初中数学竞赛:韦达定理(附练习题及答案)

合集下载

新课标九年级数学竞赛培训第03讲:韦达定理

新课标九年级数学竞赛培训第03讲:韦达定理

.(4分)(2003•杭州)设x1,x2是关于x的方程x2+px+q=0的两根, x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的值分别等于 ( ) A. 1,﹣3 B. 1,3 C.﹣1,﹣3 D.﹣1,3 10.(4分)(2000•河北)在Rt△ABC中,∠C=90°,a、b、c分别是 ∠A、∠B、∠C的对边,a、b是关于x的方程x2﹣7x+c+7=0的两根,那 么AB边上的中线长是( ) A. B. C. 5 D. 2 11.(4分)方程x2+px+1997=0恰有两个正整数根x1、x2,则 的值是( ) A. 1
(1)若x12+x22=6,求m值; (2)求
的最大值. 20.(8分)如图,在矩形ABCD中,对角线AC的长为10,且AB、 BC(AB>BC)的长是关于x的方程x2+2(1﹣m)x+6m=0的两个根. (1)求m的值; (2)若E是AB上的一点,CF⊥DE于F,求BE为何值时,△CEF的面积 是△CED的面积的 ,请说明理由.
1552088
专 计算题. 题: 分 根据根与系数的关系,可以写出两根和与两根积,再由两根是正整数及 析: p+q=28,利用提公因式法因式分解可以确定方程的两个根. 解 解:设x1,x2是方程的两个根,则①x1+x2=﹣p,②x1x2=q, 答: ∵②﹣①得:p+q=28, ∴x1x2﹣x1﹣x2=28, ∴x1x2﹣x1﹣x2+1=28+1, ∴x1(x2﹣1)﹣(x2﹣1)=29, 即(x1﹣1)(x2﹣1)=29, ∵两根均为正整数, ∴x1﹣1=1,x2﹣1=29或x1﹣1=29,x2﹣1=1, ∴方程的两个根是:x1=2,x2=30.或x1=30,x2=2. 故答案为:x1=30,x2=2. 点 本题考查的是一元二次方程根与系数的关系,根据根与系数的关系写出两 评: 根和与两根积,再由已知条件用十字相乘法因式分解求出方程的两个根. 15.(3分)已知α、β是方程x2﹣x﹣1=0的两个根,则α4+3β的值为 5 . 考 根与系数的关系;代数式求值. 点: 专 计算题. 题: 分 先由α、β是方程x2﹣x﹣1=0的两个根可知,α2=α+1,α+β=1,然后代入 析: α4+3β求解即可. 解 解:∵α、β是方程x2﹣x﹣1=0的两个根, 答: ∴α2=α+1,α+β=1, ∴β=1﹣α, ∴α4+3β=(α+1)2+3(1﹣α)=α2+2α+1+3﹣3α=α+1+2α+4﹣3α=5.

韦达定理及其应用竞赛题(完整资料).doc

韦达定理及其应用竞赛题(完整资料).doc

【最新整理,下载后即可编辑】韦达定理及其应用【内容综述】设一元二次方程有二实数根,则,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。

其逆命题也成立。

韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。

本讲重点介绍它在五个方面的应用。

【要点讲解】1.求代数式的值应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

★★例1若a,b为实数,且,,求的值。

思路注意a,b为方程的二实根;(隐含)。

解(1)当a=b时,;(2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得,ab=1.说明此题易漏解a=b的情况。

根的对称多项式,,等都可以用方程的系数表达出来。

一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。

由此关系可解一批竞赛题。

附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2若,且,试求代数式的值。

思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。

解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定理,得,∴2.构造一元二次方程如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

★★★★例3设一元二次方程的二实根为和。

(1)试求以和为根的一元二次方程;(2)若以和为根的一元二次方程仍为。

求所有这样的一元二次方程。

解(1)由韦达定理知,。

,。

所以,所求方程为。

(2)由已知条件可得解之可得由②得,分别讨论(p,q)=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。

于是,得以下七个方程,,,,,0x2=x21x2=+无实数根,舍去。

-,其中01+x2=+,01其余六个方程均为所求。

3.证明等式或不等式根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。

韦达定理练习题

韦达定理练习题

韦达定理练习题一、选择题1. 已知二次方程 \( ax^2 + bx + c = 0 \) 的两个根为 \( x_1 \) 和 \( x_2 \),根据韦达定理,下列哪个选项是错误的?A. \( x_1 + x_2 = -\frac{b}{a} \)B. \( x_1x_2 = \frac{c}{a} \)C. \( x_1 + x_2 = \frac{c}{a} \)D. \( x_1x_2 = -\frac{b}{a} \)2. 对于二次方程 \( x^2 - 5x + 6 = 0 \),使用韦达定理,下列哪个选项是正确的?A. 根的和为 5B. 根的积为 -6C. 根的和为 3D. 根的积为 63. 如果二次方程 \( 2x^2 - 4x + 1 = 0 \) 的一个根是 \( x = 1 \),那么另一个根是:A. 0.5B. 2C. -2D. 1二、填空题4. 假设二次方程 \( 3x^2 - 6x + 2 = 0 \) 的根为 \( x_1 \) 和\( x_2 \),根据韦达定理,\( x_1 + x_2 \) 等于 ________。

5. 对于二次方程 \( x^2 + 4x + 4 = 0 \),其根的积 \( x_1x_2 \)等于 ________。

6. 如果二次方程 \( ax^2 + bx + c = 0 \) 的两个根相等,即\( x_1 = x_2 \),那么 \( b^2 \) 与 \( 4ac \) 之间的关系是\( b^2 \) ________ \( 4ac \)。

三、解答题7. 已知二次方程 \( x^2 - 7x + 10 = 0 \),求出它的两个根,并验证韦达定理是否成立。

8. 给定一个二次方程 \( 2x^2 - 12x + 10 = 0 \),使用韦达定理求出它的两个根,并计算根的和与积。

9. 如果二次方程 \( ax^2 + bx + c = 0 \) 的根的和为 5,根的积为 6,求出 \( a \)、\( b \) 和 \( c \) 的值。

韦达定理练习题初三

韦达定理练习题初三

韦达定理练习题初三韦达定理是初中数学中的重要定理之一,它为我们解决三角形中的问题提供了有效的工具。

在初三学习阶段,我们需要通过练习题的形式,巩固和应用韦达定理的知识。

下面是一些韦达定理练习题,帮助同学们更好地掌握这一知识点。

【题目一】已知△ABC中,AB = 6,AC = 8,BC = 10,求△ABC的高。

【解题思路】根据韦达定理,对于三角形ABC,有公式:a² = b² + c² - 2bc * cosA其中,a、b、c分别表示三角形的边长,A表示夹角。

根据已知条件,代入公式中可得:8² = 6² + 10² - 2 * 6 * 10 * cosA进一步计算可得:64 = 36 + 100 - 120cosA28 = -120cosAcosA ≈ -0.233由于A为锐角,cosA不可能为负数,因此此题无解。

【题目二】已知△ABC中,AB = 12,BC = 18,AC = 24,求△ABC的面积。

【解题思路】根据韦达定理,我们可以先通过余弦定理求得角BAC的值。

cosA = (b² + c² - a²) / 2bccosA = (18² + 24² - 12²) / 2 * 18 * 24cosA ≈ 0.5由于韦达定理中的角A为夹角,无法直接计算面积,我们需要进一步计算角B、角C。

角B = arcsin(b * sinA / a)角B = arcsin(18 * sin(0.5) / 12)角B ≈ 0.573 rad角C = π - A - B角C = π - 0.5 - 0.573角C ≈ 2.068 rad根据三角形面积公式S = 0.5 * a * b * sinC,代入已知条件可得:S = 0.5 * 12 * 18 * sin(2.068)S ≈ 110.4所以,△ABC的面积约为110.4平方单位。

一元二次方程韦达定理、根与系数的关系练习+答案

一元二次方程韦达定理、根与系数的关系练习+答案

韦达定理与根与系数的关系练习题一、填空题1、关于x 的方程0322=+-m x x ,当 时,方程有两个正数根;当m 时,方程有一个正根,一个负根;当m 时,方程有一个根为0。

2、已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x .3、如果1x ,2x 是方程0652=+-x x 的两个根,那么=⋅21x x .4、已知1x ,2x 是方程0362=++x x 的两实数根,则2112x x x x +的值为______. 5、设1x 、2x 是方程03422=-+x x 的两个根,则=++)1)(1(21x x .6、若方程03422=--x x 的两根为βα、,则=+-22ββ2a a .7、已知1x 、2x 是关于x 的方程01)1(22=-++-a x x a 的两个实数根,且1x +2x =31,则21x x ⋅= .8、已知关于x 的一元二次方程0642=--x mx 的两根为1x 和2x ,且221-=+x x ,则=m ,()=+⋅2121x x x x 。

9、若方程0522=+-k x x 的两根之比是2:3,则=k .10、如果关于x 的方程062=++k x x 的两根差为2,那么=k 。

11、已知方程0422=-+mx x 两根的绝对值相等,则=m 。

12、已知方程022=+-mx x 的两根互为相反数,则=m 。

13、已知关于x 的一元二次方程01)1()1(22=++--x a x a 两根互为倒数,则=a 。

14、已知关于x 的一元二次方程0)1(222=+--m x m x 。

若方程的两根互为倒数,则=m ;若方程两根之和与两根积互为相反数,则=m 。

15、一元二次方程)0(02≠=++p r qx px 的两根为 0 和 -1,则=q p : 。

16、已知方程0132=-+x x ,要使方程两根的平方和为913,那么常数项应改为 。

初三数学竞赛专题——韦达定理

初三数学竞赛专题——韦达定理

初三数学竞赛专题——韦达定理一、选择题1.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413B .1949413C .999413D .979413 答案:B2.如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么b a a b +的值为( )A .22123B .22125或2C .22125D .22123或2(2001年TI 杯全国初中数学竞赛试题)答案:B3.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,3答案:C 4.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<mD .43≤m ≤1答案:C5.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x答案:C6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( )A .1B .-lC .21-D .21 答案:C7.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25C .5D .2 答案:B二、填空题8.已知α、β是方程012=--x x 的两个根,则βα34+的值为 . (2003年天津市竞赛题)答案:5.9.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 .(2001年内蒙古中考题)(2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .(2003年四川省中考题)答案:(1)2135-≤<-m ;(2)7>m 10.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .(2003年金华市中考题)答案:611.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .(2002年四川省竞赛题) 答案:18211≤<m . 12.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .(2002年湖北省黄冈市中考题)答案:一313.已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 . (2001年浙江省绍兴市竞赛题)答案:014.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .(“祖冲之杯”邀请赛试题)答案:30,2三、解答题15.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值. 答案:(1)125≤k ;(2)0=k . 16.已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x .(2002年苏州市中考题)答案:(1)△=02)1(22>+-m ;(2)4=m ,51±=x ;0=m ,01=x ,22-=x17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.答案:1222===n m BD AD BC AC ,即m=2n ①,△=4n 2一m 2—8n 十16>0 ②,把①代人②得,n ≤2.又222119)(<-x x ,得4n 2一m 2—8n+4<0③,把①代人③,得n>21,∴221≤<n , ∴n=l ,2,从而得m=2或4.18.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.(全国初中数学联赛题) 答案:(1)2175-=m ;(2)原式=25)23(22--m ,当1-=m 时,最大值为10.19.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.答案:(1)m=8;(2)BE=2.20.设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.(第十六届江苏省竞赛题) 答案:当32=m 时,2221x x +有最小值,这个最小值为98 21.已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长. (2003年哈尔滨市中考题) 答案:(1)当m=2时,△=0,∴AB ∥CD 且AB=CD ,故四边形ABCD 是平行四边形.当m>2时,△=m 一2>0,又AB+CD =2m>0,047)21(2>+-=⋅m CD AB ,∴AB ≠CD ,而AB ∥CD ,故四边形ABCD 是梯形.(2)12121=-=AB DC PQ ,∴2=-AB DC ,∵AB DC BC DC AB DC ⋅-+=-4)()(22 ,∴)2(4)2(2222+--=m m m ,解得3=m ,从而AB=2,CD=4.22.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.(2000年俄罗斯数学竞赛题)答案:设01121=++ax x ,0121=++c bx x ,得b a c x --=11,由0222=++a x x ,0222=++b cx x ,得12--=c b a x (c ≠1),故121x x =.另一方面由韦达定理知11x 是第一个方程的根,这就表明2x 是方程012=++ax x 和02=++a x x 的公共根.因此两式相减有0)1)(1(2=--x a ,但当1=a 时,这两个方程无实根,故x 2=l ,从而x 1=l ,于是2-=a ,1-=+c b ,所以3-=++c b a23.关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确? 答案:由条件得14)(2+=+ab b a ,又△=0434)(92≥⨯⨯-+ab b a ,∴ab b a 316)(2≥+,即ab ab 31614≥+,∴4ab ≤3,从而4ab+1≤4.即(a+b)2≤4.。

韦达定理初三练习题

韦达定理初三练习题

韦达定理初三练习题韦达定理是解决三角形问题的重要定理之一,在初中数学学习中起着关键的作用。

在本篇文章中,我们将通过一些实际的练习题来巩固和应用韦达定理的知识。

请您认真阅读题目,并按照题目要求进行解答。

练习一:已知三角形的两个边长和夹角,求第三边的长度。

1. 已知一个三角形的两条边长分别为5cm和8cm,夹角为60度。

请计算第三边的长度。

解答:根据韦达定理,我们可以使用以下公式求解:c² = a² + b² - 2abcosC。

其中,c代表第三边,a和b分别代表已知的两个边长,C代表已知的夹角。

根据题目信息,已知的两条边分别为5cm和8cm,夹角为60度。

我们可以将这些数据代入韦达定理的公式中进行计算。

c² = 5² + 8² - 2 × 5 × 8 × cos60°= 25 + 64 - 80 × 0.5= 89 - 40= 49因此,第三边的长度为√49,即7cm。

练习二:已知三角形的两个边长和一条高的长度,求另一条高的长度。

2. 已知一个三角形的两边长分别为6cm和10cm,其中一条高的长度为8cm。

请计算另一条高的长度。

解答:我们可以利用韦达定理的性质来求解这个问题。

首先,我们需要找到一个关系式来表示两条高的长度。

根据韦达定理,我们可以得到以下关系式:(a² - b²)/ (a² + b²)= (h₁² - h₂²)/ (h₁² + h₂²)。

其中,a和b代表已知的两边长,h₁和h₂分别代表已知的两条高的长度。

根据题目中的信息,已知两边长分别为6cm和10cm,其中一条高的长度为8cm。

假设另一条高的长度为h₂。

根据关系式,我们可以将这些数据代入,得到以下等式:(6² - 10²)/ (6² + 10²)= (8² - h₂²)/ (8² + h₂²)我们可以通过化简这个等式,解得h₂的值。

韦达定理练习题

韦达定理练习题

韦达定理练习题韦达定理练习题韦达定理是数学中的一个重要定理,它描述了一个三角形内部的一条线段与三边的长度之间的关系。

通过韦达定理,我们可以解决一些有关三角形的问题,比如求解三角形的面积、判断三角形的形状等等。

在本文中,我们将通过一些练习题来巩固和应用韦达定理的知识。

练习题一:求解三角形的面积已知一个三角形的三边长分别为a、b、c,求解该三角形的面积。

解答:根据韦达定理,我们可以得到以下等式:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC其中A、B、C分别为三角形的内角。

现在我们要求解三角形的面积,可以使用海伦公式:S = √[s(s-a)(s-b)(s-c)]其中s为三角形的半周长,可以通过三边长求得:s = (a + b + c) / 2练习题二:判断三角形的形状已知一个三角形的三边长分别为a、b、c,判断该三角形的形状(等边三角形、等腰三角形、直角三角形或一般三角形)。

解答:根据韦达定理,我们可以得到以下等式:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC首先,我们可以通过比较三边长的大小来判断是否为等边三角形。

如果a=b=c,则为等边三角形。

其次,我们可以通过比较两条边的长度来判断是否为等腰三角形。

如果a=b或a=c或b=c,则为等腰三角形。

然后,我们可以通过判断三个内角的大小关系来判断是否为直角三角形。

如果A=90°或B=90°或C=90°,则为直角三角形。

最后,如果以上条件都不满足,则为一般三角形。

练习题三:求解三角形的高已知一个三角形的三边长分别为a、b、c,求解该三角形的高。

解答:根据韦达定理,我们可以得到以下等式:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC现在我们要求解三角形的高,可以使用以下公式:h = 2S / a其中S为三角形的面积,可以通过海伦公式求得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛:韦达定理
一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:
运用韦达定理,求方程中参数的值;
运用韦达定理,求代数式的值;
利用韦达定理并结合根的判别式,讨论根的符号特征;
利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】
【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例
【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么
b
a a
b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2
思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:
(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(2
2
=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

思路点拨:利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的。

注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性。

【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程04
7)21(222=+-+-m mx x 的两个根。

(1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由。

(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.
思路点拨:对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式。

注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.
韦达定理专题训练
1、(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式14
2121<-+x x x x ,则实数m 取值范围是 。

(2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 。

2、已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 。

3、CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 。

4、设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( ) A .1,-3 B .1,3 C .-1,-3 D .-1,3
5、在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )
A .23
B .2
5 C .5 D .2 6、方程019972=++px x 恰有两个正整数根1x 、2x ,则
)
1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7、若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?
8、已知关于x 的方程01)32(22=++--k x k x 。

(1) 当k 是为何值时,此方程有实数根;
(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值。

9、已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 。

10、已知α、β是方程012=--x x 的两个根,则βα34+的值为 。

11、△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 。

12、两个质数a 、b 恰好是整系数方程的两个根,则
b a a b +的值是( ) A .9413 B .1949413 C .999413 D .97
9413 13、设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )
A .0232=---m x x
B .0232=--+m x x
C .02412=---x m x
D .02412=+--x m x
14、如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是
( )
A .0≤m ≤1
B .m ≥43
C .143≤<m
D .4
3≤m ≤1 15、如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根。

(1)求rn 的值;
(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的3
1,请说明理由.
16、设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x 。

(1) 若622
21=+x x ,求m 的值。

(2)求2
2212111x mx x mx -+-的最大值。

17、如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2
=2:1;又关
于x 的方程012)1(24
122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值。

18、设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值。

参考答案。

相关文档
最新文档