圆心角圆周角练习题
圆周角的练习题初三

圆周角的练习题初三圆周角是指以圆心为顶点的角,它的度数等于所对弧的度数。
在初三的几何学中,圆周角是一个重要的概念,掌握圆周角的计算方法对于解决几何题目至关重要。
本文将为大家提供一些圆周角的练习题,帮助初三学生巩固和掌握这一知识点。
练习题一:已知直径AB的圆上一点C,连结AC和BC两条弦。
求∠ACB的度数。
解析:根据圆的性质可知,在圆上以弦为底的两个圆周角是等角,所以∠ACB = ∠AEB。
而直径AB是圆上的一条直径,它对应的圆周角为180度。
因此,∠ACB = ∠AEB = 180度。
练习题二:已知弧AC与弧BC分别是圆上的两个等分弧,且∠ACB = 20度。
求弧AC的度数。
解析:根据题目可知,∠ACB为圆周角,而弧AC和弧BC是等分弧,所以它们所对应的圆周角也相等,即∠ACB = ∠AEB。
而∠ACB 已知为20度,所以∠AEB = 20度。
而直径AB上的圆周角为180度,所以弧AC的度数为180度减去∠AEB的度数,即弧AC = 180度 - 20度 = 160度。
练习题三:已知直径AB的圆上一点C与D,连结AC和BD两条弦,交于点E。
若∠AEB = 70度,求证:∠ACD = 35度。
解析:要证明∠ACD = 35度,可以利用等角的性质。
根据题目已知,∠AEB = ∠AED = 70度。
而由圆周角的性质可知,∠ACD =∠AEB = 70度。
又∠ACD和∠ACB是同弦内角和对应的圆周角,所以有∠ACD = 180度 - ∠ACB。
将已知条件带入,∠ACD = 180度 - 70度= 110度。
由此可知,∠ACD的度数为35度。
练习题四:已知弦AB的长为8cm,圆心角∠AOB的度数为60度,求弦AB所对应的弧长。
解析:弦AB所对应的弧可以通过圆心角的度数与圆周长的比例来求解。
已知圆心角∠AOB的度数为60度,而整个圆的圆心角为360度,所以∠AOB所对应的弧所占圆周长的比例为60度/360度= 1/6。
圆心角圆周角练习题

圆心角圆周角练习题圆心角和圆周角是圆内角的一种特殊形式,它们在几何学中具有重要的地位。
本文将介绍关于圆心角和圆周角的一些练习题,帮助读者加深对这一概念的理解。
一、选择题1. 在同一个圆中,圆心角和对应的圆周角的关系是:A. 圆心角大于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角小于对应的圆周角2. 已知在同一个圆中,圆心角的度数为56°,则对应的圆周角的度数为:A. 56°B. 112°C. 224°3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数为:A. 30°B. 60°C. 120°4. 若∠ACD是圆O中的圆心角,且其度数为72°,则弧AB所对应的圆周角的度数为:A. 72°B. 144°C. 288°5. 在同一个圆中,圆心角和对应的弧所对应的圆周角之间的关系是:A. 圆心角小于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角大于对应的圆周角二、填空题1. 在同一圆中,一条弧的度数等于其所对应的圆周角的度数,则这条弧所对应的圆心角的度数为________。
2. 在圆O中,已知∠ACB是圆心角,则它所对应的圆周角的度数为________。
3. 在同一个圆中,圆心角的度数等于所对应的弧所对应的圆周角的度数,则该弧所对应的圆周角的度数为________。
三、解答题1. 在同一个圆中,圆心角和对应的圆周角的关系是什么?为什么?2. 已知在同一个圆中,圆心角的度数为60°,则对应的圆周角的度数是多少?并通过计算或推理进行解答。
3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数是多少?并通过计算或推理进行解答。
4. 若∠ACD是圆O中的圆心角,且其度数为90°,则弧AB所对应的圆周角的度数是多少?并通过计算或推理进行解答。
总结:本文通过选择题、填空题和解答题的形式,对圆心角和圆周角的概念进行了练习和探讨。
圆周角定理练习题

圆周角定理练习题在数学中,圆周角定理是一个非常重要的定理,它关于圆周角和圆心角的关系进行了阐述。
理解和掌握这个定理对于解决与圆相关的问题非常有帮助。
那么,现在我们来进行一些圆周角定理的练习题,以便加深对该定理的理解和运用能力。
练习题一:已知半径为r的圆上的弧AB所对的圆周角为θ,求弧AB的长度。
解答:根据圆周角定理可知,圆周角θ所对的弧的长度等于半径r乘以圆周角的弧度。
即弧AB的长度为rθ。
练习题二:已知弧CD的长度为s,求弧CD所对的圆周角。
解答:根据圆周角定理可知,弧CD所对的圆周角的弧度等于弧长s除以半径r。
即圆周角θ等于s/r。
练习题三:已知圆O的半径为r,圆弧AB所对的圆周角为θ,求圆O的周长。
解答:根据圆周角定理可知,圆周角θ所对的弧AB的长度为rθ。
因为圆O的周长等于圆周率π乘以直径d,而直径d等于半径r的两倍,所以圆O的周长为2πr。
练习题四:已知半径为r的圆上的弧AB的长度为s,求弧AB所对的圆周角。
解答:根据圆周角定理可知,弧AB所对的圆周角的弧度等于弧长s除以半径r。
即圆周角θ等于s/r。
练习题五:已知圆O的半径为r,圆上的弧AB所对的圆周角为θ,求弧AB所对的圆心角。
解答:根据圆周角定理可知,圆周角θ所对的圆心角的度数为360°乘以θ/2π。
通过以上练习题,我们可以更好地理解和应用圆周角定理。
掌握这个定理对于解决与圆有关的各种问题非常重要。
希望通过练习能够加深你对圆周角定理的理解,并培养你的数学思维和解题能力。
圆的定义圆心角圆周角训练题(含答案)

圆的定义圆心角圆周角训练题一、单选题(共17题;共34分)1.(2020九上·江苏月考)下列说法错误的是()A. 长度相等的两条弧是等弧B. 直径是圆中最长的弦C. 面积相等的两个圆是等圆D. 半径相等的两个半圆是等弧2.(2019九上·台安期中)下列说法中,不正确的个数是()①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆心的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A. 1个B. 2个C. 3个D. 4个3.(2019九上·沭阳月考)下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A. ①③B. ①③④C. ①②③D. ②④4.(2019九上·贾汪月考)下列说法中,错误的是()A. 半圆是弧B. 半径相等的圆是等圆C. 过圆心的线段是直径D. 直径是弦5.(2018九上·下城期末)下列命题中是真命题的为()A. 弦是直径B. 直径相等的两个圆是等圆C. 平面内的任意一点不在圆上就在圆内D. 一个圆有且只有一条直径6.(2020九上·浙江期中)如图,是的直径,,,则的度数是().A. 52°B. 57°C. 66°D. 78°7.(2019九上·柳江月考)如图,AB是⊙O的直径,,∠COD=34°,则∠AOE的度数是( )A. 51°B. 56°C. 68°D. 78°8.(2019九上·邯郸月考)如图,AB是O的直径, ,∠BOC=40°,则∠AOE的度数为()A. 30°B. 40°C. 50°D. 60°9.(2019九上·余杭期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A. 45º-αB. αC. 45º+αD. 25º+α10.(2020九下·南召月考)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A. AB=ADB. BC=CDC.D. ∠BCA=∠DCA11.(2020九上·无锡月考)在半径为的圆中,长度等于的弦所对的弧的度数为()A. B. C. 或 D. 或12.(2020·西湖模拟)如图,已知点A,B,C,D,E是⊙O的五等分点,则∠BAD的度数是()A. 36°B. 48°C. 72°D. 96°13.(2020·衢州模拟)如图,在⊙O中,=,∠A=40°,则∠B的度数是()A. 60°B. 40°C. 50°D. 70°14.(2020·乾县模拟)如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB 的度数是()A. 70°B. 80°C. 82°D. 85°15.(2019九上·龙湖期末)如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°16.(2019九上·道外期末)如图,,是的直径,,若,则的度数是()A. 32°B. 60°C. 68°D. 64°17.(2019九上·光明期中)如图,已知AB是⊙O的直径,∠CBA=25°,则∠D的度数为()A. B. C. D.参考答案一、单选题1.【答案】A【解析】【解答】解:A、等弧就是指能完全重合的两段弧,所以长度相等的弧的度数不一定是等弧,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确.故答案为:A.2.【答案】C【解析】【解答】在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.故答案为:C.3.【答案】A【解析】【解答】解:①直径相等的两个圆能重合,所以是等圆,①是真命题;②长度相等的弧不一定能重合,所以不一定是等弧,②是假命题;③圆中最长的弦是直径,通过圆心的弦是直径,③是真命题;④一条弦把圆分成两条弧,这两条弧可以是半圆,所以可能是等弧,④是假命题.故答案为:A.4.【答案】C【解析】【解答】解:A、半圆是弧,所以A选项的说法正确;B、半径相等的圆是等圆,所以B选项的说法正确;C、过圆心的弦为直径,所以C选项的说法错误;D、直径是弦,所以D选项的说法正确.故答案为:C.5.【答案】B【解析】【解答】解:弦不一定是直径,A是假命题;直径相等的两个圆是等圆,B是真命题;平面内的任意一点在圆上、圆内或圆外,C是假命题;一个圆有无数条直径,D是假命题;故选:B.6.【答案】C【解析】【解答】解:∵AB是⊙O的直径,,∠COD=38°,∴∠BOC=∠COD=∠DOE=38°.∴∠BOE=114°,∴∠AOE=180°-114°=66°.故答案为:C.7.【答案】D【解析】【解答】解:∵,∠COD=34°,∴∠BOC=∠COD=∠DOE=34°,∴∠AOE=180°-∠BOC-∠COD-∠DOE=180°-34°-34°-34°= 78° .故答案为:D.8.【答案】D【解析】【解答】解:∵,∠BOC=40°∴∠BOC=∠COD=∠EOD=40°∴∠BOE=120°∴∠AOE=180°-∠BOE=60°.9.【答案】A【解析】【解答】解:如图,连接CD,∵的度数为,∴∠DCE= ,∵BC=CD,∴∠CBD=∠BDC= ,∵∠C=90°,∴∠CBD+∠A=90°,∴,∴;故选择:A.10.【答案】B【解析】【解答】解:A.∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B.∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C.∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D.∠BCA与∠DCA的大小关系不确定,故本选项错误。
中考圆专题基础练习题

圆专题一、圆心角、圆周角1.如图,设⊙O的半径的为R,且AB=AC=R,则∠BAC=_______.2.如图,AB为⊙O的弦,∠OAB=75O ,则此弦所对的优弧是圆周的______。
4.如图,在△ABC 中,∠C 是直角,∠A=32O 18’ ,以点C 为圆心、BC 为半径作圆,交AB 于点D,交AC 于点E,则⋂BD 的度数是______。
5.如图,点O 是△ABC 的外心,已知∠ACB=100O ,则劣弧⋂AB 所对的∠AOB=______度。
6.如图,AB 是⊙O 的直径,CD 与AB 相交于点E, ∠ACD=60O , ∠ADC=50O ,则∠AEC=______度。
7.如图,以等腰△ABC 的边AB 为直径的半圆,分别交AC 、BC 于点D 、E,若AB=10, ∠OAE=30O,则DE=______。
8.在锐角△ABC 中,∠A=50O ,若点O 为外心,则∠BOC=_____;若点I 为内心,则∠BIC=______;若点H 为垂心,则∠BHC=________.9.若△ABC 内接于⊙O ,∠A=n O,则∠BOC=_______.10.如图,已知AB 和CD 是⊙O 相交的两条直径,连AD 、CB ,那么α和β的关系是( ) A.α=β B.β>21α C.β<21α D.β=2α 11.如图,在⊙O 中,弦AC 、BD 交于点E ,且⋂⋂⋂==CDBC AB ,若∠BEC=130O ,则∠ACD 的度数为( )A.15OB.30OC.80OD.105O12.如图,AB 为半圆的直径,AD ⊥AB,点C 为半圆上一点,CD ⊥AD,若CD=2,AD=3,求AB 的长。
13.如图,AO ⊥BO,AO 交⊙O 于点D ,AB 交⊙O 于点C, ∠A=27O,试用多种方法求⋂DC 、⋂BC 的度数。
14.求证:如果AB 和CD 为⊙O 内互相垂直的两条弦,那么∠AOC 和∠BOD 互补。
圆周角定理 专题练习

圆周角定理专题练习1.在圆周角定理中,已知∠CBO=45°,∠CAO=15°,求∠AOB的度数。
答案:B.60°。
2.在平面直角坐标系中,已知⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,),C(,6),求⊙A的半径。
答案:C.5.3.在圆周角定理中,已知点A,B,C在⊙O上,且∠A=50°,求∠BOC的度数。
答案:A.130°。
4.已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,求∠BCD的度数。
答案:A.116°。
5.已知圆心角∠BOC=78°,求圆周角∠BAC的度数。
答案:A.156°。
6.在圆周角定理中,已知OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,求∠XXX的度数。
答案:D.20°。
7.在圆周角定理中,已知AB是半圆的直径,点D是AC 的中点,∠ABC=50°,求∠DAB的度数。
答案:XXX°。
8.在圆周角定理中,已知A、B、C三点在⊙O上,且∠AOB=80°,求∠XXX的度数。
答案:D.40°。
9.已知AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=12∠BOD,求⊙O的半径。
答案:B.5.10.在圆周角定理中,已知DC是⊙O直径,XXX⊥CD于F,连接BC,DB,判断下列结论错误的是:答案:B.AF=XXX。
11.在圆周角定理中,已知点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,求AE的长。
答案:B.5.12.在圆周角定理中,已知点A、B、C在⊙O上,且∠C=30°,求∠AOB的度数。
答案:XXX°。
13.在圆周角定理中,已知⊙O中∠BAC=∠CDA=20°,求∠ABO的度数。
答案:B.70°。
圆周角定理练习题

圆周角定理练习题一、选择题1. 圆周角定理指出,圆周角的度数是它所对弧的中心角的度数的多少?A. 1/2B. 1/3C. 2倍D. 3倍2. 在圆中,如果一个圆周角的度数是30°,那么它所对的弧的中心角的度数是多少?A. 60°B. 90°C. 120°D. 180°3. 已知圆的半径为5,圆周角为40°,求该圆周角所对的弦长。
A. 4B. 5C. 8D. 10二、填空题4. 若圆周角α的度数为60°,则它所对的弧的中心角的度数为______。
5. 在圆中,如果圆周角的度数是中心角度数的一半,那么该圆周角所对的弧长是半径的______倍。
6. 已知圆的半径为r,圆周角为θ,根据圆周角定理,该圆周角所对的弦长为______。
三、判断题7. 圆周角定理只适用于圆的内部角。
(对/错)8. 如果一个圆周角的度数是90°,那么它所对的弧的中心角的度数是180°。
(对/错)9. 圆周角定理同样适用于圆的外部角。
(对/错)四、简答题10. 解释圆周角定理的含义,并给出一个实际应用的例子。
11. 如何利用圆周角定理计算圆内接四边形的对角线长度?五、计算题12. 在半径为10的圆中,有一个圆周角为60°,求该圆周角所对的弧长。
13. 已知圆的半径为8,圆周角为120°,求该圆周角所对的弦长。
14. 一个圆周角的度数是45°,求它所对的弧的中心角的度数,并计算该圆周角所对的弦长,如果圆的半径为15。
六、证明题15. 证明:如果两个圆周角所对的弧相等,那么这两个圆周角的度数也相等。
16. 证明:在同一个圆中,相等的圆周角所对的弧长也相等。
七、应用题17. 在一个半径为7的圆中,有一个圆周角为80°,求该圆周角所对的弦长,并计算该弦所对的圆心角的度数。
18. 如果在一个圆中,有一个圆周角的度数是圆心角度数的1/3,求这个圆周角的度数,如果圆心角的度数是120°。
浙教版九年级数学上册《圆心角、圆周角》练习题

2022-2023学年浙教版九年级数学上册《3.4圆心角、3.5圆周角》优生辅导综合练习题(附答案)一.选择题1.如图,AB为⊙O的直径,点C,D在⊙O上,若∠ADC=130°,则∠BAC的度数为()A.25°B.30°C.40°D.50°2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°3.如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=()A.85°B.75°C.70°D.65°4.如图,AB是⊙O的直径,∠D=32°,则∠AOC等于()A.158°B.58°C.64°D.116°5.如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°6.一副学生三角板放在一个圈里恰好如图所示,顶点D在圆圈外,其他几个顶点都在圆圈上,圆圈和AD交于点E,已知AC=8cm,则这个圆圈上的弦CE长是()A.6cm B.6cm C.4cm D.cm 二.填空题7.如图,AB为⊙O的直径,点C、D在⊙O上.若∠ACD=50°,则∠BAD的大小为°.8.如图所示,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.若∠BAC=44°,BD=2,则弧AE的度数是,DC的长为.9.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为.10.在半径为r的圆中,长度为r的弦所对的圆周角的度数是.11.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为.12.如图,A,B,C,D都是⊙O上的点,OA⊥BC,垂足为E,若∠OBC=20°,则∠ADC 等于度.13.如图,矩形ABCD中,AB=6,以点D为圆心,CD长为半径的圆弧与以BC为直径的半圆O相交于点E,若的度数为60°,则直径BC长为.14.如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在该圆内.将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C旋转到C′,则∠C′AB=°.15.如图,OA、OB是⊙O的半径且OA=OB=1,AB=,在⊙O上一点C,使BC=,则∠BAC的度数为.三.解答题16.如图,在下列4×4(边长为1)的网格中,已知△ABC的三个顶点A,B,C在格点上,请分别按不同要求在网格中描出一个格点D,并写出点D的坐标.(1)将△ABC绕点C顺时针旋转90°,画出旋转后所得的三角形,点A旋转后落点为D;(2)经过A,B,C三点有一条抛物线,请找到点D,使点D也落在这条抛物线上;(3)经过A,B,C三点有一个圆,请找到一个横坐标为2的点D,使点D也落在这个圆上,①点D的坐标为;②点D的坐标为;③点D的坐标为.17.如图,在⊙O中,B,C是的三等分点,弦AC,BD相交于点E.(1)求证:AC=BD;(2)连接CD,若∠BDC=25°,求∠BEC的度数.18.如图,AB是⊙O的直径,弦CD⊥AB于点M,连接CO,CB.(1)若AM=2,BM=8,求CD的长度;(2)若CO平分∠DCB,求证:CD=CB.19.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8,CD=24,求⊙O的直径.20.如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB交OC 于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.21.如图,AD为⊙O的直径,∠BAD=∠CAD,连接BC.点E在⊙O上,AB=BE,求证:(1)BC平分∠ACE;(2)AB∥CE.22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.23.如图,AB为⊙O的直径,C,D为⊙O上不同于A,B的两点,且OC平分∠ACD,延长AC与DB交于点E,过点C作CF⊥OC交DE于点F.(1)求证:∠A=∠E.(2)若BF=5,,求⊙O的半径.24.如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB 于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连接CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.参考答案一.选择题1.解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,∵∠ADC=130°,∴∠B=180°﹣130°=50°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠B=40°.故选:C.2.解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.3.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=15°,∴∠CAB=75°,∴∠BDC=∠CAB=75°,故选:B.4.解:∵∠D=32°,∴∠BOC=2∠D=64°,∴∠AOC=180°﹣64°=116°.故选:D.5.解:∵DE||BC,∴∠C=∠ADE=46°,∴的度数是92°,∴的度数为180°﹣92°=88°.故选:C.6.解:作AH⊥CE于H,如图,∠ACB=90°,∠ABC=∠BAC=45°,∠BAD=30°,∴∠BCE=∠BAD=30°,∴∠ACE=60°,在Rt△ACH中,CH=AC=×8=4cm,∴AH=CH=4cm,∵∠AEC=∠ABC=45°,∴AH=HE=4cm,∴CE=CH+HE=(4+4)cm.故选:C.二.填空题7.解:连接BD,∵BD是直径,∴∠ADB=90°,∵∠ABD和∠ACD所对的弧都是,∴∠ABD=∠ACD=50°,∴∠BAD=90°﹣∠ABD=90°﹣50°=40°,故答案为:40.8.解:连接OE,AD,∵OA=OE,∠BAC=44°,∴∠BAC=∠OEA=44°,∴∠AOE=92°,∴弧AE的度数是92°,∵AB为半圆O的直径,∴∠ADB=90°,∵AB=AC,∴AD是△ABC的中线,∴BD=CD,∵BD=2,∴CD=2.故答案为:92°,2.9.解:连接CD,∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,∵以点B为圆心,BC长为半径画弧,交边AB于点D,∴△BCD是等边三角形,∴CD=BC=2,故答案为:2.10.解:如图,作OD⊥AB,垂足为D,则由垂径定理知,点D是AB的中点,∴AD=AB=r,∴∠AOD=45°,∴∠AOB=2∠AOD=90°,∴∠ACB=∠AOB=45°,∵A、C、B、E四点共圆,∴∠ACB+∠AEB=180°,∴∠AEB=135°,故答案为:45°或135°.11.解:连接AO,CO,则∠AOC=2∠ADC,∠BOC=2∠BAC,∴∠AOB=∠BOC+∠AOC=2∠BAC+2∠ADC=2×15°+2×20°=70°,∵OA=OB,∴∠ABO=(180°﹣∠AOB)=55°,故答案为:55°.12.解:∵OA⊥BC,∴∠OEB=90°,∵∠OBC=20°,∴∠AOB=90°﹣∠OBC=70°,∴的度数是70°,∵OA⊥BC,OA过圆心O,∴=,∴的度数是70°,∴圆周角∠ADC==35°,故答案为:35.13.解:如图,连接BE,EC.∵BC是直径,∴∠BEC=90°,∵的度数=60°,∴∠BCE=×60°=30°,∵四边形ABCD是矩形,∴AB=CD=6,∠DCB=90°,∴∠DCE=90°﹣30°=60°,∵DE=DC,∴△DEC是等边三角形,∴EC=CD=6,∴BC=4.故答案为:.14.解:如图,分别连接OA、OB、OD′、OC、OC′;∵OA=OB=AB,∴△OAB是等边三角形,∴∠OAB=60°;同理可得△OAD′为等边三角形,∴∠OAD′=60°,∴∠D′AB=60°+60°=120°;∵AC′为正方形AB′C′D′的对角线,∴∠D′AC′=45°,∴∠C′AB=∠D′AB﹣∠D′AC′=120°﹣45°=75°.故答案为75.15.解:如图,作OH⊥BC于H.连接AC.∵OH⊥BC,∴BH=CH=,∴∠OBH=30°,∵OA=OB=1,AB=,∴AB2=OA2+OB2,∴∠AOB=90°,∴∠ACB=∠AOB=45°,∵∠ABC=∠ABO+∠OBC=45°+30°=75°,∴∠BAC=180°﹣75°﹣45°=60°,作点C关于直线OB的对称点C′,连接AC′,BC′,CC′,∵∠OBC=∠OBC′=30°,∴∠CBC′=60°,∵BC=BC′,∴△BCC′是等边三角形,∴∠BCC′=60°,∴∠BAC′=180°﹣60°=120°,故答案为60°或120°.三.解答题16.解:(1)如图,点B的对应点为B′,点A的对应点为点D(4,2);故①答案为:(4,2);(2)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,故点D(3,2),故②的答案为:(3,2);(3)AB中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心O为:(,),设点D(2,m),则OD=OB,()2+()2=(2﹣)2+(m﹣)2,解得:m=0或3(舍去0),故点D(2,3);故③的答案为(2,3).17.(1)证明:∵B,C是的三等分点,∴==,∴+=+,∴=,∴AC=BD;(2)解:如图,连接CD,AD,∵∠BDC=25°,==,∴∠CAD=∠BDA=∠BDC=25°,∵∠AED+∠CAD+∠BDA=180°,∴∠AED=180°﹣∠CAD﹣∠BDA=130°,∴∠BEC=∠AED=130°.18.解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8;(2)过点O作ON⊥BC,垂足为N,∵CO平分∠DCB,∴OM=ON,∴CB=CD.19.(1)证明:∵AB⊥CD,∴,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:设⊙O的半径为r,则OC=r,OE=OA﹣BE=r﹣8,∵AB⊥CD,∴CE=DE=CD=×24=12,在Rt△OCE中,122+(r﹣8)2=r2,解得r=13,∴⊙O的直径=2r=26.20.(1)证明:连接OE、CE,如图,∵OC⊥AB,∴∠AOC=90°,∵=2,∴∠COE=2∠AOE,∴∠COE=60°,而OE=OC,∴△OCE为等边三角形,∵DE∥AB,OC⊥AB,∴DE⊥OC,∴CD=OD;(2)解:∵⊙O的直径是4,∴OE=OC=CF=2,CD=OD=1,在Rt△ODE中,DE==,在Rt△EFD中,EF===2.21.证明:(1)∵AB=BE,∴,∴∠ACB=∠BCE,∴BC平分∠ACE;(2)连接OC、OB,∵OA、OB、OC是⊙O半径,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∵∠BAD=∠CAD,∴∠ABO=∠ACO,∵OB=OC,∴∠OBC=∠OCB,∴∠OBA+∠OBC=∠OCA+∠OCB,∴∠ABC=∠ACB,∴AB=AC,∵AB=BE,∴AC=BE,∴,∴∠ABC=∠ECB,∴AB∥CE.22.(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.23.(1)证明:由题意∠ACO=∠A=∠D.∵OC平分∠ACD,∴∠ACO=∠OCD,∴∠OCD=∠D.∴OC∥DE,∴∠E=∠ACO,∴∠E=∠A.(2)解:∵,∴设BD=3x,OB=4x,由(1)得∠E=∠A=∠CDE,OC∥DE.∵CF⊥OC,∴CF⊥DE,∴EF=DF=3x+5.∴BE=3x+10,∵∠E=∠A,∴AB=BE,即3x+10=8x,解得x=2∴半径OB=4x=8.24.(1)证明:连接CD.在Rt△ABC中,∵AC=CB,∴∠A=∠B=45°,∵CD=DB,∴∠DCB=∠B=45°,∵∠DEF=∠DCB,∴∠DEF=∠B.(2)解:①如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,∵∠EDF=∠CDB=90°,∴∠EDH=∠BDF=67.5°,∴∠BFD=180°﹣45°﹣67.5°=67.5°,∴∠BDF=∠BFD,∴BD=BF,∵AC=BC=4,∠ACB=90°,∴AB==4,∴BD=BF=2,∴CF=4﹣2.如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,CF=0.综上所述,满足条件的CF的值为0或2或4﹣2.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.∵CA=CB,AD=DB,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,CD=DA=DB∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∴△ADE≌△CDF(SAS),∴AE=CF,S△ADE=S△CDF,∵DC平分∠ACB,DM⊥AC,DN⊥BC,∴DM=DN,可得四边形DMCN是正方形,∴DM=CM=CN=DN,∵====,∴可以假设DN=3k,EC=4k,则AC=BC=6k,AE=CF=2k,∴==.(3)证明:连接OD,OQ,作ER⊥AB,OH⊥AB,FK⊥AB.∵ER∥OH∥FK,EO=OF,∴RH=HK∴OH=(ER+FK),∵ER=AE,FK=FB,∴OH=(AE+BF)=EF=OE=OQ,∴∠OQD=∠ODQ=45°,∴∠QOD=90°,∴∠QCD=45°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点三:弧、弦、圆心角与圆周角
1、圆心角定义:顶点在的角叫做圆心角
2. 在同圆或等圆中,弧、弦、圆心角之间的关系:
两个圆心角相等圆心角所对的弧(都是优弧或都是劣弧)相等圆心角所对的弦相等3、一个角是圆周角必须满足两个条件:
(1)角的顶点在________;(2)角的两边都是与圆有除顶点外的交点。
4. 同一条弧所对的圆周角有__________个
5.圆周角定理:
1
=
2
圆周角圆心角
6.圆周角定理推论:
(1)同弧或等弧所对的圆周角相等
(2)半圆或直径所对的圆周角相等
(3)90°的圆周角所对的弦是直径。
注意:“同弧或等弧”改为“同弦或等弦”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。
7. 圆内接四边形:
定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。
性质:圆内接四边形的对角
夯实基础
1.如果两个圆心角相等,那么( )
A .这两个圆心角所对的弦相等;
B .这两个圆心角所对的弧相等
C .这两个圆心角所对的弦的弦心距相等;
D .以上说法都不对
2.下列语句中不正确的有( )
①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③圆是轴对称图形,任何一条直径所在直线都是它的对称轴 ④长度相等的两条弧是等弧
A.3个
B.2个
C.1个
D.以上都不对
3. 在同圆或等圆中,下列说法错误的是( )
A .相等弦所对的弧相等
B .相等弦所对的圆心角相等
C .相等圆心角所对的弧相等
D .相等圆心角所对的弦相等
4、如图,在⊙O 中,AB AC ,∠B =70°,则∠A 等于 .
5、如图,在⊙O 中,若C 是BD 的中点,则图中与∠BAC 相等的角有( )
A.1个
B.2 个
C.3个
D.4个
6、如图,若AB 是⊙O 的直径,AB=10cm ,∠CAB=30°,则BC= cm .
7、如图,已知OA ,OB 均为⊙O 上一点,若∠AOB=80°,则∠ACB=( )
A .80°
B .70°
C .60°
D .40°
8、圆内接四边形ABCD ,∠A ,∠B ,∠C 的度数之比为3:4:6,则∠D 的度数为( )
A .60
B .80
C .100
D .120
9、已知如图,四边形ABCD 内接于⊙O ,若∠A =60°,则∠DCE = .
题型一:利用圆心角圆周角定理求角度
1、如图,AB 是 ⊙O 的直径,C ,D 是BE 上的三等分点,∠AOE=60°,则∠COE 是( )
A . 40° B. 60° C. 80° D. 120 °
2、如图,AB 是 ⊙O 的直径,BC
⌒ =BD ⌒ ,∠A=25°, 则∠BOD= .
3、已知圆O 的半径为5,弦AB 的长为5,则弦AB 所对的圆心角∠AOB = .
4、在⊙O 中,弦AB 所对的劣弧为圆周的
4
1,圆的半径等于12,则圆心角∠AOB = ;弦AB 的长为 .
5、如图,AB 是⊙O 的直径,点C 在⊙O 上,若∠A=40 º,则∠B 的度数为( )
A .80 º
B .60 º
C .50 º
D .40 º
6、如图,在△ABC 中,AB 为⊙O 的直径,∠B=60°,∠BOD=100°,则∠C 的度数为( ) O
E
D C B A O
D C
B
A
A.50°B.60°C.70°D.80°
7、如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()
A.40°
B.50°
C.60°
D.70°
8、如图,点A、B、C在⊙O上,∠AOC=60°,则∠ABC的度数是.
9、如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.
10、如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=..
11、如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=.
12、如图,在Rt △ABC 中,∠C=90°,∠A=26°,以点C 为圆心,BC 为半径的圆分别交AB 、AC 于点D 、点E ,则弧BD 的度数为( )
A .26°
B .64°
C .52°
D .128°
题型二:利用圆心角圆周角的性质定理求线段
1、在⊙O 中,圆心角∠AOB =90°,点O 到弦AB 的距离为4,则⊙O 的直径的长为( )
A.4
B.82
C.24
D.16
2、如图,⊙
O 是△ABC 的外接圆,∠B=60°,OP ⊥AC 于点P ,,则⊙O 的半径为(
)
A .
B .
C .8
D .12
3、如图,△ABC 内接于⊙O ,∠BAC=120°,AB=AC ,BD 为⊙O 的直径,AD=6,则DC= .
题型三:利用弧、弦、圆心角、圆周角之间的关系证明弧相等,线段相等,角度相等
1、如图,在⊙O 中 ,AB =AC ,∠ACB=60°,求证∠AOB =∠BOC =∠AOC .
333
B
2.如图,在⊙O 中,C 、D 是直径AB 上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N•
在⊙O 上.
(1)求证:AM =BN ;
(2)若C 、D 分别为OA 、OB 中点,则AM MN NB ==成立吗?
3、如图,以⊙O 的直径BC 为一边作等边△ABC,AB 、AC 交⊙O 于D 、E,求证:BD=DE=EC
4、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.
5、如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F .
(1)求证:CF ﹦BF ;
(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .
B
A
作业
1、如图,AB 是⊙O 的直径,==,∠COD=34°,则∠AEO 的度数是( )
A .51°
B .56°
C .68°
D .78°
2、圆中有两条等弦AB=AE ,夹角∠A=88°,延长AE 到C ,使EC=BE ,连接BC ,如图.则∠ABC 的度数是( )
A .90°
B .80°
C .69°
D .65°
3. 如图所示⊙O 中,已知∠BAC=∠CDA=20°,则∠ABO 的度数为 .
B
4. 如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,
(1)求证:△ABC是等边三角形;
(2)求圆心O到BC的距离OD.
5、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD
(1)求证:BD平分∠ABC;
(2)当∠ODB=30°时,求证:BC=OD.。