北京市2018年普通高中学业水平考试合格性考试数学试卷
2018年北京市普通高中数学学业水平考试合格性考试

2018年北京市普通高中学业水平考试合格性考试第一部分 选择题(每小题3分,共75分) 1.已知集合{}0,1A =,{}1,1,3B =-,那么A B 等于A.{}0B.{}1C.{}0,1D.{}0,13,2.平面向量a,b 满足b =2a ,如果a =(1,2),那么b 等于 A.(-2,-4) B.(-2,4) C.(2,-4) D.(2,4)3.如果直线y =kx -1与直线y =3x 平行,那么实数k 的值为A.-1B.13-C.13D.34.如图,给出了奇函数()f x 的局部图像,那么(1)f 等于 A.-4B.-2C.2D.45.如果函数()(0,1)x f x a a a =≠且的图像经过点(2,9),那么实数a 等于A. B. C.2 D.36.某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为 A.60 B.90 C.100 D.1107.已知直线l 经过点O (0,0),且与直线x - y -3=0垂直,那么直线l 的方程是 A.x +y -3=0 B.x -y +3=0 C.x +y =0 D.x -y =08.如图,在矩形ABCD 中,E 为CD 中点,那么向量12AB AD +等于 A.AE B.ACC.DCD.BC9.实数131()log 12-+的值等于 A.1B.2C.3D.410.函数2y x =,3y x =,1()2x y =,lg y x =中,在区间(0,)+∞上为减函数的是A.2y x =B.3y x =C.1()2x y =D.lg y x =11.某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为 A.0.1 B.0.2 C.0.3 D.0.712.如果正ABC ∆的边长为1,那么AB AC ⋅等于 A.12-B.12C.1D.213.在ABC ∆中,角A,B,C 所对的边分别为,,a b c ,如果00=1045,30a A B ==,,那么b 等于 A.522B.52C.102D.20214.已知圆C: 2220x y x +-=,那么圆心C 到坐标原点O 的距离是A.12B.22C.1D.215.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,1A A ⊥底面ABCD ,121A A AB ==,,那么该四棱柱的体积为A.1B.2C.4D.816.函数3()5f x x =-的零点所在的区间是 A.(1,2)B.(2,3)C.(3,4)D.(4,5)17.在0sin50,0sin50-,0sin 40,0sin 40-四个数中,与相等的是 A.0sin50B.0sin50-C.0sin 40D.0sin 40-18.把函数sin y x =的图像向右平移4π个单位得到()y g x =的图像,再把()y g x =图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图像的解析式为 A.2sin()4y x π=- B.2sin(+)4y x π=C.1sin()24y x π=-D.1sin(+)24y x π=19.函数21()1x x f x x x -≤-⎧=⎨-⎩的最小值是 A.-1 B.0 C.1 D.220.在空间中,给出下列四个命题: ①平行于同一个平面的两条直线互相平行; ②垂直于同一个平面的两条直线互相平行; ③平行于同一条直线的两个平面互相平行; ④垂直于同一个平面的两个平面互相平行. 其中正确命题的序号是 A.① B.② C.③ D.④21.北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如下表:从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是 A.117B.417C.517D.91722.已知5sin ,(0,)132παα=∈,那么sin()4πα+A. B.23.在ABC ∆中,角A,B,C 所对的边分别为,,a b c ,如果3,2,22a b c ===,那么ABC∆的最大内角的余弦值为A.18B.14C.38D.1224.北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览。
2018年北京市合格性考试数学模拟试题1

2018北京市合格性考练习题(一)数 学第一部分 选择题(每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的1. 设全集I {0,1,2,3}=,集合{0,1,2}M =,{0,2,3}N =,则I M N =I ð ( ).A {1} .B {2,3} .C {0,1,2} .D ∅2. 函数5cos(2)6y x π=-的最小正周期是 ( ) .A 2π .B π .C 2π .D 4π3. 下列四个函数中,在区间(0,)+∞上是减函数的是 ( ).A 3log y x = .B 3xy = .C 12y x =.D 1y x=4. 若54sin =α,且α为锐角,则sin2α的值等于 ( ) .A 1225 .B 1225- .C 2425.D 2425- 5. 不等式2x x >的解集是 ( ).A (0)-∞,.B (01), .C (1)+∞, .D (,0)(1,)-∞+∞6. 在ABC ∆中,2a =,2b =,4A π∠=,则B ∠= ( ) .A 3π .B 6π .C 6π或56π .D 3π或23π7. 如果函数2x y c =+的图象经过点(2,5),则c = ( ) .A 1 .B 0 .C 1- .D 2-8. 已知过点(2,)A m -,(,4)B m 的直线与直线210x y +-=平行,则m 的值为 ( ).A 0 .B 2 .C 8- .D 109. 已知二次函数2()(2)1f x x =-+,那么 ( ).A (2)(3)(0)f f f << .B (0)(2)(3)f f f <<.C (0)(3)(2)f f f <<.D (2)(0)(3)f f f <<10.实数5lg 24lg )21(0++-的值为 ( ).A 1 .B 2 .C 3 .D 411.已知向量(3,1)=a ,(2,5)=-b ,则32-=a b ( ).A (2,7) .B (13,13) .C (2,7)- .D (13,7)-12.若函数()35191x x f x x x +⎧=⎨-+>⎩…,则()f x 的最大值为 ( ) .A 6 .B 7 .C 8 .D 913.直线a ,b 是不同的直线,平面α,β是不同的平面,下列命题正确的是 ( ).A 直线a ∥平面α,直线b ⊂平面α,则直线a ∥直线b.B 直线a ∥平面α,直线b ∥平面α,则直线a ∥直线b.C 直线a ∥直线b ,直线a ⊂平面α,直线b ⊂平面β,则平面αβ∥ .D 直线a ∥直线b ,直线a ⊄平面α,直线b ⊂平面α,则直线a ∥平面α14.过点(0,1)并且与直线23y x =-+垂直的直线方程是 ( ).A 210x y --= .B 220x y -+= .C 210x y -+= .D 220x y --=15. 某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青 年职工为7人,则样本容量为 ( ).A 35 .B 25 .C 15 .D 716. 从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是 ( ).A 12 .B 13.C 14 .D 16 17. 已知(1,0)A ,(3,4)B ,M 是线段AB 的中点,那么向量AM uuu r的坐标是 ( ).A (1,2) .B (1,2)-- .C (2,1) .D (2,1)--18. 在ABC ∆中,222a b c bc =++,则角A 为 ( ).A 30 .B 45 .C 120 .D 15019. 如图,一个空间几何体的正视图(或称主视图)与侧视图 (或称左视图)为全等的等边三角形,俯视图为一个半 径为1的圆,那么这个几何体的全面积为 ( ).A π .B 3π.C 2π .D 3π+20.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是 ( ).A 22 .B 4 .C 8 .D 16俯视图侧(左)视图正(主)视图21. 如图,在ABC ∆中,AD AB ⊥,3BC BD =uu u r uu u r ,1AD =uuu r,则AC AD ⋅=uuu r uuu r( ).A 1 .B 3 .C 2 .D 022.一天,某人要去公安局办理护照,已知公安局的工作时间为9:00至17:00,设此人在当天13:00至18:00之间任何时间去公安局的可能性相同,那么此人去公安 局恰好能办理护照的概率是 ( ).A 13.B 34.C 58.D 4523. 已知函数()f x 是定义在(0,)+∞上的增函数,当*n ∈N 时,*()f n ∈N .若 [()]3f f n n =,其中*n ∈N ,则(1)f = ( ).A 4 .B 3 .C 2 .D 124. 某同学为研究函数22()11(1)f x x x =+++- (01x 剟)的性质,构造了如图所示的两个边长为1的 正方形ABCD 和BEFC ,点P 是边BC 上的一个动点, 设CP x =,则()AP PF f x +=. 则参考上述信息,得 到函数()4()9g x f x =-的零点的个数是 ( ).A 0 .B 1 .C 2 .D 325. 某航空公司经营A 、B 、C 、D 这四个城市之间的客运业务. 它的部分机票价格如下: A —B 为2000元;A —C 为1600元;A —D 为2500元;B —C 为1200元;C —D 为900元. 若这家公司规定的机票价格与往返城市间的直线距离成正比,则B —D 的机票价格为 ( ) (注:计算时视A 、B 、C 、D 四城市位于同一平面内).A 1000元 .B 1200元 .C 1400元 .D 1500元第二部分 解答题 (共25分)26. (本小题满分6分)如图,在正四棱柱1111ABCD A B C D -中,AC 为底面ABCD 的对角线,E 为D D 1的中点.(Ⅰ)求证:1D B AC ⊥; (Ⅱ)求证:1D B AEC 平面∥.FD C B A EPEC 1D 1B 1C DA 1CB D A27.(本小题满分6分)已知函数()sin f x x =,x ∈R ,点(1,3)P -是角α终边上一点,[0,2]α∈π (Ⅰ)求()f α的值;(Ⅱ)设()()()g x f x f x α=++,求)(x g 在[0,]2π上的最大值和最小值. 28. (本小题满分6分)已知点(2,0)P 及圆C :226440x y x y +-++=. (Ⅰ)求圆心C 的坐标及半径r 的大小;(Ⅱ)设过点P 的直线1l 与圆C 交于M .N 两点,当4MN =时,求以线段MN 为直径的圆Q 的方程;(Ⅲ)设直线10ax y -+=与圆C 交于A ,B 两点,是否存在实数a ,使得过点(2,0)P 的直线2l 垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.29. (本小题满分7分)某地今年上半年空气污染较为严重,该地环保监测机构对近期每天的空气污染情况进行调查研究后发现,每一天中空气污染指数()f x 与时刻x (时)的函数关系为:25()log (1)21f x x a a =+-++,[0,24]x ∈.其中a 为空气治理调节参数,且(0,1)a ∈.(Ⅰ)若12a =,求一天中哪个时刻该市的空气污染指数最低; (Ⅱ)规定每天中()f x 的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a 应控制在什么范围内?数学试题答案26.证明:(Ⅰ)连接BD 交AC 于O ,在正四棱柱1111ABCD A B C D -中底面ABCD 是正方形.所以 AC BD ⊥.又因为1111ABCD A B C D -为正四棱柱, 所以1DD ⊥底面ABCD .又AC ⊂底面ABCD , 所以1DD AC ⊥. 因为AC BD ⊥,1BDDD D =,1,BD DD ⊂平面1BDD ,所以AC ⊥平面1BDD . 又因为1BD ⊂平面1BDD ,所以1AC BD ⊥. …………………3分 (Ⅱ)因为底面ABCD 是正方形,所以O 为BD 中点. 又因为E 为1DD 中点, 所以EO 为1BDD ∆的中位线. 所以1EO BD ∥.又EO ⊂平面EAC ,1BD ⊄平面EAC ,所以1//D B 平面AEC . …………………6分 27. 解:(Ⅰ)因为点(1,3)P -是角α终边上一点,题号 1 2 3 4 5 6 7 8 9 10 答案 A B D C D B A C A C 题号 11 12 13 14 15 16 17 18 19 20 答案 D C D B C DACBC题号 21 22 23 24 25 答案BDCCDOEC 1D 1B 1C ABD A 1所以22(1)(3)2r =-+=, 所以3sin 2y r α==,所以3()sin 2f αα==. …………………2分 (Ⅱ)由(Ⅰ)知3sin 2α=,1cos 2α=-,[0,2]α∈π. 所以23απ=. 所以()()()g x f x f x α=++2sin()sin 3x x π=++ 13sin cos sin 22x x x =-++13sin cos 22x x =+s i n ()3x π=+ 因为[0,]2x π∈, 所以336x ππ5π+剟. 所以,当32x ππ+=,即6x π=时,()g x 的最大值为1;当36x π5π+=,即2x π=时,()g x 的最小值为12. …………………6分28.解:(Ⅰ)因为226440x y x y +-++=,所以22(3)(2)9x y -++=,所以圆C 的圆心坐标为(3,2)-,半径为3. …………………2分 (Ⅱ)设圆心C 到直线1l 的距离为d .由圆C 圆心是(3,2)-,半径为3,及垂径定理得2294d -=,解得5d =.注意到圆心(3,2)-到点(2,0)P 的距离为5,所以P 为MN 中点. 所以,以MN 为直径的圆Q ,即为以(2,0)P 为圆心半径为2的圆.所以圆Q 的方程为22(2)4x y -+=. …………………4分 (Ⅲ)若过点(2,0)P 的直线2l 垂直平分弦AB ,则直线2l 必过圆心(3,2)-,所以220232l k --==--,所以直线10ax y -+=的斜率为12,所以12a =.所以直线10ax y -+=方程为1102x y -+=,即220x y -+=.计算圆心(3,2)-到直线220x y -+=的距离134235d ++=>,所以,不存在实数a 使得过点(2,0)P 的直线2l 垂直平分弦AB . ……………6分29.解:(Ⅰ)当12a =时,则251()log (1)222f x x =+-+…,当该地的空气污染指数最低时,即()2f x =时,251log (1)02x +-=. 所以121255x +==,解得4x =.所以一天中,4点时该地区的空气污染指数最低. …………………2分 (Ⅱ)设25log (1)t x =+,()21g t t a a =-++,[0,1]t ∈,则当024x 剟时,01t 剟,即310,()11,t a t a g t t a a t -++⎧=⎨++<⎩剟…显然()g t 在[0,]a 上是减函数,在(,1]a 上是增函数, 则max ()max{(0),(1)}f x g g =. 因为(0)31g a =+,(1)2g a =+,若(0)(1)21g g a -=-,解得12a >, 若(1)(0)210g g a -=-+…,解得12a ….所以max 120,2()1311,2a a f x a a ⎧+<⎪⎪=⎨⎪+<<⎪⎩… 又因为要使该地区每天的空气污染指数不超过3,即()3f x ….② 当102a <…时,5222a <+…,符合要求; ② 当112a <<时,由313a +≤,得23a …,故1223a <….综上所述,调节参数a 应控制在2(0,]3内. …………………7分。
北京市2018年普通高中学业水平考试合格性考试数学试卷

2018年北京市普通高中学业水平考试合格性考试数 学 试 卷考生须知1.考生要认真填写考场号和座位序号。
2.本试卷共6页,分为两个部分,第一部分为选择题,25个小题(共75分);第二部分为解答题,4个小题(共25分)。
3.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
4.考试结束后,考生应将试卷、答题卡放在桌面上,待监考员收回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.第一部分 选择题(每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的. 1.已知集合{0,1}A =,{1,1,3}B =-,那么AB 等于A .{0}B .{1}C .{0,1}D .{0,1,3} 2.平面向量a ,b 满足2=b a ,如果=(1,2)a ,那么b 等于A .(2,4)--B .(2,4)-C .(2,4)-D .(2,4) 3.如果直线1y kx =-与直线3y x =平行,那么实数k 的值为A .1-B .13-C .13D .3 4.如图,给出了奇函数()f x 的局部图像,那么(1)f 等于A .4-B .2-C .2D .45.如果函数()xf x a =(0a >,且1a ≠)的图像经过点(2,9),那么实数a 等于A .13 B .12C .2D .3 6.某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为 A .60 B .90 C .100 D .1107.已知直线l 经过点O (0,0),且与直线30x y --=垂直,那么直线l 的方程是A .30x y +-=B .30x y -+=C .0x y +=D .0x y -= 8.如图,在矩形ABCD 中,E 为CD 中点,那么向量12AB AD +等于 A .AE B .AC C .DC D .BC9.实数131()log 12-+的值等于A .1B .2C .3D .410.函数2y x =,3y x =,1()2x y =,lg y x =中,在区间(0,)+∞上为减函数的是A .2y x = B .3y x = C .1()2x y = D .lg y x =11.某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.2,那么本次抽奖活动中,中奖的概率为A .0.1B .0.2C .0.3D .0.7 12.如果正ABC ∆的边长为1,那么AB AC ⋅等于A .12-B .12C .1D .2 13.在ABC ∆中,角A ,B ,C 所对的边分别为,,a b c ,如果=10a ,45A =︒,30B =︒,那么b 等于A .522B .52C .102D .202 14.已知圆C :2220x y x +-=,那么圆心C 到坐标原点O 的距离是A .12 B .22C .1D .2 15.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,1A A ⊥底面ABCD ,12A A =,1AB =,那么该四棱柱的体积为A .1B .2C .4D .816.函数3()5f x x =-的零点所在的区间是A .(1,2)B .(2,3)C .(3,4)D .(4,5)17.在sin 50︒,sin50-︒,sin 40︒,sin 40-︒四个数中,与sin130︒相等的是A .sin 50︒B .sin50-︒C .sin 40︒D .sin 40-︒ 18.把函数sin y x =的图像向右平移4π个单位得到()y g x =的图像,再把()y g x =图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图像的解析式为A .2sin()4y x π=-B .2sin(+)4y x π=C .1sin()24y x π=-D .1sin(+)24y x π=19.函数2,1(),1x x f x x x -≤-⎧=⎨>-⎩的最小值是A .1-B .0C .1D .2 20.在空间中,给出下列四个命题:① 平行于同一个平面的两条直线互相平行; ② 垂直于同一个平面的两条直线互相平行; ③ 平行于同一条直线的两个平面互相平行; ④ 垂直于同一个平面的两个平面互相平行. 其中正确命题的序号是A .①B .②C .③D .④21.北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如下表:从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克立方米的概率是A .117 B .417 C .517 D .91722.已知5sin 13α=,(0,)2πα∈,那么sin()4πα+A .26-B .26-C .26D .2623.在ABC ∆中,角A ,B ,C 所对的边分别为,,a b c ,如果3a =,b =,c =那么ABC ∆的最大内角的余弦值为 A .18 B .14 C .38 D .1224.北京故宫博物院成立于1925年10月10日,是在明朝、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观总人次的折线图.根据图中信息,下列结论中正确的是A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过...50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过1600万25.阅读下面题目及其证明过程,在横线处应填写的正确结论是-中,平面P AC⊥平面ABC,BC⊥AC.如图,在三棱锥P ABC求证:BC⊥P A.证明:因为平面P AC⊥平面ABC,平面PAC平面ABC=AC,BC⊥AC,BC⊂平面ABC,所以.因为P A⊂平面P AC,所以BC⊥P A.A.AB⊥底面P AC B.AC⊥底面PBCC.BC⊥底面P AC D.AB⊥底面PBC第二部分 解答题(共25分)26.(本小题满分7分)已知函数()sin()6f x A x π=+,(0)1f =.(Ⅰ)A = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)函数()f x 的最小正周期T = ;(将结果直接填写在答题卡...的相应位置上) (Ⅲ)求函数()f x 的最小值及相应的x 的值.27.(本小题满分7分)如图,在三棱锥P ABC -中,P A ⊥底面ABC ,AB ⊥BC ,D ,E ,分别为PB ,PC 的中点.(Ⅰ)求证:BC // 平面ADE ; (Ⅱ)求证:BC ⊥平面P AB .28.(本小题满分6分)已知圆O :222x y r +=(0r >)经过点A (0,5),与x 轴正半轴交于点B .(Ⅰ)r = ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)圆O 上是否存在点P ,使得PAB ∆的面积为15 ? 若存在,求出点P 的坐标;若不存在,说明理由.29.(本小题满分5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如下表所示:现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式30128rxye-=+(0r>).(Ⅰ)r=;(将结果直接填写在答题卡...的相应位置上)(Ⅱ)如果这棵行道树的正上方有35KV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500KV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m ?2018年北京市普通高中学业水平考试合格性考试数学试卷答案及评分参考说明1.第一部分选择题,机读阅卷.2.第二部分解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解答不同,正确者可参照评分标准给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第一部分选择题(共75分)第二部分解答题(共25分)。
北京市中国人民大学附属中学2018年春季普通高中毕业会考数学试题

(将结果直接填写在答题卡的相应位置上)
(Ⅱ)已知
,若使得函数
是区间 上的“封闭函数”的 a值恰好有
2个,试求 k的所有可能取值.
北京市中国人民大学附属中学 2018年春季普通高中毕业会考 数学试卷 第 7页(共 8页)
本页以下为草稿纸
北京市中国人民大学附属中学 2018年春季普通高中毕业会考 数学试卷 第 8页(共 8页)
分别表示两组教师比赛成绩的平均值;
分别
表示两组教师比赛成绩的标准差,那么正确的结论是
A.
;
B.
;
C.
;
D.
;
甲
乙
9 79 2 85 4 91
16.已知圆 : A.内含
17.函数 A.
,圆 : B.相交
,那么这两个圆的位置关系是
C.相切
D.外离
的零点所在的区间为
B.
C.
D.
18.已知实数 满足条件
,那么目标函数
北京市中国人民大学附属中学 2018年春季普通高中毕业会考 数学参考答案与评分标准 第 3/3页
北京市中国人民大学附属中学 2018年春季普通高中毕业会考 数学试卷 第 4页(共 8页)
A.甲 B.乙 C.丙 D.丁
北京市中国人民大学附属中学 2018年春季普通高中毕业会考 数学试卷 第 5页(共 8页)
北京市中国人民大学附属中学 2018年春季普通高中毕业会考
数学试卷
第二部分 非选择题(每小题 5分,共 25分)
30.(本小题满分 5分)
解:(Ⅰ)②③……………………………………………………………………………2分
(Ⅱ)因为 x∈ ,所以
,由题意,得:
,即
2018年北京普通高中会考数学真题及答案

2018年北京普通高中会考数学真题及答案第一部分 选择题(每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的. 1.已知集合A={1,2,3},B={1,2},那么A ∩B 等于( ) A .{3} B .{1,2}C .{1,3}D .{1,2,3}2.已知直线l 经过两点P (1,2),Q (4,3),那么直线l 的斜率为( ) A .﹣3 B .C .D .33.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( ) A .120 B .40 C .30 D .204.已知向量,,且,那么x 的值是( )A .2B .3C .4D .65.给出下列四个函数①;②y=|x|; ③y=lgx ; ④y=x 3+1,其中奇函数的序号是( ) A .①B .②C .③D .④6.要得到函数的图象,只需将函数y=sinx 的图象( ) A .向左平移个单位 B .向右平移个单位 C .向上平移个单位D .向下平移个单位7.在△中,,,,那么角等于( ) ABC 2a =b =3c =B A .π6B .π4C .π3D .5π128.给出下列四个函数: ; ; ; . ○11y x =-○22y x =○3ln y x =○43y x =其中偶函数的序号是( ) A . ○1B . ○2C . ○3D . ○49.等于( )A .1B .2C .5D .610.如果α为锐角,,那么sin2α的值等于( ) A .B .C .D .11.等于22log8log4D岁的人数为( )A.12 B .28 C.69 D.9114.某几何体的三视图如图所示,那么该几何体的体积是()15.已知向量满足,,,那么向量的夹角为( )A.30° B.60° C.120° D.150°16.某学校高一年级计划在开学第二周的星期一至星期五进行“生涯规划”体验活动,要求每名学生选择连续的两天参加体验活动,那么某学生随机选择的连续两天中,有一天是星期二的概率为( )A. B. C. D.17.函数的零点个数为( )A.0 B.1 C.2 D.318.已知圆M:x2+y2=2与圆N:(x﹣1)2+(y﹣2)2=3,那么两圆的位置关系是( )A.内切 B.相交 C.外切 D.外离19.已知圆与圆相外切,那么等于()221x y+=222(3)(0)x y r r-+=>rA.1B.2 C.3D.420.在△ABC中,,那么sinA等于( )A.B. C. D.1021.某地区有网购行为的居民约万人. 为了解他们网上购物消费金额占168日常消费总额的比例情况,现从中随机抽取人进行调查,其数据如右表20%所示. 由此估计,该地区网购消费金额占日常消费总额的比例在及以下的人数大约是1.68 3.21 4.41 5.59A.万 B.万 C.万 D.万22.在正方体ABCD﹣A1B1C1D1中,给出下列四个推断:①A1C1⊥AD1 ②A1C1⊥BD ③平面A1C1B∥平面ACD1 ④平面A1C1B⊥平面BB1D1D其中正确的推断有( )A.1个 B.2个 C.3个 D.4个23.如图,在△ABC中,∠BAC=90°,AB=3,D在斜边BC上,且CD=2DB,那的值为( )A.3 B.5 C.6 D.924.从2008年京津城际铁路通车运营开始,高铁在过去几年里快速发展,并在国民经济和日常生活中扮演着日益重要的角色. 下图是2009年至2016年高铁运营总里程数的折线图(图中的数据均是每年12月31日的统计结果).根据上述信息,下列结论中正确的是()A.截止到2015年12月31日,高铁运营总里程数超过2万公里B.2011年与2012年新增高铁运营里程数之和超过了0.5万公里C.从2010年至2016年,新增高铁运营里程数最多的一年是2014年D.从2010年至2016年,新增高铁运营里程数逐年递增25.一个几何体的三视图如图所示,那么该几何体是( )A.三棱锥B.四棱锥C.三棱柱D.四棱柱选择题答题卡题号 1 2 3 4 5 6 7 8答案 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25第二部分 解答题(每小题5分,共25分)26.已知函数f (x )=1﹣2sin 2x (1)= ;(2)求函数f (x )在区间上的最大值和最小值.27.如图,在三棱锥P ﹣ABC 中,PB ⊥BC ,AC ⊥BC ,点E ,F ,G 分别为AB ,BC ,PC ,的中点(1)求证:PB ∥平面EFG ; (2)求证:BC ⊥EG .28. 如图,在三棱锥中,,.,分别是,的中点.P ABC -PB PC =AB AC =D E BC PB (Ⅰ)求证:平面; //DE PAC (Ⅱ)求证:平面平面. ABC ⊥PAD29.已知点P(﹣2,2)在圆O:x2+y2=r2(r>0)上,直线l与圆O交于A,B两点.(1)r= ;(2)如果△PAB为等腰三角形,底边,求直线l的方程.30.已知圆M:2x2+2y2﹣6x+1=0.(1)圆M的圆心坐标为 ;(2)设直线l过点A(0,2)且与x轴交于点D.与圆M在第一象限的部分交于两点B,C.若O为坐标原点,且△OAB与△OCD的面积相等,求直线l的斜率.参考答案选择题答题卡题号 1 2 3 4 5 6 7 8 答案 B C B A A B C B9 10 11 12 13 14 15 16 17B A A D D A B D B18 19 20 21 22 23 24 25B B B DC C C A第二部分解答题(每小题5分,共25分)26.已知函数f(x)=1﹣2sin2x(1)= ;(2)求函数f(x)在区间上的最大值和最小值.【解答】解:函数f(x)=1﹣2sin2x=cos2x,(1)=cos(2×)=;故答案为:;(2)x∈[﹣,],∴2x∈[﹣,],∴cos2x∈[0,1],∴当x=﹣时,f(x)取得最小值0,x=0时,f(x)取得最大值1,∴函数f(x)在区间上的最大值为1,最小值为0.27.如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点(1)求证:PB∥平面EFG;(2)求证:BC⊥EG.【解答】证明:(1)∵点F,G分别为BC,PC,的中点,∴GF∥PB,∵PB⊄平面EFG,FG⊂平面EFG,∴PB∥平面EFG.(2)∵在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点,∴EF∥AC,GF∥PB,∴EF⊥BC,GF⊥BC,∵EF∩FG=F,∴BC⊥平面EFG,∵EG⊂平面EFG,∴BC⊥EG.28. 如图,在三棱锥中,,.,分别是,的中点.P ABC -PB PC =AB AC =D E BC PB (Ⅰ)求证:平面; //DE PAC (Ⅱ)求证:平面平面.ABC ⊥PAD (Ⅰ)证明:因为 ,分别是,的中点,D E BC PB 所以 .//DE PC 因为 平面,平面,DE ⊄PAC PC ⊂PAC 所以 平面. ……………………………………2分//DE PAC (Ⅱ)证明:因为 ,,是的中点,PB PC =AB AC =D BC 所以 ,. PD BC ⊥AD BC ⊥因为 , PD AD D = 所以 平面. BC ⊥PAD 因为 平面,BC ⊂ABC 所以 平面平面. ……………………………………5分ABC ⊥PAD29.已知点P (﹣2,2)在圆O :x 2+y 2=r 2(r >0)上,直线l 与圆O 交于A ,B(1)r= ;(2)如果△PAB 为等腰三角形,底边,求直线l 的方程.【解答】解:(1)∵点P (﹣2,2)在圆O :x 2+y 2=r 2(r >0)上, ∴r=2.…(1分)(2)因为△PAB 为等腰三角形,且点P 在圆O 上, 所以PO ⊥AB . 因为PO 的斜率, 所以可设直线l 的方程为y=x+m .由得2x 2+2mx+m 2﹣8=0.△=4m 2﹣8×(m 2﹣8)=64﹣4m 2>0, 解得﹣4<m <4.设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2), 可得. 所以.解得m=±2. 所以直线l 的方程为x ﹣y+2=0,x ﹣y ﹣2=0.…(5分) 30.已知圆M :2x 2+2y 2﹣6x+1=0. (1)圆M 的圆心坐标为 ;(2)设直线l过点A(0,2)且与x轴交于点D.与圆M在第一象限的部分交于两点B,C.若O为坐标原点,且△OAB与△OCD的面积相等,求直线l的斜率.【解答】解:(1)圆M:2x2+2y2﹣6x+1=0.转化为:.则圆M的圆心坐标为:().(2)直线l过点A(0,2)且与x轴交于点D.则:设直线的方程为:y=kx+2.与圆M在第一象限的部分交于两点B,C.且△OAB与△OCD的面积相等,则:AB=CD.即:AM=DM.设点A(x,0)则:,整理得:x2﹣3x﹣4=0,解得:x=4或﹣1(负值舍去).则:A(4,0)由于点A在直线y=kx+2上,解得:k=﹣故直线的斜率为﹣.故答案为:(,0);直线的斜率为﹣.。
普通高中学业水平考试数学试卷(解析版)

2018年北京市普通高中学业水平考试数学试卷一、选择题(本大题共25小题,共75.0分)1. 已知集合A={0,1},B={−1,1,3},那么A∩B等于()A. {0}B. {1}C. {0,1}D. {0,1,3} 【答案】B【解析】解:∵集合A={0,1},B={−1,1,3},∴A∩B={1}.故选:B.利用交集定义直接求解.本题考查交集的求法,考查交集定义、不等式等基础知识,考查运算求解能力,是基础题.2. 平面向量a,b满足b=2a,如果a=(1,2),那么b等于()A. (−2,−4)B. (−2,4)C. (2,−4)D. (2,4)【答案】D【解析】解:∵平面向量a,b满足b=2a,a=(1,2),∴b=2(1,2)=(2,4).故选:D.利用数乘向量运算法则直接求解.本题考查向量的求法,考查数乘向量运算法则等基础知识,考查运算求解能力,是基础题.3. 如果直线y=kx−1与直线y=3x平行,那么实数k的值为()A. −1B. −13C. 13D. 3【答案】D【解析】解:∵直线y=kx−1与直线y=3x平行,∴k=3,经过验证满足两条直线平行.故选:D.利用两条直线相互平行的充要条件即可得出.本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于基础题.4. 如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A. −4B. −2C. 2D. 4【答案】B【解析】解:根据题意,由函数的图象可得f(−1)=2,又由函数为奇函数,则f(1)=−f(−1)=−2,故选:B.根据题意,由函数的图象可得f(−1)的值,结合函数的奇偶性可得f(1)的值,即可得答案.本题考查函数的奇偶性的性质,关键是掌握函数单调性的性质,属于基础题.5. 如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A. 2B. 3【答案】B 【解析】解:指数函数f(x)=a x(a>0,a≠1)的图象经过点(2,9),∴9=a2,解得a=3,故选:B.由题意代入点的坐标,即可求出a的值.本题考查了指数函数的图象和性质,属于基础题.6. 某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A. 60B. 90C. 100D. 110【答案】A【解析】解:根据分层抽样的定义和题意,则高中学生中抽取的人数600×1801800=60(人).故选:A.根据分层抽样的定义和题意知,抽样比例是1801800,根据样本的人数求出应抽取的人数本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在所求的层中抽取的个体数目.7. 已知直线l经过点O(0,0),且与直线x−y−3=0垂直,那么直线l的方程是()A. x+y−3=0B. x−y+3=0C. x+y=0D. x−y=0【答案】C【解析】解:∵直线l与直线x−y−3=0垂直,∴直线l的斜率为−1,则y−0=−(x−0),即x+y=0故选:C.由题意可求出直线l的斜率,由点斜式写出直线方程化简即可.本题考查了直线方程的求法,属于基础题.8. 如图,在矩形ABCD中,E为CD中点,那么向量12AB+AD等于()A. AEB. ACC. DCD. BC【答案】A【解析】解:在矩形ABCD中,E为CD中点,所以:12AB=DE,则:12AB+AD=AD+DE=AE.故选:A.直接利用向量的线性运算求出结果.本题考查的知识要点:向量的线性运算的应用,主要考查学生的运算能力和转化能力,属于基础题型.9. 实数(12)−1+log31的值等于()A. 1B. 2C. 3D. 4【答案】B【解析】解:(12)−1+log31=2+0=2.故选:B.直接利用有理指数幂及对数的运算性质求解即可.本题考查了有理指数幂及对数的运算性质,是基础题.10. 函数y=x2,y=x3,y=(12)x,y=lg x中,在区间(0,+∞)上为减函数的是()A. y=x2B. y=x3C. y=(12)x D. y=lg x【答案】C【解析】解:根据题意,函数y=x2,为二次函数,在区间(0,+∞)为增函数;y=x3,为幂函数,在区间(0,+∞)为增函数;y=(12)x,为指数函数,在区间(0,+∞)上为减函数;y=lg x中,在区间(0,+∞)为增函数;故选:C.根据题意,依次分析4个函数在区间(0,+∞)的单调性,综合即可得答案.本题考查函数单调性的判定,关键是掌握常见函数的单调性,属于基础题.11. 某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A. 0.1B. 0.2C. 0.3D. 0.7【答案】B【解析】解:由于中一等奖,中二等奖,为互斥事件,故中奖的概率为0.1+0.1=0.2,故选:B.根据互斥事件概率加法公式即可得到其发生的概率的大小.此题考查概率加法公式及互斥事件,是一道基础题.12. 如果正△ABC的边长为1,那么AB⋅AC等于()A. −12B. 12C. 1D. 2【答案】B【解析】解:∵正△ABC的边长为1,∴AB⋅AC=|AB|⋅|AC|cos A=1×1×cos60∘=12,故选:B.根据向量的数量积的运算性质计算即可.本题考查了向量的数量积的运算,是一道基础题.13. 在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45∘,B=30∘,那么b等于()A. 522B. 52C. 102D. 202【答案】B 【解析】解:由正弦定理asin A=bsin B=csin C,得10sin45=bsin30,解得:b=52,故选:B.根据正弦定理直接代入求值即可.本题考查了正弦定理的应用,考查解三角形问题,是一道基础题.14. 已知圆C:x2+y2−2x=0,那么圆心C到坐标原点O的距离是()A. 12B. 22C. 1D. 2【答案】C【解析】解:根据题意,圆C:x2+y2−2x=0,其圆心C为(1,0),则圆心C到坐标原点O的距离d=(0−1)2+(0−0)2=1;故选:C.根据题意,由圆的一般方程分析可得圆心C的坐标,进而由两点间距离公式,计算可得答案.本题考查圆的一般方程,涉及两点间距离公式,属于基础题.15. 如图,在四棱柱ABCD−A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB=1,那么该四棱柱的体积为()A. 1B. 2C. 4D. 8【答案】B【解析】解:∵在四棱柱ABCD−A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB=1,∴该四棱柱的体积为V=S正方形ABCD×AA1=12×2=2.故选:B.该四棱柱的体积为V=S正方形ABCD×AA1,由此能求出结果.本题考查该四棱柱的体积的求法,考查四棱柱的性质等基础知识,考查运算求解能力,是基础题.16. 函数f(x)=x3−5的零点所在的区间是()A. (1,2)B. (2,3)C. (3,4)D. (4,5)【答案】A【解析】解:由函数f(x)=x3−5可得f(1)=1−5=−4<0,f(2)=8−5=3>0,故有f(1)f(2)<0,根据函数零点的判定定理可得,函数f(x)的零点所在区间为(1,2),故选:A.求得f(1)f(2)<0,根据函数零点的判定定理可得函数f(x)的零点所在的区间.本题主要考查函数的零点的判定定理的应用,属于基本知识的考查.17. 在sin50∘,−sin50∘,sin40∘,−sin40∘四个数中,与sin130∘相等的是()A. sin50∘B. −sin50∘C. sin40∘D. −sin40∘【答案】A【解析】解:由sin130∘=sin(180∘−50∘)=sin50∘.∴与sin130∘相等的是sin50∘故选:A.利用诱导公式化简可得答案.题主要考察了诱导公式的应用,属于基本知识的考查.18. 把函数y=sin x的图象向右平移π4个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A. y=2sin(x−π4) B. y=2sin(x+π4) C. y=12sin(x−π4) D. y=12sin(x+π4)【答案】A【解析】解:把函数y=sin x的图象向右平移π4个单位得到y=g(x)=sin(x−π4)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为y=2sin(x−π4),故选:A.由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.19. 函数f(x)=−x x≤−1x2x>−1的最小值是()A. −1B. 0C. 1D. 2【答案】B【解析】解:当x>−1时,f(x)=x2的最小值为f(0)=0;当x≤−1时,f(x)=−x递减,可得f(x)≥1,综上可得函数f(x)的最小值为0.故选:B.分别讨论两段函数的单调性和最值,即可得到所求最小值.本题考查分段函数的最值求法,注意分析各段的单调性和最值,考查运算能力,属于基础题.20. 在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A. ①B. ②C. ③D. ④【答案】B【解析】解;对于①,平行于同一个平面的两条直线互相平行或相交或异面,故①错误;对于②,垂直于同一个平面的两条直线互相平行,故②正确;对于③,平行于同一条直线的两个平面互相平行或相交,故③错误;对于④,垂直于同一个平面的两个平面互相平行或相交,故④错误.故选:B.由线面平行的性质可判断①;由线面垂直的性质定理可判断②;由两个平面的位置关系可判断③;由面面平行的判定定理可判断④.本题考查空间线线和面面的位置关系的判断,考查平行和垂直的判断和性质定理的运用,属于基础题.21. 北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:1PM2.5(/)从上述表格随机选择一个区域,其年月份PM2.5的浓度小于微克/立方米的概率是()A. 117B. 417C. 517D. 917【答案】D【解析】解:从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,则2018年1月份PM2.5的浓度小于36微克/立方米的概率是917,故选:D.由表可知从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,根据概率公式计算即可.本题主要考查频率分布表、古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等22. 已知sinα=513,α∈(0,π2),那么sin(α+π4)=()A. −17226B. −7226C. 7226D. 17226【答案】D【解析】解:知sinα=513,α∈(0,π2),那么cosα=1−sin2α=1213,则:sin(α+π4)=sinα⋅cosπ4+cosα⋅sinπ4=513⋅22+1213⋅22=17226,故选:D.直接利用同角三角函数关系式的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变变换,主要考查学生的运算能力和转化能力,属于基础题型.23. 在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=3,b=c=2,那么△ABC的最大内角的余弦值为()A. 18B. 14C. 38D. 12【答案】A【解析】解:△ABC中,a=3,b=c=2,∴a>c>b,∴△ABC的最大内角为A,且cos A=b2+c2−a22bc=2×2×22=18.。
2018北京市夏季会考数学试题 Word版含答案7

北京市夏季普通高中会考 数 学 试 卷第一部分 选择题(每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的. 1.已知集合{}{}2,1,0,1,0,1=-=B A ,那么B A 等于A. {}0B. {}1C. {}1,0D. {}2,1,0,1-2. 已知某几何体的三视图如图所示,那么该几何体是( ) A .球 B. 圆锥 C. 圆台 D. 圆柱3.某市有超市2000家,其中大型超市140家,中型超市400家,小型超市1460家.现采用分层抽样的方法从中抽取一个容量为100 的样本,那么应抽取中型超市的数量为A .7 B. 20 C. 40 D. 73 4.)sin(απ+等于A. αsinB. αsin -C. αcosD. αcos - 5.在长方体1111D C B A ABCD -中,3,2===AC BC AB .该长方体的表面积为 A .4 B. 8 C. 12 D. 166.在ABC ∆中,3,45,600==∠=∠BC B A ,那么AC 等于( )A .6 B. 2 C. 1 D.22 7.如果向量a =),2(m -,b =(1,2),且a ∥b ,那么实数m 等于( ) A .1- B. 1 C. 4- D. 48.在空间中,给出下列四个命题:① 平行于同一直线的两条直线平行; ②平行于同一平面的两条直线平行; ③垂直于同一直线的两条直线平行; ④垂直于同一平面的两个平面平行. 其中正确命题的序号A .① B. ② C. ③ D. ④ 9.直线013=+-y x 的倾斜角的大小是A . 045 B. 060 C. 0120 D. 0135 10. 在数列{}n a 中, ),,3,2,1(,2,111==∙=-n a a an n ,那么8a 等于14.在函数x y 2=,2x y =,x y 2=x y cos =中,偶函数的个数是 A . 0 B. 1 C. 2 D. 315.已知点)1,0(-M ,)3,2(N .如果直线MN 垂直于直线032=-+y ax ,那么实数a 等于A . 4- B. 2- C. 1- D. 1 16.如果函数x x f 3log )(=,那么)31(f 等于 A . 1- B. 21- C. 21D. 117.每年的3月5日是“青年志愿者服务日”,共青团中央号召全国青年积极参加志愿服务活动.甲、乙2人随机参加“文明交通”和“邻里互助”两项活动中的一项,那么2人参加的活动恰好相同的概率是A .61 B. 41 C. 31 D. 21 18.在区间]4,0[内随机选一个实数x ,该实数恰好在区间]3,1[内的概率是A . 41 B. 31 C. 21 D. 4319.已知n n f 222)(2+++= ,那么)4(f 等于 A . 15 B. 30 C. 55 D. 12620.已知圆1O 的方程为422=+y x ,圆2O 的方程为1)1()(22=-+-y a x ,那么这两个圆的位置关系不可能...是 A . 外离 B. 外切 C. 内含 D. 内切21.已知实数y x ,满足⎪⎩⎪⎨⎧≥≤≥+-0032y x y x ,那么x y z -=的最大值是 A . 1 B. 2 C. 3 D. 522.2012年我国环境保护部批准《环境空气质量指数(AQI )技术规定(试行)》为国家环境保护标准,其中“空气质量指数(Air Quality Index ,简称AQI )”是定量描述空气质量状况的无量纲指数,其类别如下表所示:根据北京市2014年和2015年的AQI 数据,得到下图:根据上述信息,从统计学角度分析,下列结论中不正确...的是 A. 2014年有9个月的AQI 类别属于“轻度污染” B.2015年12月份AQI 类别为“优”的天数一定为0C. 2014年上半年 AQI 数据标准差大于2015年上半年 AQI 数据标准差D. 每年的第二、第三季度空气质量较好23.我国南宋数学家秦九韶(约公园1202-1261年)给出了求)(*N n n ∈次多项式0111a x a x a x a n n n n ++++-- 的值的一种简捷算法,改算法被后人命名为“秦九韶算法”,其程序27.(本小题满分5分)正方体1111D C B A ABCD -被平面C D B 11截去 一部分后得到几何体ABCD D AB -11. 如图所示 1.在几何体ABCD D AB -11的面上画出一条线段, 使该线段所在的直线平行于平面C D B 11; 2.设E 为11D B 的中点,求证:⊥11D B 平面ECA A 1.28.(本小题满分5分)已知{}n a 是公比为q 的等比数列,35,1211=+=a a a . (Ⅰ)当=q ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)在1a 和1+n a 之间插入n 个数,其中,,3,2,1 =n ,使这2+n 个数成等差数列. 记插入的n 个数的和为n S ,求n S 的最大值.29.(本小题满分5分)已知圆M 的方程是016622=-+-y x x .(Ⅰ)圆M 的半径是 ;(将结果直接填写在答题卡...的相应位置上) (Ⅱ)设斜率为)0( k k 的直线l 交圆M 于)0,2(-A 和点B ,交y 轴于点C .如果MBC ∆的面积是k 4,求k 的值.30.(本小题满分5分)已知函数c bx x x f ++=2(),其中R c b ∈,.(Ⅰ)当)x f (的图像关于直线1=x 对称时,=b ;(将结果直接填写在答题卡...的相应位置上)(Ⅱ)如果)x f (在区间[]1,1-不是..单调函数,证明:对任意R x ∈ ,都有1)(-c x f ; (Ⅲ)如果)x f (在区间)1,0(上有两个不同的零点. 求c b c )1(2++的取值范围.参考答案:1-25 C CBBD BC A BD DBACD ADCBC CB A BD 26.(Ⅰ)2(Ⅱ)3π27. (Ⅰ)略(Ⅱ)略28. (Ⅰ)32=q (Ⅱ)nS 的最大值91029. (Ⅰ)5(Ⅱ)62或3430. (Ⅰ)2-(Ⅱ)略(Ⅲ))(161,0。
2018北京市夏季会考数学试题 Word版含答案7

2018北京市夏季会考数学试题 Word版含答案7北京市夏季普通高中会考数学试卷1.考生需认真填写考场号和座位序号。
2.本试卷共6页,分为两个部分。
第一部分是选择题,共25个小题(共75分);第二部分是解答题,共5个小题(共25分)。
3.试题所有答案必须填涂或书写在答题卡上,试卷上作答无效。
第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。
4.考试结束后,考生应将试卷、答题卡放在桌面上,待监考员收回。
第一部分选择题每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的.1.已知集合A={-1.1},B={1.2},那么A∩B等于A。
{}B。
{1}C。
{-1.1}D。
{-1.1.2}2.已知某几何体的三视图如图所示,那么该几何体是()A。
球B。
圆锥C。
圆台D。
圆柱3.某市有超市2000家,其中大型超市140家,中型超市400家,小型超市1460家。
现采用分层抽样的方法从中抽取一个容量为100的样本,那么应抽取中型超市的数量为A。
7B。
20C。
40D。
734.sin(π+α)等于A。
sinαB。
-sinαC。
cosαD。
-cosα5.在长方体ABCD-A1B1C1D1中,AB=BC=2,AC=3.该长方体的表面积为A。
4B。
8C。
12D。
166.在三角形ABC中,∠A=60,∠B=45,BC=3,那么AC 等于A。
6B。
2C。
1D。
$\sqrt{6}$7.如果向量a=(-2,m),b=(1,2),且a∥b,那么实数m等于A。
-1B。
1C。
-4D。
48.在空间中,给出下列四个命题:①平行于同一直线的两条直线平行;②平行于同一平面的两条直线平行;③垂直于同一直线的两条直线平行;④垂直于同一平面的两个平面平行。
其中正确命题的序号A。
①B。
②C。
③D。
④9.直线3x-y+1=0的倾斜角的大小是A。
45B。
60C。
120D。
13510.在数列{an}中,a1=1,an×an-1=2,(n=1,2,3,…),那么a8等于A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年北京市普通高中学业水平考试合格性考试
数 学 试 卷
考生须知
1.考生要认真填写考场号和座位序号。
2.本试卷共6页,分为两个部分,第一部分为选择题,25个小题(共75分);第二部分为解答题,4个小题(共25分)。
3.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
4.考试结束后,考生应将试卷、答题卡放在桌面上,待监考员收回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.
第一部分 选择题(每小题3分,共75分)
在每个小题给出的四个备选答案中,只有一个是符合题目要求的. 1.已知集合{0,1}A =,{1,1,3}B =-,那么A
B 等于
A .{0}
B .{1}
C .{0,1}
D .{0,1,3} 2.平面向量a ,b 满足2=b a ,如果=(1,2)a ,那么b 等于
A .(2,4)--
B .(2,4)-
C .(2,4)-
D .(2,4) 3.如果直线1y kx =-与直线3y x =平行,那么实数k 的值为
A .1-
B .13-
C .1
3
D .3 4.如图,给出了奇函数()f x 的局部图像,那么(1)f 等于
A .4-
B .2-
C .2
D .4
5.如果函数()x
f x a =(0a >,且1a ≠)的图像经过点(2,9),那么实数a 等于
A .1
3 B .
1
2
C .2
D .3 6.某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为 A .60 B .90 C .100 D .110
7.已知直线l 经过点O (0,0),且与直线30x y --=垂直,那么直线l 的方程是
A .30x y +-=
B .30x y -+=
C .0x y +=
D .0x y -= 8.如图,在矩形ABCD 中,
E 为CD 中点,那么向量
1
2
AB AD +等于 A .AE B .AC C .DC D .BC
9.实数131()log 12
-+的值等于
A .1
B .2
C .3
D .4
10.函数2
y x =,3y x =,1()2
x y =,lg y x =中,在区间(0,)+∞上为减函数的是
A .2
y x = B .3y x = C .1()2
x y = D .lg y x =
11.某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.2,那么本次抽奖活动中,中奖的概率为
A .0.1
B .0.2
C .0.3
D .0.7 12.如果正ABC ∆的边长为1,那么AB AC ⋅等于
A .12-
B .1
2
C .1
D .2 13.在ABC ∆中,角A ,B ,C 所对的边分别为,,a b c ,如果=10a ,45A =︒,30B =︒,
那么b 等于
A .
52
2
B .52
C .102
D .202 14.已知圆C :22
20x y x +-=,那么圆心C 到坐标原点O 的距离是
A .
12 B .22
C .1
D .2 15.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,1A A ⊥底面ABCD ,
12A A =,1AB =,那么该四棱柱的体积为
A .1
B .2
C .4
D .8
16.函数3
()5f x x =-的零点所在的区间是
A .(1,2)
B .(2,3)
C .(3,4)
D .(4,5)
17.在sin 50︒,sin50-︒,sin 40︒,sin 40-︒四个数中,与sin130︒相等的是
A .sin 50︒
B .sin50-︒
C .sin 40︒
D .sin 40-︒ 18.把函数sin y x =的图像向右平移
4
π
个单位得到()y g x =的图像,再把()y g x =图
像上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图像的解析式为
A .2sin()4y x π=-
B .2sin(+)4
y x π
=
C .1sin()24y x π=-
D .1sin(+)24
y x π
=
19.函数2,1
(),1
x x f x x x -≤-⎧=⎨>-⎩的最小值是
A .1-
B .0
C .1
D .2 20.在空间中,给出下列四个命题:
① 平行于同一个平面的两条直线互相平行; ② 垂直于同一个平面的两条直线互相平行; ③ 平行于同一条直线的两个平面互相平行; ④ 垂直于同一个平面的两个平面互相平行. 其中正确命题的序号是
A .①
B .②
C .③
D .④
21.北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1
月份各区域的PM2.5浓度情况如下表:
从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克立
方米的概率是
A .
117 B .417 C .517 D .917
22.已知5sin 13α=,(0,)2πα∈,那么sin()4π
α+
A .26-
B .26-
C .26
D .26
23.在ABC ∆中,角A ,B ,C 所对的边分别为,,a b c ,如果3a =,b =,c =那么ABC ∆的最大内角的余弦值为 A .18 B .
14 C .38 D .12
24.北京故宫博物院成立于1925年10月10日,是在明朝、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观总人次的折线图.
根据图中信息,下列结论中正确的是
A.2013年以来,每年参观总人次逐年递增
B.2014年比2013年增加的参观人次不超过
...50万
C.2012年到2017年这六年间,2017年参观总人次最多
D.2012年到2017年这六年间,平均每年参观总人次超过1600万25.阅读下面题目及其证明过程,在横线处应填写的正确结论是
-中,平面P AC⊥平面ABC,BC⊥AC.如图,在三棱锥P ABC
求证:BC⊥P A.
证明:因为平面P AC⊥平面ABC,
平面PAC平面ABC=AC,
BC⊥AC,BC⊂平面ABC,
所以.
因为P A⊂平面P AC,
所以BC⊥P A.
A.AB⊥底面P AC B.AC⊥底面PBC
C.BC⊥底面P AC D.AB⊥底面PBC
第二部分 解答题(共25分)
26.(本小题满分7分)
已知函数()sin()6
f x A x π
=+
,(0)1f =.
(Ⅰ)A = ;(将结果直接填写在答题卡...
的相应位置上) (Ⅱ)函数()f x 的最小正周期T = ;(将结果直接填写在答题卡...的相应位置上) (Ⅲ)求函数()f x 的最小值及相应的x 的值.
27.(本小题满分7分)
如图,在三棱锥P ABC -中,P A ⊥底面ABC ,AB ⊥BC ,D ,E ,分别为PB ,PC 的中点.
(Ⅰ)求证:BC // 平面ADE ; (Ⅱ)求证:BC ⊥平面P AB .
28.(本小题满分6分)
已知圆O :222
x y r +=(0r >)经过点A (0,5),与x 轴正半轴交于点B .
(Ⅰ)r = ;(将结果直接填写在答题卡...
的相应位置上) (Ⅱ)圆O 上是否存在点P ,使得PAB ∆的面积为15 ? 若存在,求出点P 的坐标;
若不存在,说明理由.
29.(本小题满分5分)
种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如下表所示:
现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的
时间x(年)与它的高度y(m)满足关系式
30
128rx
y
e-
=
+
(0
r>).
(Ⅰ)r=;(将结果直接填写在答题卡
...的相应位置上)
(Ⅱ)如果这棵行道树的正上方有35KV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?
(Ⅲ)假如这棵行道树的正上方有500KV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m ?
2018年北京市普通高中学业水平考试合格性考试
数学试卷答案及评分参考
说明
1.第一部分选择题,机读阅卷.
2.第二部分解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解答不同,正确者可参照评分标准给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
第一部分选择题(共75分)
第二部分解答题(共25分)。