+,0).(3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3)设抛物线解析式y=a(x﹣1)2+3,把点B(1+,0)代入上式,解得a=﹣1;∴y=﹣x2+2x+2.(4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形∴PC∥OD且PC=OD.∵PC∥y轴,∴点D在y轴上.又∵PC=2,∴OD=2,即D(0,2).又D(0,2)满足y=﹣x2+2x+2,∴点D在抛物线上∴存在D(0,2)使线段OP与CD互相平分.2016年6月16日。
2020年中考数学模拟试卷(含答案解析) (2)
中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。
2020届海南省中考数学模拟试卷(有答案)(Word版)
海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.2017的相反数是()A.﹣2017 B.2017 C.﹣ D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.C.【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数14357则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB 是解题关键.12.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,进过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k×2=2,k最大=4×4=16,最小=1∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化1得,x>﹣.故本题的解集为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N 分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN.最大=故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE 的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道基础题目.24.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D 的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有=或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P (t , t 2﹣t +3)(1<t <5), ∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N ,∴M (t ,0),N (t , t +3),∴PN=t +3﹣(t 2﹣t +3)=﹣(t ﹣)2+联立直线CD 与抛物线解析式可得,解得或,∴C (0,3),D (7,),分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE=t ,DF=7﹣t ,∴S △PCD =S △PCN +S △PDN =PNCE +PNDF=PN= [﹣(t ﹣)2+]=﹣(t ﹣)2+,∴当t=时,△PCD 的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有=或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当=时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P (2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P (,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
海南省海口市2020年中考数学第二次模拟考试试题(含答案)
海口市2020年初中毕业生学业模拟考试(二)数 学 科 试 题(考试时间100分钟,满分120分)一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1. 16-的相反数是( ) A. -6B. 6C. 16-D.162. 若34x y -=,则13y x +-的值是( ) A. 3-B. 5C. 3D. 5-3. 若4m =,则估计m 的值所在的范围是( )A. 1<m <2B. 2<m <3C. 3<m <4D. 4<m <54. 某种新冠病毒的直径约为0.00000012米,则这个数用科学记数法表示为( ) A. 71.210⨯米B. 61.210-⨯米C. 71.210-⨯米D. 81210-⨯米5. 将直线y=-2x 向下平移两个单位,所得的直线是( ) A. y=-2x-2B. y=-2x+2C y=-2(x-2)D. y=-2(x+2)6. 下图所示的几何体的俯视图是( )A. B. C. D.7. 箱子内装有53个白球和2个红球,小颖打算从箱子内抽球,以每次抽出一球后将球放回的方式抽53次.若箱子内每个球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小颖抽到红球的概率是( ) A.12B.152C.253D.2558. 如图,BD 是四边形ABCD 的对角线.若12∠=∠,80A ∠=︒,则ADC ∠等于( )A. 60︒B. 80︒C. 90︒D. 100︒9. 如图,在ABC 中,DE 垂直平分AB ,若4, 3AD BC DC ==,则BC 等于( )A. 4B. 4.5C. 5D. 610. 如图,AB 是O 的直径,C 、D 是O 上的两点.若55ABD ∠=︒,则BCD ∠等于( )A. 30B. 35︒C. 45︒D. 55︒11. 如图,在ABC 中,5AB =,8BC =,60B ∠=︒ ,将ABC 沿射线BC 的方向平移,得到A B C ''',再将A B C '''绕点A '逆时针旋转一定角度后,点B '恰好与点C 重合,则平移的距离为( )A. 2B. 3C. 4D. 512. 如图,反比例函数(0)ky x x=>的图象经过矩形AOBC 的对角线交点P ,与BC 交于点D .若点(0,6)A 、(8,0)B ,则点D 的坐标为( )A. (6,2)B. (8,3)C. 38,2⎛⎫ ⎪⎝⎭D. 28,3⎛⎫ ⎪⎝⎭二、填空题(本大题满分16分,每小题4分)13. 分解因式:ab 2﹣4ab+4a= .14. 不等式组()2x 1x 23x 24⎧-<⎪⎨->⎪⎩的解集为______. 15. 如图,在ABCD 中,以点A 为圆心,AD 长为半径作弧交AB 于点E ;再分别以点D 、E 为圆心,大于12DE 长为半径作弧,两弧交于点F ;作射线AF 交DC 于点G .若8AB =,6BC =,则CG 的长为_________.16. 如图,在ABC 中,90B ∠=︒,6AB =,4BC =,点O 在AC 边上,O 与边AB 、BC 分别切于点D 、E ,则COOA的值为__________.三、解答题(本大题满分68分)17. (1)计算:2521(1)43232-⎛⎫-+÷- ⎪⎝⎭(2)解方程:223211x x x -=+-. 18. 疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?19. 海南省将从2020年10月1日起实施生活垃圾分类,某学校为此开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图. 频数分布表频等级频率数优秀42 0.42良好m0.40合格12 n待合6 0.06格请根据以上信息,解答下列问题:(1)本次调查随机抽取了________名学生;(2)频数分布表中,m=________,n=________;(3)补全频数分布直方图;(4)若全校有2000名学生,请估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有________人.20. 如图,要测量某山的高度AB,小明先在山脚C点测得山顶A的仰角为45︒,然后沿坡度为1:3的斜坡走100米到达D点,在D点测得山顶A的仰角为30,求这座山的高度AB.(结果保留整数)(参考数≈)据:2 1.41≈,3 1.7321. 如图1和2,在正方形ABCD 中,点E 、F 在经过点B 的直线l 上,AEF 为等腰直角三角形,90EAF ∠=︒,且点F 始终在ABC ∠的内部,连结DF .(1)当直线l 绕点B 旋转到如图1所示的位置时,求证:①ABE ADF ≌;②DF EF ;③EF BF DF =+;(2)当直线l 绕点B 旋转到如图2所示的位置时,探究:(1)中的①、②、③三个结论是否仍然成立?若不成立,请直接写出正确的结论(不必证明....); (3)在直线l 绕点B 旋转过程中,若正方形ABCD 的边长为2,1DF =,求AF 的长.22. 如图,已知抛物线与x 轴交于()30A -,、()10B ,两点,与y 轴交于点()0,3C ,对称轴l 与x 轴交于点D ,点E 在y 轴上,且OE OB =.P 是该抛物线上的动点,连结PA 、PE ,PD 与AE 交于点F .(1)求该抛物线的函数表达式; (2)设点P横坐标为()310t -<<①求PAE △的面积的最大值;②在对称轴l 上找一点M ,使四边形PAME 是平行四边形,求点M 的坐标;③抛物线上存在点P ,使得PEF 是以EF 为直角边的直角三角形,求点P 的坐标,并判断此时PAE △的形状.海口市2020年初中毕业生学业模拟考试(二)数 学 科 试 题 答 案1. D2. A3. B4. C5. A6. C7. D8. D9. D 10. B 11. B 12. C 13. a (b ﹣2)2 14. x 2<- 15. 2 16. 2317. 【详解】(1)解:原式91444=-+⨯- 194=-+-4=(2)解:方程两边都乘以()()11x x +-, 约去分母,得()22(1)321x x x --=-, 整理,得21x =-, 解得12x =-.检验:把12x =-代入()()11x x +-,得1111022⎛⎫⎛⎫-+--≠ ⎪⎪⎝⎭⎝⎭,∴12x =-是原分式方程的解.18. 【详解】(1)设计划调配36座新能源客车x 辆,该校共有y 名走读生. 由题意,得36222(4)2x yx y +=⎧⎨+-=⎩,解得6218x y =⎧⎨=⎩,答:计划调配36座新能源客车6辆,该校共有218名走读生; (2)设36座和22座两种车型各需m ,n 辆.由题意,得3622218m n +=,且m ,n 均为非负整数,经检验,只有35m n =⎧⎨=⎩符合题意.答:36座和22座两种车型各需3,5辆.19. 【详解】(1)本次调查随机抽取了42÷42%=100名学生,故答案为:100; (2)m=100×40%=40,n=12100=0.12, 故答案为:40;0.12;(3)补全条形统计图如图所示:(4)2000×42+40100=1640人, 答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1640人.20. 【详解】如图2,过点D 作DE BC ⊥于E ,作DF AB ⊥于F ,设AB x =米. 在DEC Rt △中,tan 3DE DCE CE ∠== ∴30DCE ∠=︒, ∴1502DE CD ==,503CE =, ∴50AF AB BF AB DE x =-=-=-. 在Rt ABC 中,45ACB ∠=︒, ∴BC AB x ==, ∴503DFBE BC CE x ==+=+.在Rt AFD 中,30ADF ∠=︒,tan tan 30AFADF DF∠=︒=∴33AF DF =,即350503)3x x -=+, ∴50(33)237x =≈(米). 答:这座山的高度AB 约为237米.21. 【详解】证明:(1)①∵四边形ABCD 是正方形, ∴AB AD =,90BAD ∠=︒.∵AEF 为等腰直角三角形,90EAF ∠=︒, ∴AE AF =,45AEB AFE ∠=∠=︒, ∴90EAB BAF FAD BAF ∠+∠=∠+∠=︒, ∴EAB FAD ∠=∠∴()ABE ADF SAS △≌△ ②由ABE ADF ≌, ∴45AFD AEB ∠=∠=︒,∴90DFB AFE AFD ∠=∠+∠=︒, ∴DFEF .③由ABE ADF ≌, ∴EB DF =,∴EF BF EB BF DF =+=+.(2)(1)中的①、②结论仍成立,结论③不成立, ①∵四边形ABCD 是正方形, ∴AB AD =,90BAD ∠=︒.∵AEF 为等腰直角三角形,90EAF ∠=︒, ∴AE AF =,45AEF AFE ∠=∠=︒,∴90BAF EAB BAF FAD ∠-∠=∠-∠=︒, ∴EAB FAD ∠=∠∴()ABE ADF SAS △≌△ ②由ABE ADF ≌,∴18045135AFD AEB ∠=∠=︒-︒=︒, ∴90DFB AFD AFE ∠=∠-∠=︒,∴DF EF .③由ABE ADF ≌,∴EB DF =,∴EF BF EB BF DF =-=-.此时,EFBF DF =-. (3)正方形ABCD 中,22BD AB ==. 在Rt BFD 中,223BF BD DF =-=.当直线l 绕点B 旋转到如图3.1所示的位置()045CBF ∠<<︒︒时, 31EF BF DF =+=+,∴2622AF EF +==. 当直线l 绕点B 旋转到如图3.2所示的位置()4590CBF ∠<<︒︒时, 31EF BF DF =-=-,∴26222AF EF -==. 综上:AF=62+或62-22. 【详解】(1)∵抛物线与x 轴交于()30A -,、()10B ,两点, ∴设所求抛物线的函数表达式为()()31y a x x =+-, 把点()0,3C 代入,得()()331a x x =+-,解得1a =-,∴该抛物线的函数表达式为()()31y x x =-+-,即223y x x =-+;(2)①[解法一]如图4.1,过点P 作PH x ⊥轴于点H ,交AE 于点I . ∵OE OB =,∴()0,1E ,∴直线AE 的表达式为113y x =+. 由题意,点P 的坐标为()2,23t t t --+,则点I 的坐标为1,13t t ⎛⎫+ ⎪⎝⎭, ∴()2217231233p I PI y y t t t t t ⎛⎫=-=--+-+=--+ ⎪⎝⎭, ∴2211737121232232624PAE S PI AO t t t ⎛⎫⎛⎫=⋅=⨯--+⨯=-++ ⎪ ⎪⎝⎭⎝⎭△. ∵302a =-<,且30t -<<, ∴当76t =-时,PAE △的面积最大值为12124. (2)①[解法二]如图4.1,连结PO , 由题意,点P 的坐标为()2,23t t t --+, PAE PAO PEO AOE S S S S =+-△△△△ 111222p p AO y EO x AO EO =⋅+⋅-⋅ ()222313373712123()3222222624t t t t t t ⎛⎫=--++--=--+=-++ ⎪⎝⎭. ∵302a =-<,且30t -<<, ∴当76t =-时,PAE △的面积最大值为12124. ②∵点M 在抛物线223y x x =--+的对称轴1x =-上,∴设点M 的坐标为()1,m -.由题意,点P 的坐标为()2,23t t t --+,∵四边形PAME 是平行四边形,AE 、PM 为对角线, ∴P M A E x x x x +=+,即130t -=-+,∴2t =-,∴点P 的坐标为(2,3)-.∴P M A E y y y y +=+,得301m +=+,∴2m =-.∴点M 的坐标为()1,2--.③PEF 是以EF 为直角边的直角三角形分两种情况: (Ⅰ)若90PEF ∠=︒,如图4.2,过点P 作PG y ⊥轴于点G , 则EPG AEO △∽△, ∴PG EG EO AO =,即()223113t t t --+--=, 整理得220t t --=,解得11t =-,22t = (舍去),∴点P 的坐标为()1,4-.此时PAE △是等腰直角三角形.(Ⅱ)若90PFE ∠=︒,如图4.3,过点P 作PH x ⊥轴于点H , 则PHD AOE △∽△,∴PH DH AO EO =,即223131t t t --+--=, 整理得260t t --=,解得12t =-,23t =(舍去), ∴点P 的坐标为()2,3-.此时PAE △是等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海南省2020年中考模拟题(二)
数学 科
(考试时间100分钟,满分120分)
注意事项:
1、选择题作答用B 2铅笔填涂在答题卡相应位置上,其余试题作答也一律用黑色笔写在答题卡上,写在试卷上无效.
2、答题前请认真阅读试题及有关说明.
3、请合理分配答题时间.
一.选择题(本大题满分36分,每小题3分)
在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...
用B 2铅笔涂黑. 1.如果收入2020元记作2020+元,那么支出2020元记作( )
A.2020B .2020- C.2020+D .2010-
2.若2-=m ,则代数式3+m 的值是()
A.3-
B.2-C .1- D.1
3.下列计算正确的是()
A . 632x a a =⋅
B .336a a a =÷
C .2322=-a a
D .
6
326)2a a =( 4.在图所示的4个图案中既是中心对称图形,又是轴对称图形的是() A. B.
C.
D. 5.分式方程11
1=-x 的解是() A.1=x B .1-=x C .2=x D.-2=x
6.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积,已知每个标准足球场的面积为27140m ,则FAST 的反射面总面积约为()
A.23107.14m ⨯
B.24107.14m ⨯
C. 25102.5m ⨯D .26102.5m ⨯
7.以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知D B 、点的坐标分别为
),(31,)
,(04,把平行四边形向上平移两个单位,那么C 点平移后相应的点的坐标是() A.),(33 B.),(35 C.),(53 D.)
,(55 8.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球。
从布袋里摸出一个球,记下颜色后放回,搅匀,再摸出一个球,则两次摸到的球都是红球的概率为()
A .161
B .21C.83D.16
9 9.若点),3(1y A -,),2(2y B -,),1(3y C 都在反比例函数x y 12-
=的图像上,则1y ,2y ,3y 的大小关系是( )
A.312y y y << B .213y y y << C.321y y y << D.123y y y <<
10.如图1,将一副直角三角板按如图所示的位置放置,使含o 30角的三角板的一条直角边和含o 45角的三角板的一条直角边放在同一条直线上,则a ∠的度数是( )
图1
A.o 45
B.o 60
C. o 75D .o 85
11.如图2所示,AB 是☉O 的直径,PA 切☉O 于点A ,线段PO 交☉O 于点C ,连结BC ,若o
36=∠P ,则B ∠等于
A.o 27
B.o 32
C. o 36D .o 54
图2 图3
12.如图3,我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知o 90=∠A ,4=BD ,6=CF ,则正方形ADOF 的边长是 A.2 B.2C. 3D .4
二、填空题(本大题满分16分,每小题4分)
13.因式分解:=
-12a
14.若正多边形的一个外角是o 60,则这个正多边形的内角和是
15.如图4,在边长为4的等边ABC ∆中,E D ,分别为BC AB ,的中点,AC EF ⊥于点F ,G 为EF 的中点,连接DG ,则DG 的长为
图4 图5
16.如图5,ABC ∆中,o 30=∠A ,点O 是边AB 上一点,以点O 为圆心。
以OB 为半径做圆,☉O 恰好与AC 相切于点D ,连接BD ,若BD 平分ABC ∠,32=AD ,则线段CD 的长是
三.解答题(本大题满分68分)
17.(满分12分,每小题6分)
(1)计算:|-1|18-2-45sin 40o ++
)(π (2)解不等式组⎩
⎨⎧-≤+)24104-2x x x (> 18.(满分10分)某市大力发展农村旅游事业,全力打造“凤翔湿地公园”,其中某村的“花海、涂鸦、美
食”特色游文化吸引不少人,去年一名村民抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元,求去年该农家乐餐饮和住宿的利润各为多少万元?
19.(满分8分)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了名学生;
(2)补全条形统计图;
(3)若该校共有1500名,估计爱好运动的学生有人;
(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率为.
20.(满分10分)如图6,为了测得某建筑物的高度AB ,在C 处用高为1米的测角仪CF ,测得该建筑物顶端A 的仰角为o 45,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为o 60.
图6
(1)填空:=∠MAE ,=∠FAE ;
(2)求该建筑物的高度AB .(结果保留根号)
21.
(满分13分)如图1,在正方形ABCD 中,AE 平分CAB ∠,交BC 于点E ,过点C 作AE CF ⊥,交AE 的延长线于点G ,交AB 的延长线于点F ,
图1 图2 图3
(1)求证:CBF ABE ∆∆≌;
(2)如图2,连接BG 、BD ,求证BG 平分DBE ∠;
(3)如图3,连接DG 交AC 于点M , 求DM AE 的值。
22.(满分15分)如图,在平面直角坐标系xOy 中,已知抛物线c x ax y +-=22与直线b kx y +=都经过)3,0(-A 、)0,3(B 两点,该抛物线的顶点为C .
(1)求次抛物线和直线AB 的解析式.
(2)设直线AB 与抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点E C N M 、、、是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;
(3)设点P 是直线AB 下方抛物线上的一动点,当PAB ∆面积最大时,求点P 的坐标,并求PAB ∆面积的最大值.。