matlab-BP神经网络(贝叶斯正则化算法程序)
(完整版)BP神经网络matlab实例(简单而经典).doc

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM 算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn);anew=postmnmx(anewn,mint,maxt); %对 BP 网络进行仿真%还原数据y=anew';1、 BP 网络构建(1)生成 BP 网络net newff ( PR,[ S1 S2...SNl],{ TF1 TF 2...TFNl }, BTF , BLF , PF ) PR :由R 维的输入样本最小最大值构成的R 2 维矩阵。
[ S1 S2...SNl] :各层的神经元个数。
{TF 1 TF 2...TFNl } :各层的神经元传递函数。
BTF :训练用函数的名称。
(2)网络训练[ net,tr ,Y, E, Pf , Af ] train (net, P, T , Pi , Ai ,VV , TV )(3)网络仿真[Y, Pf , Af , E, perf ] sim(net, P, Pi , Ai ,T ){'tansig','purelin'},'trainrp'BP 网络的训练函数训练方法梯度下降法有动量的梯度下降法自适应 lr 梯度下降法自适应 lr 动量梯度下降法弹性梯度下降法训练函数traingd traingdm traingda traingdx trainrpFletcher-Reeves 共轭梯度法traincgf Ploak-Ribiere 共轭梯度法traincgpPowell-Beale 共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlmBP 网络训练参数训练参数net.trainParam.epochsnet.trainParam.goal net.trainParam.lrnet.trainParam.max_fail net.trainParam.min_grad net.trainParam.show net.trainParam.timenet.trainParam.mc net.trainParam.lr_inc 参数介绍最大训练次数(缺省为10)训练要求精度(缺省为0)学习率(缺省为0.01 )最大失败次数(缺省为5)最小梯度要求(缺省为1e-10)显示训练迭代过程( NaN 表示不显示,缺省为 25)最大训练时间(缺省为inf )动量因子(缺省0.9)学习率lr增长比(缺省为1.05)训练函数traingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingdm 、 traingdx traingda 、traingdxnet.trainParam.lr_dec 学习率 lr 下降比(缺省为 0.7) traingda 、 traingdxnet.trainParam.max_perf_inc 表现函数增加最大比(缺省traingda 、 traingdx为 1.04)net.trainParam.delt_inc 权值变化增加量(缺省为trainrp1.2)net.trainParam.delt_dec 权值变化减小量(缺省为trainrp0.5)net.trainParam.delt0 初始权值变化(缺省为 0.07) trainrpnet.trainParam.deltamax 权值变化最大值(缺省为trainrp50.0)net.trainParam.searchFcn 一维线性搜索方法(缺省为traincgf 、traincgp 、traincgb 、srchcha)trainbfg 、 trainossnet.trainParam.sigma 因为二次求导对权值调整的trainscg影响参数(缺省值 5.0e-5)mbda Hessian 矩阵不确定性调节trainscg参数(缺省为 5.0e-7)net.trainParam.men_reduc 控制计算机内存/ 速度的参trainlm量,内存较大设为1,否则设为 2(缺省为 1)net.trainParam.mu 的初始值(缺省为0.001) trainlmnet.trainParam.mu_dec 的减小率(缺省为0.1)trainlmnet.trainParam.mu_inc 的增长率(缺省为10)trainlmnet.trainParam.mu_max 的最大值(缺省为1e10)trainlm2、 BP 网络举例举例 1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用 minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
BP神经网络预测的MATLAB实现

> > net. trainParam. show = 500; > > net = train ( net, P, T)
显示的数据与所设计的网络模型相符 ,且如图显见网 络学习迭代到 411次时 ,就达到了学习精度 0. 004 996 74, 其学习速度较快 。
(六 )测试 BP神经网络 将测试的输出数据还原 ,与实际人数比较 (见表 1) ,说 明 BP神经网络预测的 MATLAB实现是可行的 。
BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
Bp神经网络的Matlab实现

0Hale Waihona Puke 引言误差反向传播网络( Back Propagation Net - work, 简称 Bp 网络 ) 是目前人工神经网络模式中最具代表性, 应 用得最广泛的一种模型, 具有自学习、 自组织、 自适应和很强的非线性映射能力, 可以以任意精度逼近任意连 续函数. 近年来 , 为了解决 Bp 网络收敛速度慢 , 训练时间长等不足 , 提出了许多改进算法 . 然而, 在针对实际 问题的 Bp 网络建模过程中 , 选择多少层网络, 每层多少个神经元节点, 选择何种传递函数等 , 均无可行的理论 指导, 只能通过大量的实验计算获得 . MATLAB 中的神经网络工具箱( Neural Network Toolbox, 简称 NNbox) , 为解 决这一问题提供了便利的条件 . 神经网络工具箱功能十分完善, 提供了各种 MATLAB 函数, 包括神经网络的建 立、 训练和仿真等函数, 以及各种改进训练算法函数, 用户可以很方便地进行神经网络的设计和仿真, 也可以 在 MATLAB 源文件的基础上进行适当修改 , 形成自己的工具包以满足实际需要.
[1]
1
Bp 网络模型
Bp 网络是一种多层前馈神经网络 , 由输入层、 隐层和输出层组成.
图 1 为一个典型的三层 BP 网络的拓扑结构 , 层与层之间采用全互连方 式, 同一层之间不存在相互连接 , 隐层可以有一层或多层. 层与层之间有 两种信号在流通 : 一种是工作信号 ( 用实线表示) , 它是施加输入信号后 向前传播直到在输出端产生实际输出的信号, 是输入和权值的函数 . 另 一种是误差信号 ( 用虚线表示) , 网络实际输出与期望输出间的差值即为 误差, 它由输出端开始逐层向后传播 . Bp 网络的学习过程程由前向计算
(整理)BP神经网络matlab实现和matlab工具箱使用实例.

(整理)BP神经网络matlab实现和matlab工具箱使用实例.BP神经网络matlab实现和matlab工具箱使用实例经过最近一段时间的神经网络学习,终于能初步使用matlab实现BP网络仿真试验。
这里特别感谢研友sistor2004的帖子《自己编的BP算法(工具:matlab)》和研友wangleisxcc的帖子《用C++,Matlab,Fortran实现的BP算法》前者帮助我对BP算法有了更明确的认识,后者让我对matlab下BP函数的使用有了初步了解。
因为他们发的帖子都没有加注释,对我等新手阅读时有一定困难,所以我把sistor2004发的程序稍加修改后加注了详细解释,方便新手阅读。
%严格按照BP网络计算公式来设计的一个matlab程序,对BP网络进行了优化设计%yyy,即在o(k)计算公式时,当网络进入平坦区时(<0.0001)学习率加大,出来后学习率又还原%v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j); 动量项clear allclcinputNums=3; %输入层节点outputNums=3; %输出层节点hideNums=10; %隐层节点数maxcount=20000; %最大迭代次数samplenum=3; %一个计数器,无意义precision=0.001; %预设精度yyy=1.3; %yyy是帮助网络加速走出平坦区alpha=0.01; %学习率设定值a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改字串9error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间errorp=zeros(1,samplenum); %同上v=rand(inputNums,hideNums); %3*10;v初始化为一个3*10的随机归一矩阵; v表输入层到隐层的权值deltv=zeros(inputNums,hideNums); %3*10;内存空间预分配dv=zeros(inputNums,hideNums); %3*10;w=rand(hideNums,outputNums); %10*3;同Vdeltw=zeros(hideNums,outputNums);%10*3dw=zeros(hideNums,outputNums); %10*3samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; %3*3;指定输入值3*3(实为3个向量)expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; %3*3;期望输出值3*3(实为3个向量),有导师的监督学习count=1;while (count<=maxcount) %结束条件1迭代20000次c=1;while (c<=samplenum)for k=1:outputNumsd(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内的值endfor i=1:inputNumsx(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量字串4end%Forward();for j=1:hideNumsnet=0.0;for i=1:inputNumsnet=net+x(i)*v(i,j);%输入层到隐层的加权和∑X(i)V(i)endy(j)=1/(1+exp(-net)); %输出层处理f(x)=1/(1+exp(-x))单极性sigmiod函数endfor k=1:outputNumsnet=0.0;for j=1:hideNumsnet=net+y(j)*w(j,k);endif count>=2&&error(count)-error(count+1)<=0.0001o(k)=1/(1+exp(-net)/yyy); %平坦区加大学习率else o(k)=1/(1+exp(-net)); %同上endend%BpError(c)反馈/修改;errortmp=0.0;for k=1:outputNumserrortmp=errortmp+(d(k)-o(k))^2; %第一组训练后的误差计算enderrorp(c)=0.5*errortmp; %误差E=∑(d(k)-o(k))^2 * 1/2%end%Backward();for k=1:outputNumsyitao(k)=(d(k)-o(k))*o(k)*(1-o(k)); %输入层误差偏导字串5endfor j=1:hideNumstem=0.0;for k=1:outputNumstem=tem+yitao(k)*w(j,k); %为了求隐层偏导,而计算的∑endyitay(j)=tem*y(j)*(1-y(j)); %隐层偏导end%调整各层权值for j=1:hideNumsfor k=1:outputNumsdeltw(j,k)=alpha*yitao(k)*y(j); %权值w的调整量deltw(已乘学习率)w(j,k)=w(j,k)+deltw(j,k)+a*dw(j,k);%权值调整,这里的dw=dletw(t-1),实际是对BP算法的一个dw(j,k)=deltw(j,k); %改进措施--增加动量项目的是提高训练速度endendfor i=1:inputNumsfor j=1:hideNumsdeltv(i,j)=alpha*yitay(j)*x(i); %同上deltwv(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);dv(i,j)=deltv(i,j);endendc=c+1;end%第二个while结束;表示一次BP训练结束double tmp;tmp=0.0; 字串8for i=1:samplenumtmp=tmp+errorp(i)*errorp(i);%误差求和endtmp=tmp/c;error(count)=sqrt(tmp);%误差求均方根,即精度if (error(count)<precision)%另一个结束条件< p="">break;endcount=count+1;%训练次数加1end%第一个while结束error(maxcount+1)=error(maxcount);p=1:count;pp=p/50;plot(pp,error(p),"-"); %显示误差然后下面是研友wangleisxcc的程序基础上,我把初始化网络,训练网络,和网络使用三个稍微集成后的一个新函数bpnet %简单的BP神经网络集成,使用时直接调用bpnet就行%输入的是p-作为训练值的输入% t-也是网络的期望输出结果% ynum-设定隐层点数一般取3~20;% maxnum-如果训练一直达不到期望误差之内,那么BP迭代的次数一般设为5000% ex-期望误差,也就是训练一小于这个误差后结束迭代一般设为0.01% lr-学习率一般设为0.01% pp-使用p-t虚拟蓝好的BP网络来分类计算的向量,也就是嵌入二值水印的大组系数进行训练然后得到二值序列% ww-输出结果% 注明:ynum,maxnum,ex,lr均是一个值;而p,t,pp,ww均可以为向量字串1% 比如p是m*n的n维行向量,t那么为m*k的k维行向量,pp为o*i的i维行向量,ww为o* k的k维行向量%p,t作为网络训练输入,pp作为训练好的网络输入计算,最后的ww作为pp经过训练好的BP训练后的输出function ww=bpnet(p,t,ynum,maxnum,ex,lr,pp)plot(p,t,"+");title("训练向量");xlabel("P");ylabel("t");[w1,b1,w2,b2]=initff(p,ynum,"tansig",t,"purelin"); %初始化含一个隐层的BP网络zhen=25; %每迭代多少次更新显示biglr=1.1; %学习慢时学习率(用于跳出平坦区)litlr=0.7; %学习快时学习率(梯度下降过快时)a=0.7 %动量项a大小(△W(t)=lr*X*ん+a*△W(t-1))tp=[zhen maxnum ex lr biglr litlr a 1.04]; %trainbpx[w1,b1,w2,b2,ep,tr]=trainbpx(w1,b1,"tansig",w2,b2,"purelin", p,t,tp);ww=simuff(pp,w1,b1,"tansig",w2,b2,"purelin"); %ww就是调用结果下面是bpnet使用简例:%bpnet举例,因为BP网络的权值初始化都是随即生成,所以每次运行的状态可能不一样。
matlab BP神经网络(贝叶斯正则化算法程序)

close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量sqrs=[0.0000016420520 0.0000033513140 0.0000051272540 0.0000069694860 0.0000088776310 0.0000139339960 -0.0000594492310 -0.0001080022920 -0.0001476714860 ...0.0000112367340 0.0002021567880 0.0008695337800 -0.0001189929700 -0.0000912336690 0.0002160472130 0.0006358522040 0.0012365884200 0.0049930394010 ]./0.001657904949 ;sqjdcs=[0.0000399039272 0.0000805129702 0.0001218448339 0.0001639173001 0.0002067504102 0.0003172835720 0.0000421189848 0.0000870310694 0.0001350858140 ...0.0001866997652 0.0002423599348 0.0004033628719 0.0000394450224 0.0000830935373 0.0001317612004 0.0001864881262 0.0002486249700 0.0004497441812 ]./0.000533286;sqglmj=[0.0000068430669 0.0000147605347 0.0000240097285 0.0000349372747 0.0000480215187 0.0000954580176 0.0000005804238 0.0000011640375 0.0000017508228 ...0.0000023407605 0.0000029338317 0.0000044301058 0.0000030813582 0.0000071511410 0.0000126615618 0.0000203910217 0.0000318028637 0.0001118629438 ]./0.000034868299 ;s1=[0.0001773503110 0.0003553133430 0.0005338922010 0.0007130899610 0.0008929096590 0.0013452002950 0.0005747667510 0.0012111415700 0.0019195724060 ...0.0027130110200 0.0036077110840 0.0064386221260 0.0005056929850 0.0010189193420 0.0015398201520 0.0020685403470 0.0026052286500 0.0039828224110 ]./0.00275071;%s2=[25.9167875445 24.0718476818 22.2364947192 20.4105777318 18.5939487791 14.0920619223 990.2535888432 1040.4661104131 1096.3830297389 1159.029******* ...% 1229.6925839338 1453.3788619676 164.1136642277 142.4834641073 121.6137611080 101.4436832756 81.9180522413 35.6044841634];glkyl=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3];glhyl=[2 4 6 8 10 15 2 4 6 8 10 15 2 4 6 8 10 15 ];P=[sqrs;sqjdcs;sqglmj;s1]; %输入数据矩阵T=[glkyl;glhyl]; %目标数据矩阵echo onclcpauseclc% 创建一个新的前向神经网络net=newff(minmax(P),[20,2],{'tansig','purelin'});pauseclcecho offclcdisp('1. L-M 优化算法TRAINLM'); disp('2. 贝叶斯正则化算法TRAINBR'); choice=input('请选择训练算法(1,2):');figure(gcf);if(choice==1)echo onclc% 采用L-M 优化算法TRAINLMnet.trainFcn='trainlm';pauseclc% 设置训练参数net.trainParam.epochs = 500;net.trainParam.goal = 1e-6;net=init(net);% 重新初始化pauseclcelseif(choice==2)echo onclc% 采用贝叶斯正则化算法TRAINBRnet.trainFcn='trainbr';pauseclc% 设置训练参数net.trainParam.epochs = 500;randn('seed',192736547);net = init(net);% 重新初始化pauseclcendnet.trainParam.epochs = 500; net.trainParam.goal = 1e-6; net.trainFcn='trainoss';% 调用相应算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc。
BP神经网络实验-Matlab

BP神经网络实验-MatlabBP神经网络是一种常见的人工神经网络模型。
在实际应用中,BP神经网络广泛用于分类、预测、优化等任务中。
本文将介绍如何在Matlab中实现BP神经网络,并通过一个简单的分类问题进行实验验证。
1. 数据准备首先,我们需要准备数据。
本文采用的数据是一个二分类问题,即在一个二维平面中,将数据点分为两类。
为了方便起见,我们可以手动生成一些数据点,或者使用Matlab自带的数据集如“fisheriris”。
2. BP神经网络模型的构建在Matlab中,我们可以使用“newff”函数来构建BP神经网络模型。
该函数可以接受多个参数,包括输入层、隐含层和输出层的节点数量,以及激活函数、学习算法等参数。
以下是构建一个包含1个输入层、1个隐含层和1个输出层的BP神经网络的示例代码:4. BP神经网络模型的测试在训练完成后,我们可以使用BP神经网络模型对测试数据进行分类预测。
在Matlab 中,我们可以使用“sim”函数来预测分类结果。
以下是对测试数据进行分类预测的示例代码:output=round(sim(net,test_data));其中,“output”是分类预测结果;“test_data”是测试数据。
5. 性能评估最后,我们需要对BP神经网络模型的分类性能进行评估。
在Matlab中,我们可以使用“confusionmat”函数来计算分类矩阵,进而计算分类准确率等性能指标。
以下是计算分类准确率的示例代码:[C,order]=confusionmat(test_label,output);accuracy=(C(1,1)+C(2,2))/sum(sum(C));其中,“C”是分类矩阵;“order”是分类标签;“accuracy”是分类准确率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
close all
clear
echo on
clc
% NEWFF——生成一个新的前向神经网络
% TRAIN——对BP 神经网络进行训练
% SIM——对BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本矢量
% P 为输入矢量
sqrs=[0.0000016420520 0.0000033513140 0.0000051272540 0.0000069694860 0.0000088776310 0.0000139339960 -0.0000594492310 -0.0001080022920 -0.0001476714860 ...
0.0000112367340 0.0002021567880 0.0008695337800 -0.0001189929700 -0.0000912336690 0.0002160472130 0.0006358522040 0.0012365884200 0.0049930394010 ]./0.001657904949 ;
sqjdcs=[0.0000399039272 0.0000805129702 0.0001218448339 0.0001639173001 0.0002067504102 0.0003172835720 0.0000421189848 0.0000870310694 0.0001350858140 ...
0.0001866997652 0.0002423599348 0.0004033628719 0.0000394450224 0.0000830935373 0.0001317612004 0.0001864881262 0.0002486249700 0.0004497441812 ]./0.000533286;
sqglmj=[0.0000068430669 0.0000147605347 0.0000240097285 0.0000349372747 0.0000480215187 0.0000954580176 0.0000005804238 0.0000011640375 0.0000017508228 ...
0.0000023407605 0.0000029338317 0.0000044301058 0.0000030813582 0.0000071511410 0.0000126615618 0.0000203910217 0.0000318028637 0.0001118629438 ]./0.000034868299 ;
s1=[0.0001773503110 0.0003553133430 0.0005338922010 0.0007130899610 0.0008929096590 0.00#### 0.0005747667510 0.0012111415700 0.0019195724060 ...
0.0027130110200 0.0036077110840 0.0064386221260 0.0005056929850 0.0010189193420 0.00#### 0.0020685403470 0.0026052286500 0.0039828224110 ]./0.00275071;
%s2=[25.9167875445 24.0718476818 22.2364947192 20.4105777318 18.5939487791 14.0920619223 990.2535888432 1040.4661104131 1096.3830297389 1159.029******* ...
% 1229.6925839338 1453.3788619676 164.1136642277 142.4834641073 121.6137611080 101.4436832756 81.9180522413 35.6044841634];
glkyl=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3];
glhyl=[2 4 6 8 10 15 2 4 6 8 10 15 2 4 6 8 10 15 ];
P=[sqrs;sqjdcs;sqglmj;s1]; %输入数据矩阵
T=[glkyl;glhyl]; %目标数据矩阵
echo on
clc
pause
clc
% 创建一个新的前向神经网络
net=newff(minmax(P),[20,2],{'tansig','purelin'});
pause
clc
echo off
clc
disp('1. L-M 优化算法TRAINLM'); disp('2. 贝叶斯正则化算法TRAINBR'); choice=input('请选择训练算法(1,2):');
figure(gcf);
if(choice==1)
echo on
clc
% 采用L-M 优化算法TRAINLM
net.trainFcn='trainlm';
pause
clc
% 设置训练参数
net.trainParam.epochs = 500;
net.trainParam.goal = 1e-6;
net=init(net);
% 重新初始化
pause
clc
elseif(choice==2)
echo on
clc
% 采用贝叶斯正则化算法TRAINBR
net.trainFcn='trainbr';
pause
clc
% 设置训练参数
net.trainParam.epochs = 500;
randn('seed',192736547);
net = init(net);
% 重新初始化
pause
clc
end
net.trainParam.epochs = 500; net.trainParam.goal = 1e-6; net.trainFcn='trainoss';
% 调用相应算法训练BP 网络[net,tr]=train(net,P,T);
pause
clc
% 对BP 网络进行仿真
A = sim(net,P);
% 计算仿真误差
E = T - A;
MSE=mse(E)
pause
clc。