微机电系统功能材料、微机械制造技术概述.
微机电系统制造工艺综述

微机电系统制造工艺综述微机电系统(Microelectromechanical Systems,MEMS)是一种集成了微小机械、电子、光学和磁性等元件的微型系统。
它的制造工艺是一个复杂且多样化的过程,涉及到多个步骤和技术。
本文将综述微机电系统的制造工艺。
一、工艺流程微机电系统的制造工艺流程通常包括以下几个主要步骤:基片准备、薄膜沉积、光刻、腐蚀、封装和测试。
1. 基片准备:基片是微机电系统的主要载体,常用的材料包括硅、玻璃和塑料等。
在基片制备过程中,需要进行清洗、平整化和涂覆等处理,以保证后续工艺步骤的顺利进行。
2. 薄膜沉积:薄膜沉积是微机电系统制造中的关键步骤之一。
常用的薄膜沉积方法有化学气相沉积(CVD)、物理气相沉积(PVD)和溅射等。
通过这些方法可以在基片上沉积出具有特定功能的薄膜层,如金属、氧化物和聚合物等。
3. 光刻:光刻是微机电系统制造中的关键技术之一。
它通过光敏胶的光化学反应将图案转移到基片上,形成所需的结构和形状。
常用的光刻技术包括接触式光刻和投影光刻。
4. 腐蚀:腐蚀是微机电系统制造中的重要步骤之一。
通过化学腐蚀或物理腐蚀的方式,可以去除不需要的材料,形成所需的结构和形状。
常用的腐蚀方法有湿腐蚀、干腐蚀和等离子体腐蚀等。
5. 封装:封装是将微机电系统芯片封装在外部保护壳中的过程。
封装可以提供保护、连接和传感等功能。
常用的封装方法包括焊接、粘接和翻转芯片封装等。
6. 测试:测试是微机电系统制造中的最后一步,用于验证芯片的性能和可靠性。
常用的测试方法包括电学测试、力学测试和光学测试等。
二、工艺技术微机电系统制造中常用的工艺技术包括:纳米制造技术、表面微结构技术、微流控技术和微传感技术等。
1. 纳米制造技术:纳米制造技术是微机电系统制造中的前沿技术之一。
它利用纳米尺度的工具和材料进行加工和制造,实现微米和纳米级别的结构和器件。
常用的纳米制造技术包括扫描探针显微镜(SPM)、电子束曝光和离子束刻蚀等。
微机电系统概论

美国:微型机电系统
MEMS:
Micro electro mechanical system
日本:微机械
Micro
machine system
欧洲:微系统
Micro
微尺寸效应的影响
1、微尺寸效应对于元器件间的作用力的影响
随着尺寸的减小,与尺寸3次方成比例的像惯性力、 体积力及电磁力等的作用将明显减弱;而与尺寸2次方 成比例的像粘性力、表面力、静电力及摩擦力等的作用 则明显增强,并成为影响微机械性能的主要因素。 在微机械设计中,多利用静电力驱动。 在微机械中,又由于表面积与体积之比相对增大,使 热传导的速度也相对增加。 研究微机械中的摩擦、磨损的特性与机理是该领域的 主要课题之一。
To
In
Technology & Engineering
(low cost) (new applications)
Batch
fabrications Small size Performance (improvement)
质谱仪(Mass spectrograph)
惯性测量系统
什么是微机电系统
光 声 压力 温度 化学 其它 能量 传 感 器 模 拟 信 号 处 理 器 数 字 信 号 处 理 器 模 拟 信 号 处 理 器 执 行 器 信息 其它 信息处理单元 运动
感测量 通讯/接口单元
控制量
光/电/磁
机械与机电系统;宏观机电系统与微机电系统 微机电系统: 它是以微传感器、微执行器以及驱动和控制电 路为基本元器件组成的、可以活动和控制的、机 电合一的微机械装置。 特点: 1、学科交叉(力学、机械、电学、光学、电磁 学、生物、化学等学科)2、微型化、集成化和 智能化;3、低成本批量化;4、应用广泛(军民 两用)5、高新技术。
微机电系统MEMS简介

陀螺仪
总结词
用于测量或维持方向的传感器
详细描述
陀螺仪是一种基于角动量守恒原理的传感器,用于测量或维持方向。它通过测量物体旋转轴的方向变 化来工作,通常由高速旋转的陀螺仪转子组成。陀螺仪广泛应用于导航、姿态控制、游戏控制等领域 ,如智能手机、无人机和导弹制导系统等。
压力传感器
总结词
用于测量流体或气体压力的传感器
MEMS市场应用领域
消费电子
汽车电子
医疗健康
工业自动化
MEMS传感器在消费电子产品 中的应用广泛,如智能手机、 平板电脑、可穿戴设备等。这 些设备中的传感器用于运动检 测、加速度计、陀螺仪、气压 计等。
随着汽车智能化的发展, MEMS传感器在汽车领域的应 用也越来越广泛,如车辆稳定 性控制、安全气囊、发动机控 制等。
MEMS材料
单晶硅
单晶硅是MEMS制造中最常用的材料 之一,具有高强度、高刚度和良好的 化学稳定性。
多晶硅
多晶硅在MEMS制造中常用于制造柔 性结构,具有较好的塑性和韧性。
玻璃
玻璃在MEMS制造中常用于制造光学 器件,具有较高的透光性和稳定性。
聚合物
聚合物在MEMS制造中常用于制造生 物传感器和柔性器件,具有较好的生 物相容性和可塑性。
集成化
未来的MEMS系统将更加集 成化,能够将多个MEMS器 件集成在一个芯片上,实现 更高效、更低成本的应用。
03
CATALOGUE
MEMS传感器与器件
加速度传感器
总结词
用于测量 物体运动状态的传感器
详细描述
加速度传感器是一种常用的MEMS传感器,主要用于测量物体运动状态的加速度。它通常由质量块和弹性支撑结 构组成,通过测量质量块因加速度产生的惯性力来计算加速度值。加速度传感器广泛应用于汽车安全气囊系统、 手机和平板电脑的姿态控制、运动检测等领域。
微纳米机电系统的设计与制造技术

微纳米机电系统的设计与制造技术微纳米机电系统(Microelectromechanical Systems,MEMS)是指一种利用微纳米级别工艺制造的微型机电系统。
它由微型电路技术、微机电技术和微纳米制造技术等融合而成,具有体积小、重量轻、易于集成和制造成本低等优点。
MEMS技术已经广泛应用于电子信息、生物医学、能源环保、航空航天等领域,成为新一代的技术革命。
一、微纳米机电系统的设计原则微纳米机电系统的设计原则包括以下几点:1. 功能多样性:微纳米机电系统应该具有多种功能,可应用于不同的场景和需求。
2. 高性能:微纳米机电系统应该具有高性能特点,例如高灵敏度、高稳定性和高精度等。
3. 低功耗:微纳米机电系统应该具有低功耗特点,以延长产品的使用寿命和提高性能。
4. 集成度高:微纳米机电系统应该具有高集成度,可以实现多种功能的集成。
5. 可靠性好:微纳米机电系统应该具有良好的可靠性和稳定性,以保障产品的正常使用。
6. 制造成本低:微纳米机电系统应该具有低制造成本特点,以提高产品的市场竞争力。
二、微纳米机电系统的制造工艺微纳米机电系统的制造工艺包括以下几个方面:1. 制造材料:微纳米机电系统的制造需要用到高纯度的材料,如硅、氧化硅、氮化硅、聚合物等。
2. 制造技术:微纳米机电系统的制造涉及到微纳米加工技术、光刻技术、等离子体刻蚀技术、离子注入技术、化学气相沉积技术等。
3. 制造工艺流程:微纳米机电系统的制造工艺流程包括大面积晶圆清洗、材料生长、图形化处理、刻蚀、离子注入、衬底去除等步骤。
4. 检测和测试:微纳米机电系统的制造需要经过严格的检测和测试,包括结构形状、机械性能、电学性能等方面。
5. 包装和封装:微纳米机电系统的包装和封装需要采用特殊的方法,以确保产品的性能和可靠性。
三、微纳米机电系统的应用领域微纳米机电系统的应用领域非常广泛,包括以下几个方面:1. 生物医学:微纳米机电系统可以用于生物医学领域,如人体细胞和组织的刺激、诊断和治疗,体内药物释放和监测等。
微机电系统

微机电系统(MEMS)设计与应用读书报告学院:电子科学与应用物理学院专业:电子与通信工程班级:038班学号:**********姓名:***1.MEMS的概念MEMS是Micro-Electro-Mechanical-Systems的缩写。
即微机电系统,它是在微电子技术的基础上发展起来的,融合了硅微加工、LIGA技术和精密机械加工等多种微加工技术,并应用现代信息技术构成的微型系统。
它包括感知和控制外界信息(力、热、光、生、磁、化等)的传感器和执行器,以及进行信号处理和控制的电路。
它是指可以批量制作的集微型机构、微型传感器、微型执行器以及信号处理和控制电路、甚至外围接口、通信电路和电源等一体的微型器件或系统,其特征尺寸范围为1nm~10mm。
美国:MEMS— Micro-Electro-Mechanical-System欧洲:Micro System日本:Micro Machine其它:Micro & Nano 技术1.1微细加工的概念(1)、广义角度MEMS包含了各种传统精密加工方法和与传统精密加工方法完全不同的新方法,如切削加工、磨料加工、电火花加工、电解加工、化学加工、超声波加工、微波加工、等离子体加工、外延生长、激光加工、电子束加工、离子束加工、光刻加工、电铸加工等。
(2)、狭义角度MEMS主要指半导体集成电路制造技术,因为微细加工和超微细加工是在半导体集成电路制造技术的基础上形成并发展的,它们是大规模集成电路和计算机技术的技术基础,是信息时代、微电子时代、光电子时代的关键技术之一。
其加工方法多偏重于指集成电路制造中的一些工艺,如化学气相沉积、热氧化、光刻、离子束溅射、真空蒸镀以及整体微细加工技术。
1.2微细加工的发展历程19世纪的照相制版技术,诞生了光制造技术。
1959年,诺贝尔物理奖获得者Richard P. Feynman提出微型机械的概念。
1962年,加利福尼亚和贝尔实验室开发出微型硅压力传感器。
微机电系统及微细加工技术

微机电系统及微细加工技术微机电系统(Micro-Electro-Mechanical Systems,MEMS)是一种将微米尺度的机械结构、电子元器件和微处理器集成在一起的技术。
它利用微细加工技术来制造微小的机械设备和传感器,以实现对物理量、化学量和生物量的检测、测量和控制。
微机电系统的核心是微细加工技术,它是一种将传统的集成电路制造技术与微机械加工技术相结合的新技术。
通过微细加工技术,可以在硅基材料上制造出微小的机械结构和电子元器件,从而实现微机电系统的功能。
微机电系统的制造过程包括多个步骤,其中最关键的是光刻、薄膜沉积和蚀刻。
光刻是将光敏树脂涂覆在硅基材料上,并利用光刻机将图形投射到光敏树脂上,然后利用化学蚀刻将暴露在光下的部分去除,形成所需的结构。
薄膜沉积是将金属或者绝缘材料沉积在硅基材料上,用于制作电极、传感器等部件。
蚀刻是通过化学反应将硅基材料腐蚀,从而形成微小的结构。
微机电系统具有多种应用领域。
在生物医学领域,微机电系统可以用于制造微型传感器,实现对生物体内生理参数的监测。
在环境监测领域,微机电系统可以用于制造微型气体传感器,实现对空气中有害气体的检测。
在信息技术领域,微机电系统可以用于制造微型显示器和微摄像头,实现信息显示和图像采集。
此外,微机电系统还可以应用于汽车行业、航空航天领域和工业控制领域等。
微机电系统在实际应用中面临着一些挑战。
首先,微机电系统的制造过程非常复杂,需要高度精确的设备和工艺控制,制造成本较高。
其次,微机电系统的性能和可靠性受到环境和温度的影响,需要进行合理的封装和温度补偿。
最后,微机电系统的集成度和功耗也是一个挑战,需要在保证性能的同时尽量减小尺寸和功耗。
微机电系统是一种基于微细加工技术的新型集成技术,具有广泛的应用前景。
随着微细加工技术的不断发展和改进,微机电系统将在多个领域发挥重要作用,为人们的生活和工作带来更多便利和创新。
北京邮电大学 微机电系统(MEMS)的系统介绍与论述

VLSI系统设计与CAD方法期末论文电子工程学院2012111203班黄奕龙学号:2012140619微机电系统(MEMS)的系统介绍与论述摘要:微机电系统(英语:Microelectromechanical Systems,缩写为MEMS)是将微电子技术与机械工程融合到一起的一种工业技术,是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。
本文主要的内容是对其的原理特点与应用等进行了介绍和论述。
关键字:MEMS;微机电系统;Abstract:MEMS(Microelectromechanical Systems) is a an industrial technology which is an integration of microelectronic technology and mechanical engineering,and it can massify micro-institutions, micro sensors, micro actuators and signal processing and control circuits,interface, communicationand power into one system.This paper is to introduce and discuss the principle,characteristics and applications of MEMS. Keyword:MEMS; Microelectromechanical Systems;简介微机电系统(英语:Microelectromechanical Systems,缩写为MEMS)是将微电子技术与机械工程融合到一起的一种工业技术,它的操作范围在微米范围内。
比它更小的,在纳米范围的类似的技术被称为纳机电系统。
微机电系统MEMS简介

OMOM智能胶囊消化道内窥镜系统
• 金山科技集团研制的胶囊内镜
“胶囊内镜”是集图像处理、信息通讯、光电工程、生 物医学等多学科技术为一体的典型的微机电系统 (MEMS)高科技产品,由智能胶囊、图像记录仪、手 持无线监视仪、影像分析处理软件等组成。
工作时间:8小时左右 视 角 度:140度 视 距:3cm 分 辨 力:0.1mm 体 积:13mm ×27.9mm 重 量:<6g 外 壳:无毒耐酸耐碱高分子材料
20世纪80年代:
“表面微加工”技术在加速度计、压力传感器和其 他微电子机械结构制作中得到了应用。
20世纪80年代后期:
MEMS在世界范围内受到了广泛重视,在美国、欧洲和 亚洲,投入的研究资金和研究人员都以令人惊讶的速 度在大幅增长。MEMS正在处于蓬勃发展的关键时期, 不断地有新型器件和新型技术给予报道,人们见证了 基于MEMS技术的喷墨打印头、压力传感器、流量计、 加速度计、陀螺仪、非冷却红外成像仪和光学投影仪 等设备的不断开发和产业化的进程。(如同IC)
美国提出的硅固态 卫星的概念图,这 个卫星除了蓄电池 外,全由硅片构成 ,直径仅15cm。
生物医疗和医学上的应用
微机械技术在生物医疗中的应用尤其令人惊叹。例如:将微型传感器用 口服或皮下注射法送入人体,就可对体内的五脏六腑进行直接有效的监测。 将特制的微型机器人送入人体 ,可刮去导致心脏病的油脂沉积物,除去体内的 胆固醇,可探测和清除人体内的癌细胞 ,进行视网膜开刀时 ,大夫可将遥控机 器人放入眼球内,在细胞操作、细胞融合、精细外科、血管、肠道内自动送 药等方面应用甚广。 MEMS的微小可进入很小的器官和组织和能自动地进行细微精确的操作的特 点 ,可大大提高介入治疗的精度 ,直接进入相应病变地进行工作 ,降低手术风 险。同微电子,集成电路,IC,工艺,设计,器件,封装,测试,MEMS时,可进行基因 分析和遗传诊断 ,利用微加工技术制造各种微泵、微阀、微摄子、微沟槽、 微器皿和微流量计的器件适合于操作生物细胞和生物大分子。所以,微机械 在现代医疗技术中的应用潜力巨大,为人类最后征服各种绝症延长寿命带来 了希望。