函数图像题 知式选图
高三数学函数图像试题

高三数学函数图像试题1.下列四个图中,函数y=的图象可能是( )A. B. C. D.【答案】C.【解析】当时,有,,∴,故排除A,B,又∵当时,有,,∴,故排除D,∴选C.【考点】1.函数的单调性与奇偶性;2.指对数的性质.2.设表示不超过实数的最大整数,则在坐标平面上,满足的点所形成的图形的面积为__________.【答案】4【解析】设都是整数,则满足的点形成的图形是单位正方形(,),其面积为1,而在椭圆上整点有,共4个,因此满足题设条件的点形成的图形是4个单位正方形,其面积为4.【考点】函数图象,图形面积.3.已知函数的图象大致为()【答案】A【解析】,的图象始终位于的图象的上方,所以函数值为正数,排除当取时,,排除.选.【考点】函数的图象.4.已知定义在R上的函数对任意的x满足,当-l≤x<l时,.函数若函数在上有6个零点,则实数a的取值范围是()A.B.C.D.【答案】【解析】由已知,,所以,是周期为的周期函数.函数在上有个零点,即的图象有个交点.结合函数的图象的示意图可知,当,两函数图象有两个交点,当时,两函数图象有一个交点;所以,时,两函数图象应有三个交点,.解得或,故选.【考点】函数的周期性,函数的图象,函数的零点,对数函数的性质.5.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.6.函数的图像大致为( ).【答案】A【解析】函数有意义,需使,其定义域为,排除C,D,又因为,所以当时函数为减函数,故选A.7.已知函数的图象关于直线对称,则可能是()A.B.C.D.【答案】C【解析】∵函数的图象关于直线对称,∴,∴,当时,,故选C.【考点】由的部分图象确定其解析式.8.已知定义在R上的函数满足:,,则方程在区间上的所有实根之和为( )A.B.C.D.【答案】C【解析】由题意知函数的周期为,则函数在区间上的图象如下图所示:由图形可知函数在区间上的交点为,易知点的横坐标为,若设的横坐标为,则点的横坐标为,所以方程在区间上的所有实数根之和为.【考点】数形结合图像周期性9.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.10.已知函数,则的图象大致为()【答案】A【解析】,令,则,在同一坐标系下作出两个函数的简图,根据函数图象的变化趋势可以发现与共有三个交点,横坐标从小到大依次设为,在区间上有,即;在区间有,即;在区间有,即;在区间有,即.故选【考点】1转化思想;2函数图像。
第五节函数图像

第五节(函数图像)第五节函数的图象[知识能否忆起]一、利用描点法作函数图象其基本步骤是列表、描点、连线,首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点);最后:描点,连线.二、利用基本函数的图象作图1.平移变换(1)水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.(2)竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.2.对称变换(1)y=f(-x)与y=f(x)的图象关于y轴对称.(2)y=-f(x)与y=f(x)的图象关于x轴对称.(3)y=-f(-x)与y=f(x)的图象关于原点对称.(4)要得到y=|f(x)|的图象,可将y=f(x)的图象在x 轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变.(5)要得到y=f(|x|)的图象,可将y=f(x),x≥0的部分作出,再利用偶函数的图象关于y轴的对称性,作出x<0时的图象.3.伸缩变换(1)y=Af(x)(A>0)的图象,可将y=f(x)图象上所有点的纵坐标变为原来的A倍,横坐标不变而得到.(2)y=f(ax)(a>0)的图象,可将y=f(x)图象上所有点的横坐标变为原来的1a倍,纵坐标不变而得到.[小题能否全取]1.一次函数f(x)的图象过点A(0,1)和B(1,2),则下列各点在函数f(x)的图象上的是()A.(2,2)B.(-1,1)C.(3,2) D.(2,3)解析:选D一次函数f(x)的图象过点A(0,1),B(1,2),则f(x)=x+1,代入验证D满足条件.2.函数y=x|x|的图象大致是()解析:选A函数y=x|x|为奇函数,图象关于原点对称.3.(教材习题改编)在同一平面直角坐标系中,函数f(x)=ax与g(x)=a x的图象可能是下列四个图象中的()解析:选B因a>0且a≠1,再对a分类讨论.4.(教材习题改编)为了得到函数y=2x-3的图象,只需把函数y=2x的图象上所有的点向______平移______个单位长度.答案:右 35.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.解析:由题意a =|x |+x令y =|x |+x =⎩⎨⎧ 2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解则a >0.答案:(0,+∞)1.作图一般有两种方法:直接作图法、图象变换法.其中图象变换法,包括平移变换、伸缩变换和对称变换,要记住它们的变换规律.[注意] 对于左、右平移变换,可熟记口诀:左加右减.但要注意加、减指的是自变量,否则不成立.2.一个函数的图象关于原点(y 轴)对称与两个函数的图象关于原点(y 轴)对称不同,前者是自身对称,且为奇(偶)函数,后者是两个不同的函数对称.作函数的图象典题导入[例1] 分别画出下列函数的图象:(1)y =|lg x |;(2)y =2x +2;(3)y =x 2-2|x |-1.[自主解答] (1)y =⎩⎨⎧lg x ,x ≥1,-lg x ,0<x <1.图象如图1. (2)将y =2x 的图象向左平移2个单位.图象如图2. (3)y =⎩⎨⎧x2-2x -1,x ≥0,x 2+2x -1,x <0.图象如图3.由题悟法画函数图象的一般方法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.以题试法1.作出下列函数的图象:(1)y =|x -x 2|;(2)y =x +2x -1. 解:(1)y =⎩⎨⎧x -x 2,0≤x ≤1,-(x -x 2),x >1或x <0,即y =⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎪⎫x -122+14,0≤x ≤1,⎝ ⎛⎭⎪⎪⎫x -122-14,x >1或x <0, 其图象如图1所示(实线部分).(2)y =(x -1)+3x -1=1+3x -1,先作出y =3x 的图象,再将其向右平移1个单位,并向上平移1个单位即可得到y =x +2x -1的图象,如图2.识图与辨图典题导入[例2] (2012·湖北高考)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()[自主解答] 法一:由y =f (x )的图象知f (x )=⎩⎪⎨⎪⎧x (0≤x ≤1),1(1<x ≤2). 当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎨⎧ 1(0≤x ≤1),2-x (1<x ≤2),故y =-f (2-x )=⎩⎨⎧-1(0≤x ≤1),x -2(1<x ≤2).法二:当x =0时,-f (2-x )=-f (2)=-1;当x =1时,-f (2-x )=-f (1)=-1.观察各选项,可知应选B.[答案] B由题悟法“看图说话”常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题.(2)定量计算法:通过定量的计算来分析解决问题.(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.以题试法2.(1)如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝ ⎛⎭⎪⎫1f (3)的值等于________.(2)(2012·东城模拟)已知函数对任意的x∈R有f(x)+f(-x)=0,且当x>0时,f(x)=ln(x+1),则函数f(x)的图象大致为()解析:(1)∵由图象知f(3)=1,∴1 f(3)=1.∴f⎝⎛⎭⎪⎫1f(3)=f(1)=2.(2)∵对∀x∈R有f(x)+f(-x)=0,∴f(x)是奇函数.f(0)=0,y=f(x)的图象关于原点对称,当x<0时,f(x)=-f(-x)=-ln(-x+1)=-ln(1-x),由图象知符合上述条件的图象为D.答案:(1)2(2)D函数图象的应用典题导入[例3](2011·新课标全国卷)已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有()A.10个B.9个C.8个D.1个[自主解答]根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:可验证当x=10时,y=|lg 10|=1;0<x<10时,|lg x|<1;x>10时|lg x|>1.结合图象知y=f(x)与y=|lg x|的图象交点共有10个.[答案] A若本例中f(x)变为f(x)=|x|,其他条件不变,试确定交点个数.解:根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:由图象知共10个交点.由题悟法1.利用函数的图象研究函数的性质对于已知或易画出在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象研究方程根的个数当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f(x)=0的根就是函数f(x)图象与x轴的交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象的交点的横坐标.以题试法3.已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是________.(注意:min 表示最小值)解析:画出示意图(实线部分),⎩⎪⎨⎪⎧2-x 2(x ≤-2),x (-2<x <1),2-x 2(x ≥1), f (x )*g (x )=其最大值为1. 答案:1[典例] (2012·天津高考)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则 实数k 的取值范围是________.[解析] 因为函数y =|x 2-1|x -1=⎩⎨⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,所以函数y =kx -2的图象恒过点(0,-2),根据图象易知,两个函数图象有两个交点时,0<k <1或1<k <4.[答案] (0,1)∪(1,4)[题后悟道] 所谓数形结合思想,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.解答本题利用了数形结合思想,本题首先作出y=|x2-1|x-1的图象,然后利用图象直观确定直线y=kx-2的位置.作图时应注意不包括B、C两点,而函数y=kx-2的图象恒过定点A(0,-2),直线绕A点可以转动,直线过B、C两点是关键点.针对训练1.(2012·长春第二次调研)设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.解析:如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知:当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a 的取值范围是[-1,+∞).答案:[-1,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧|2x -1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围为( )A .(1,3)B .(0,3)C .(0,2)D .(0,1)解析:选D 因为方程f (x )-a =0的根,即是直线x =a 与函数f (x )=⎩⎪⎨⎪⎧ |2x -1|,x <2,3x -1,x ≥2的图象交点的横坐标,画出函数图象进行观察可以得知,a 的取值范围是(0,1).1.函数f (x )=2x 3的图象( )A .关于y 轴对称B .关于x 轴对称C .关于直线y =x 对称D .关于原点对称 解析:选D 显然函数f (x )=2x 3是一个奇函数,所以其图象关于原点对称.2.函数y =⎩⎨⎧x 2,x <0,2x -1,x ≥0的图象大致是( )解析:选B 当x <0时,函数的图象是抛物线;当x ≥0时,只需把y =2x 的图象在y 轴右侧的部分向下平移1个单位即可,故大致图象为B.3.(2012·北京海淀二模)为了得到函数y =12log 2(x -1)的图象,可将函数y =log 2x 的图象上所有的点的( )A.纵坐标缩短到原来的12,横坐标不变,再向右平移1个单位长度B.纵坐标缩短到原来的12,横坐标不变,再向左平移1个单位长度C.横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度D.横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度解析:选A本题考查图象的平移和伸缩.将y=log2x的图象横坐标不变,纵坐标缩短到原来的12,得y=12log2x的图象,再将y=12log2x的图象向右平移1个单位长度即可.4.(2011·陕西高考)设函数f(x)(x∈R)满足f(-x)=f(x),f(x+2)=f(x),则y=f(x)的图象可能是()解析:选B表达式“f(x)=f(-x)”,说明函数是偶函数,表达式“f(x+2)=f(x)”,说明函数的周期是2,再结合选项图象不难看出正确选项为B.5.(2012·济南模拟)函数y=lg 1|x+1|的大致图象为()解析:选D由题知该函数的图象是由函数y=-lg|x|的图象左移一个单位得到的,故其图象为选项D中的图象.6.(2011·天津高考)对实数a和b,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R.若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A.⎝⎛⎦⎤-∞,-2∪⎝⎛⎭⎪⎪⎫-1,32 B.⎝⎛⎦⎤-∞,-2∪⎝⎛⎭⎪⎪⎫-1,-34 C.⎝⎛⎭⎪⎪⎫-1,14∪⎝ ⎛⎭⎪⎪⎫14,+∞ D.⎝ ⎛⎭⎪⎪⎫-1,-34∪⎣⎢⎢⎡⎭⎪⎪⎫14,+∞ 解析:选B由题意可知f (x )=错误! =⎩⎪⎨⎪⎧ x 2-2,-1≤x ≤32,x -x 2,x <-1或x >32作出图象,由图象可知y =f (x )与y =c 有两个交点时,c ≤-2或-1<c <-34, 即函数y =f (x )-c 的图象与x 轴恰有两个公共点时实数c 的取值范围是(-∞,-2]∪⎝⎛⎭⎪⎪⎫-1,-34. 7.已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.解析:当f (x )>0时,函数g (x )=log 2f (x )有意义, 由函数f (x )的图象知满足f (x )>0的x ∈(2,8]. 答案:(2,8]8.函数f (x )=x +1x 图象的对称中心为________.解析:f (x )=x +1x =1+1x ,把函数y =1x 的图象向上平移1个单位,即得函数f (x )的图象.由y =1x 的对称中心为(0,0),可得平移后的f (x )图象的对称中心为(0,1).答案:(0,1)9.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为y =kx +b ,则⎩⎨⎧ -k +b =0,b =1,得⎩⎨⎧k =1,b =1. ∴y =x +1. 当x >0时,设解析式为y =a (x -2)2-1,∵图象过点(4,0),∴0=a (4-2)2-1,得a =14. 答案:f (x )=⎩⎨⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0 10.已知函数f (x )=错误! (1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x取什么值时f(x)有最值.解:(1)函数f(x)的图象如图所示.(2)由图象可知,函数f(x)的单调递增区间为[-1,0],[2,5].(3)由图象知当x=2时,f(x)min=f(2)=-1,当x=0时,f(x)max=f(0)=3.11.若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,求a的取值范围.解:当0<a<1时,y=|a x-1|的图象如图1所示,由已知得0<2a<1,即0<a<12.当a>1时,y=|a x-1|的图象如图2所示,由已知可得0<2a<1,即0<a <12,但a >1,故a ∈∅. 综上可知,a 的取值范围为⎝⎛⎭⎪⎪⎫0,12. 12.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.解:(1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上,∴2-y =-x +1-x+2, ∴y =x +1x ,即f (x )=x +1x .(2)由题意g (x )=x +a +1x ,且g (x )=x +a +1x ≥6,x ∈(0,2].∵x ∈(0,2],∴a +1≥x (6-x ),即a ≥-x 2+6x -1.令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7,故a 的取值范围为[7,+∞).1.(2013·威海质检)函数y =f (x )(x ∈R)的图象如图所示,下列说法正确的是( )①函数y =f (x )满足f (-x )=-f (x );②函数y =f (x )满足f (x +2)=f (-x );③函数y =f (x )满足f (-x )=f (x );④函数y =f (x )满足f (x +2)=f (x ).A .①③B .②④C .①②D .③④解析:选C 由图象可知,函数f (x )为奇函数且关于直线x =1对称,所以f (1+x )=f (1-x ),所以f [1+(x +1)]=f [1-(x +1)],即f (x +2)=f (-x ).故①②正确.2.若函数f (x )的图象经过变换T 后所得图象对应函数的值域与函数f (x )的值域相同,则称变换T 是函数f (x )的同值变换.下面给出四个函数及其对应的变换T ,其中变换T 不属于函数f (x )的同值变换的是( )A .f (x )=(x -1)2,变换T 将函数f (x )的图象关于y 轴对称B .f (x )=2x -1-1,变换T 将函数f (x )的图象关于x轴对称C .f (x )=2x +3,变换T 将函数f (x )的图象关于点(-1,1)对称D .f (x )=sin ⎝ ⎛⎭⎪⎪⎫x +π3,变换T 将函数f (x )的图象关于点(-1,0)对称解析:选B 对于A ,与f (x )=(x -1)2的图象关于y 轴对称的图象对应的函数解析式为g (x )=(-x -1)2=(x +1)2,易知两者的值域都为[0,+∞);对于B ,函数f (x )=2x -1-1的值域为(-1,+∞),与函数f (x )的图象关于x 轴对称的图象对应的函数解析式为g (x )=-2x -1+1,其值域为(-∞,1);对于C ,与f (x )=2x +3的图象关于点(-1,1)对称的图象对应的函数解析式为2-g (x )=2(-2-x )+3,即g (x )=2x +3,易知值域相同;对于D ,与f (x )=sin ⎝⎛⎭⎪⎪⎫x +π3的图象关于点(-1,0)对称的图象对应的函数解析式为g (x )=sin ⎝⎛⎭⎪⎪⎫x -π3+2,其值域为[-1,1],易知两函数的值域相同.3.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ).(1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.解:(1)证明:设P(x0,y0)是函数y=f(x)图象上任一点,则y0=f(x0),点P关于直线x=2的对称点为P′(4-x0,y0).因为f(4-x0)=f(2+(2-x0))=f(2-(2-x0))=f(x0)=y0,所以P′也在y=f(x)的图象上,所以函数y =f(x)的图象关于直线x=2对称.(2)因为当x∈[-2,0]时,-x∈[0,2],所以f(-x)=-2x-1.又因为f(x)为偶函数,所以f(x)=f(-x)=-2x-1,x∈[-2,0].当x∈[-4,-2]时,4+x∈[0,2],所以f(4+x)=2(4+x)-1=2x+7.而f(4+x)=f(-x)=f(x),所以f(x)=2x+7,x∈[-4,-2].所以f (x )=⎩⎨⎧ 2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0].1.设D ={(x ,y )|(x -y )(x +y )≤0},记“平面区域D 夹在直线y =-1与y =t (t ∈[-1,1])之间的部分的面积”为S ,则函数S =f (t )的图象的大致形状为()解析:选C 如图平面区域D为阴影部分,当t =-1时,S =0,排除D ;当t =-12时,S >14S max ,排除A 、B.2.(2012·深圳模拟)已知定义在区间[0,1]上的函数y =f (x )的图象如图所示,对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论:①f (x 2)-f (x 1)>x 2-x 1;②x 2f (x 1)>x 1f (x 2);③f (x 1)+f (x 2)2<f ⎝ ⎛⎭⎪⎫x 1+x 22. 其中正确结论的序号是________.(把所有正确结论的序号都填上)解析:①错误,①即为f (x 2)-f (x 1)x 2-x 1>1,在(0,1)上不恒成立;由题图知,0<x 1<x 2<1时,f (x 1)x 1>f (x 2)x 2,②正确;图象是上凸的,③正确.答案:②③。
2022新高考数学高频考点题型归纳11函数图像(学生版)

专题11函数图像一、关键能力1.在实际情境中,会根据不同的需要选择图象法、列表法、解析式法表示函数.2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解集的问题. 二、教学建议1.学生应掌握图象的平移变换、对称变换、翻折变换、伸缩变换等;2.函数图象的应用很广泛,研究函数的性质、解决方程解的个数、不等式的解等都离不开函数的图象,对图象的控制能力往往决定着对函数的学习效果.3.函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法. 三、自主梳理 1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )―——————―→关于x 轴对称y =-f (x ); ②y =f (x )――——————―→关于y 轴对称y =f (-x ); ③y =f (x )―――——————→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――——————―→关于y =x 对称y =log a x (a >0且a ≠1). ⑤y =f (x )―――——————→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――——————―→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)翻折变换(☆☆☆)①y =f (x )――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图像翻折到左边去y =f (|x |);②y =f (x )――――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.(4)伸缩变换①y =f (x ) 至 y =f (ax ).②y =f (x ) 至 y =af (x ).――——————―——————―→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变四、高频考点+重点题型 考点一、作图例1-1(対称、翻折、分段作图)画下列函数图像 (1)y =|lg x |; (2)y =x 2-2|x |-1;例1-2.(平移作图)(1)y =2x +2; (2)y =x +2x -1.例1-3(周期、类周期函数作图)定义函数f (x )=⎪⎪⎩⎪⎪⎨⎧>≤≤--2,)2(2121|,23|84x x f x x 则函数g (x )=xf (x )-6在区间[1,2n ](n ∈N *)内所有零点的和为( )A .nB .2n C.34(2n -1) D.32(2n -1)对点训练1.已知函数()2,101x x f x x --≤≤⎧⎪=<≤,则下列图象错误的是( )A .()y f x =的图象:B .()1y f x =-的图象:C .()y fx =的图象:D .()y f x =-的图象:对点训练2.(2019年高考全国Ⅱ卷理)设函数的定义域为R ,满足,且当时,.若对任意,都有,则m 的取值范围是A .B .C .D .考点二、识图例1-1.(由解析式选图像) 【2020·天津卷】函数241xy x =+的图象大致为 ( )()f x (1) 2 ()f x f x +=(0,1]x ∈()(1)f x x x =-(,]x m ∈-∞8()9f x ≥-9,4⎛⎤-∞ ⎥⎝⎦7,3⎛⎤-∞ ⎥⎝⎦5,2⎛⎤-∞ ⎥⎝⎦8,3⎛⎤-∞ ⎥⎝⎦A BC D例2-2.(由图像选解析式)(2021·浙江高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+- B .1()()4y f x g x =-- C .()()y f x g x = D .()()g x y f x =例2-3.(实际应用识图像)在2 h 内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减.下面能反映血液中药物含量Q 随时间t 变化的图象是( )例2-4(两个函数图像对比)在同一直角坐标系中,函数y=ax2-x+a2与y=a2x3-2ax2+x+a(a∈R)的图象不可能的是()对点训练1.函数y=2x2-e|x|在[-2,2]的图象大致为()对点训练2.以下四个选项中的函数,其函数图象最适合如图的是()A.y=||2xexB.y=2(1)||xx exC .y =|2|xe xD .y =22xe x对点训练3.(2020·江西临川一中模拟) 广为人知的太极图,其形状如阴阳两鱼互纠在一起,因而被习称为“阴阳鱼太极图”.如图,是由一个半径为2的大圆和两个半径为1的半圆组成的“阴阳鱼太极图”,圆心分别为O ,O 1,O 2,若一动点P 从点A 出发,按路线A →O →B →C →A →D →B 运动(其中A ,O ,O 1,O 2,B 五点共线),设P 的运动路程为x ,y =|O 1P |2,y 与x 的函数关系式为y =f (x ),则y =f (x )的大致图象为( )对点训练4.(2021·四川高三三模(理))函数()()log a f x x b =--及()g x bx a =+,则()y f x =及y g x 的图象可能为( )A .B .C .D .考点三、利用图像解不等式 例3-1(转化为两个图像的上下方)【2020年高考北京】已知函数()21xf x x =--,则不等式()0f x >的解集是A. (1,1)-B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞例3-2(图像在x 轴的上下方)函数f (x )是定义域为(-∞,0)∈(0,+∞)的奇函数,在(0,+∞)上单调递增,f (3)=0,若x ·[f (x )-f (-x )]<0,则x 的取值范围为________.对点训练1.(2021·浙江高三专题练习)若关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则实数a 的取值范围是( ) A .1,14⎡⎫⎪⎢⎣⎭B .10,4⎛⎤ ⎥⎝⎦C .3,14⎡⎫⎪⎢⎣⎭D .30,4⎛⎤ ⎥⎝⎦对点训练2.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为________.考点四、利用图像求解方程问题 例4-1.(方程根的个数)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.例4-2.已知12,x x 是方程x2210,log 10x x x +=+=的两个根,则12x x +=对点训练1.已知函数f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0]B .[0,1)C .(-∞,1)D .[0,+∞)对点训练2.若满足225xx +=, 满足()222log 15x x +-=, 则+=考点五、利用图像研究函数性质 例5-1.(利用图像研究单调性)1x 2x 1x 2x已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)例5-2(利用图像研究函数最值或值域)对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值 _.对点训练1.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≥0,x 2-2x ,x <0,若f (3-a 2)<f (2a ),则实数a 的取值范围是_____.对点训练2.(2020·全国高三其他(文))已知函数在区间的值域为,则( ) A .2 B .4 C .6 D .8()()()22241x x f x x x ee x --=--++[]1,5-[],m M m M +=巩固训练 一、单项选择题1.函数f (x )=x cos x 2在区间[0,4]上的零点个数为________. A. 4 B. 3 C. 2 D. 62.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( ) A.{x |-1<x ≤0} B.{x |-1≤x ≤1} C.{x |-1<x ≤1} D.{x |-1<x ≤2}3.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k的取值范围是________.4.(2021·四川达州市·高三二模(理))已知函数()f x 与()g x 的部分图象如图1,则图2可能是下列哪个函数的部分图象( )A .(())y f g x =B .()()y f x g x =C .(())y g f x =D .()()f x yg x =5.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,6.匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .二、多项选择题7.设f (x )的定义域为R ,给出下列四个命题其中正确的是( )A .若y =f (x )为偶函数,则y =f (x +2)的图象关于y 轴对称;B .若y =f (x +2)为偶函数,则y =f (x )的图象关于直线x =2对称;C .若f (2+x )=f (2-x ),则y =f (x )的图象关于直线x =2对称;D .若f (2-x )=f (x ),则y =f (x )的图象关于直线x =2对称.8.观察相关的函数图象,对下列命题的真假情况进行判断,其中真命题为( )A .10x =x 有实数解B .10x =x 2有实数解C .10x >x 2在x ∈(0,+∞)上恒成立D .10x =-x 有两个相异实数解.三、填空题9. 设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是________.10.函数f (x )=⎩⎨⎧ln x (x >0),--x (x ≤0)与g (x )=|x +a |+1的图象上存在关于y 轴对称的点,则实数a 的取值范围是________.四、解答题11.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值;(2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围.12.(1)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=f(m-x)恒成立,求证y=f(x)的图象关于直线x=m对称;(2)若函数y=log2|ax-1|的图象的对称轴是x=2,求非零实数a的值.。
函数图像专题PPT课件图文

2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称
函数的图象(精品课件)

三、认真观察 学会识图:
1.汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度 随时间变化而变化的情况. (2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
解:(2)在2分钟到6分钟,18分钟到22分钟之间汽车匀速行驶,速度分 别是30千米/时和90千米/时.
S 0 0.25 1 2.25 4 6.25 9 12.25 16 描点:在直角坐标系中,画出表格中各对数
值所对应的点.
连线:把所描出的各点用平滑
S
16
的曲线连接起来.
接下来怎么办呢?
9
4 1 O 1234 x
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
0-8分钟,离家越来越远;8-25分钟,离家 距离不变,为0.6千米;25-28分钟,离家距离由 0.6千米增加到0.8千米;28-58分钟,离家0.8千 米;58-68分钟,离家越来越近,直至回家.
解答
(1)食堂离小明家多远?小明从家到食堂用了多少 时间? 食堂离小明家0.6km;小明从家到食堂用了8min. (2)小明吃早餐用了多长时间? 25-8=17 小明吃早餐用了17min.
5.温度在零度以下的时间长呢?还是在零度以上
的时间长?
温度在零度以上的时间长
随堂练习
1、下图是某一天北京与上海的气温随时间变 化的图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(1)7,12 (2)高:0~7,12~24 低:7~12
高一数学函数图像试题答案及解析

高一数学函数图像试题答案及解析1.如图,点A、C都在函数的图象上,点B、D都在轴上,且使得△OAB、△BCD都是等边三角形,则点D的坐标为.【答案】.【解析】如下图所示,分别过点A、C作轴的垂线,垂足分别为E,F.设,,则,,所以点A、C的坐标为、,所以,解得,所以点D的坐标为.【考点】反比例函数图像上点的坐标特征;等边三角形的性质.2.偶函数与奇函数的定义域均为,在,在上的图象如图,则不等式的解集为()A.B.C.D.【答案】C【解析】是偶函数,偶函数的图像关于轴对称,结合图像知的解集,的解集;是奇函数,奇函数的图像关于原点对称,结合图像知的解集,的解集;等价于或,所以解集为,故选C.【考点】1.函数的图像;2.函数的奇偶性.3.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x)(实线表示),另一种是平均价格曲线y=g(x)(虚线表示)(如f(2)=3是指开始买卖后两个小时的即时价格为3元g(2)=3表示2个小时内的平均价格为3元),下图给出四个图象:其中可能正确的图象序号是 .A.①②③④B.①③④C.①③D.③【答案】D【解析】①错,因为即时价格是下降的,所以从开始后,平均价格应在即时价格的上面,不会有交点;②错,因为,如果平均价格不变,那么即时价格也应不变;③正确,因为开始即时价格是上升的,所以一段时间的平均价格应该在他的下面,后即时价格下降了,那么经过一段时间,会出现平均价格在即时价格的上面;④错,即时价格为折线,平均价格应为曲线.故选D.【考点】函数的图像4.已知 ,,则函数的图象必定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】函数的图象可以看作是由函数的图象向下平移个单位而得到;因为,所以函数单调递减,又,函数图象与轴交点纵坐,如图所示,图象不可能过第一象限.故选A.【考点】1、指数函数的图象与性质;2、函数图象变换.5.已知,若对任意与的值至少有一个为正数,则实数的取值范围是()A.B.C.D.【答案】B【解析】(采用特值检验法),若,满足题意,可排除A、D,若,,显然满足题意,故选B.【考点】二次函数、一次函数的图像与性质的综合运用.6.已知幂函数的图象经过点(4,2),则()A.B.4C.D.8【答案】B【解析】因为幂函数的图象经过点(4,2),所以有,解得,所以.【考点】幂函数解析式与图象.7.函数的图象的大致形状是A. B. C. D.【答案】C【解析】由题意函数可化为,又,故当时,函数为增函数,且,那么可排除B、D选项;而当时,函数为减函数,且.所以正确答案为C.【考点】1.分段函数;2.函数单调性、图像.8.同时满足以下三个条件的函数是()①图像过点;②在区间上单调递减③是偶函数.A.B.C.D.【答案】C【解析】选项A中,函数对称轴为x=-1,所以不是偶函数,排除A;选项B中,函数在区间上单调递增,排除B;选项D中,函数图像不过点,排除D.故选择C.【考点】函数的图像和性质.9.已知函数,则函数的反函数的图象可能是()【答案】D【解析】函数的图像恒过(0,1)点,函数的图像恒过(-1,1),则其反函数的图像恒过(1,-1)而选项A恒过(0,0),选项B恒过(2,0),选项C恒过(1,0),故排除;所以正确选项为D【考点】1、函数图像的平移;2、反函数的性质.10.设函数的图像过点,其反函数的图像过点,则等于 ( ) A.1B.2C.3D.【答案】D【解析】本题考查了互为反函数的函数图象之间的关系、指数式和对数式的互化等函数知识;根据反函数的图象过点,则原函数的图象过点,再由函数的图象过点,构建方程即可求得的值.由图象过点,得转化为解得故选D【考点】对数函数性质,反函数.11.设奇函数f(x)的定义域为[-5,5],在上是减函数,又f(-3)=0,则不等式xf(x)<0的解集是 .【答案】【解析】先根据奇函数图象关于原点对称得到其在上的图象,在把所求不等式转化结合图象即可得到结论.由题意可画之内的示意图,因为所以自变量和函数值符号相反,由图可知【考点】函数奇偶性的性质;函数的图象;其他不等式的解法.12.定义运算则函数的图象是 ().【答案】A【解析】本题主要考查学生阅读理解能力,关键是能不能把所定义的新运算转化为大家已经熟悉的知识.时,,时,,∴∴的图象选A.【考点】分段函数的图象.13.函数在上取得最小值,则实数的集合是()A.B.C.D.【答案】C【解析】由零点分段法,我们可将函数f(x)=(2-x)|x-6|的解析式化为分段函数的形式,然后根据分段函数分段处理的原则,画出函数的图象,进而结合图象数形结合,可得实数a的集合。
20道已知函数解析式判断函数图像问题

20道已知函数解析式判断函数图像问题1.函数xx y ln =的图象大致是( )2.设函数()sin cos f x x x x =+的图象在点x t =处切线的斜率为()g t ,则()y g t =函数的图象一部分可以是( )A .B .C .D .3.函数xy xln 2=的图象大致为4.已知函数a kx y +=的图象如图所示,则函数k x a y +=的图象可能是5.函数3()2x y x x =-⋅的图象大致是( )6.函数()43tan f x x x =-在,22ππ⎛⎫- ⎪⎝⎭上的图象大致为( ). A .B .C .D .7. 函数()(1)ln f x x x =-的图象可能为( ).8.已知函数151)(--=x e x f x (其中e 为自然对数的底数),则y=f(x)的大致图像为( )9. 已知a>0且a ≠1,函数f(x)=log a (x +x 2+b)在(-∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a ||x|-b|的图象是( )A .B. C .D .10.(5分)函数2()(1)sin 1xf x x e=-+图象的大致形状是( )A .B .C .D .11.函数的大致图象为( )A. B.C. D.12.函数的图象大致为A. B.C. D.13.函数的部分图象大致是14.函数的大致图象是()()21xf xx-=A .B .C .D .15.函数()ln f x x x =的图像可能是( )16.函数()()122ln 1222++⋅-=x x x y 的部分图像是( )A .B .C .D .17.已知函数()ln(||)cos f x x x =⋅,以下哪个是()f x 的图象A. B.C. D.18.函数xx x y 2)(3-=的图象大致是( )19.函数f (x )=2sin 1x x +的图象大致为( )A .B .C .D .20.函数2sin 2x y x =-的图像大致是( )A. B.C. D.答案1. C2. B3. D4. B5. B6. D7. A8. D9. D10. 【解答】解:21()(1)sin sin 11xx xe f x x x e e -=-=++,则111()sin()(sin )sin ()111x x xx x xe e ef x x x x f x e e e ------=-=-==+++,则()f x 是偶函数,则图象关于y 轴对称,排除B ,D , 当1x =时,f (1)1sin101e e-=<+,排除A ,故选:C . 11.【答案】A 【解析】【分析】判断函数的奇偶性和对称性的关系,利用极限思想进行求解即可【详解】解:函数,,,,则函数为非奇非偶函数,图象不关于y轴对称,排除C,D,当,排除B,故选:A【点睛】本题主要考查函数图象的识别和判断,利用函数的对称性以及极限思想是解决本题的关键12.D13.C14.D15.A16.C17.B18.B19.A20.C。
指数函数的图像及性质

∴1-3c>3a-1,即3c+3a<2. 【答案】 D
求与指数函数有关的函数的定义域与值域
求下列函数的定义域和值域:
(1) y=( 1 )2x-x2;(2)y=9x+2×3x-1.
2
思路点拨:这是与指数函数有关的复合函数,可以利 用指数函数的概念和性质来求函数的定义域、值域,对于 形式较为复杂的可以考虑利用换元法(如(2)).
素材2.1 设函数f x =a- (a 0且a 1),
x
若f 2 = 4,则a = f (2)与f 1的大小关系 是 ;
,
xa x 2 函数y = 0 a 1的 | x| 图象的大致形状是
解析:
1由f 2 4,得a
-2
1 4,所以a , 2
另一部分是:y=3x
(x<0)
向左平移
1个单位
y=3x+1 (x<-1).
图象如图:
(2)由图象知函数在(-∞,-1]上是增函数,
在(-1,+∞)上是减函数. (3)由图象知当x=-1时,函数有最大值1,无最小值. 探究提高
在作函数图象时,首先要研究函数与某一
基本函数的关系.然后通过平移或伸缩来完成.
考点探究
点评: 利用单调性可以解决与指数函数有关的值域 问题.指数函数本身是非奇非偶函数,但是与指数函数有
关的一些函数则可能是奇函数或偶函数.要注意使用相关
的概念和性质解决问题.
考点探究
2 2.已知 f(x)是定义在 R 上的奇函数,且当 x∈(0,1)时,f(x)= x . 4 +1 (1)求 f(x)在(-1,1)上的解析式; (2)证明:f(x)在(0,1)上是减函数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2019·长郡中学联考)函数f (x )=1-x 2
e x 的图象大致为( )
解析 ∵f (-x )=1-x 2
e -x ≠
f (x )知f (x )的图象不关于y 轴对称,排除选项B ,C ,
又f (2)=1-4e 2=-3
e 2<0,排除A ,选D. 答案 D
2.下列图象是函数y =⎩
⎨⎧x 2
,x <0,
x -1,x ≥0的图象的是( )
解析 其图象是由y =x 2图象中x <0的部分和y =x -1图象中x ≥0的部分组成. 答案 C
3. (2018·浙江卷)函数y =2|x |·sin 2x 的图象可能是( )
解析 设f (x )=2|x |sin 2x ,其定义域为R 且关于坐标原点对称,又f (-x )=2|-
x |
·sin(-2x )=-f (x ),所以y =f (x )是奇函数,故排除选项A ,B ;令f (x )=0,所以
sin 2x =0,所以2x =k π(k ∈Z ),即x =k π
2(k ∈Z ),故排除选项C.故选D. 答案 D
4.(2017·全国Ⅲ卷)函数y =1+x +sin x
x 2的部分图象大致为( )
(1)法一 易知g (x )=x +sin x x 2为奇函数,故y =1+x +sin x
x 2的图象关于点(0,1)对称,排除C ;当x ∈(0,1)时,y >0,排除A ;当x =π时,y =1+π,排除B ,选项D 满足.
法二 当x =1时,f (1)=1+1+sin 1=2+sin 1>2,排除A ,C ;又当x →+∞时,y →+∞,排除B ,而D 满足.
5.函数y =2x 2-e |x |在[-2,2]的图象大致为( )
(2)f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),排除选项A ,B ; 当x ≥0时,f (x )=2x 2-e x ,f ′(x )=4x -e x , 所以f ′(0)=-1<0,f ′(2)=8-e 2>0, 所以函数f (x )在(0,2)上有解,
故函数f (x )在[0,2]上不单调,排除C ,故选D.
6..函数2
2x
y x =-的图像大致是()
分析观察四个选项给出的图像,区别在于函数零点的个数及单调性不同.
解析解法一:当0x ≤时,函数2x
y =单调递增,同时函数2
y x =-单调递增,故函数()f x 在(],0-∞上单调递增,排除,C D ;当0x >时,()f x 存在两个零点122,4x x ==,所以排除选项B .故选A .
解法二:如图2-22所示,有图像可知,函数2x
y =与函数2
y x =的交点有3个,说明函数
22x y x =-的零点有3个,故排除选项,B C ;当0x x <时,22x x >成立,即2
20x y x =-<,
故排除选项D ,故选A .
7. 函数ln cos 2
2y x x π
π⎛⎫=-
<< ⎪⎝⎭的图像是( )
分析 通过函数的定义域、值域、单调性、奇偶性判断函数图像。
解析 因为函数)2
2
(cos ln π
π
<
<-=x x y 为偶函数,故排除B 、D ,由值域为)0,(-∞,
排除C ,故选A 。
8.已知函数1
()ln(1)f x x x
=
+-,则()y f x =的图像大致为( )
解析 函数)(x f 的定义域应满足0)1ln(≠-+x x 且01>+x ,得
{}01|≠->x x x 且,故排除选项D 。
又)01()1l n (
≠-><+x x x x 且恒成立(经
典不等式),那么函数)(x f 的值域为)0,(-∞,故选B 。
10.(2019·北京海淀区模拟)已知函数f (x )=⎩⎨⎧e x
,x ≤e ,
ln x ,x >e ,
则函数y =f (e -x )的大致图
象是( )
解析 令g (x )=f (e -x ),则g (x )=⎩⎨⎧e e -x
,e -x ≤e ,
ln (e -x ),e -x >e ,
即g (x )=⎩⎨⎧e e -x
,x ≥0,
ln (e -x ),x <0,
因此g (x )在(0,+∞),(-∞,0)上都是减函数,排除A ,C ; 又e e -0>ln(e -0)=1,排除D ,因而B 项成立. 答案 B
11.函数y =ln|x |x 2+1
x
2在[-2,0]∪(0,2]上的大致图象为( )
解析 当x ∈(0,2]时,函数y =ln|x |+1x 2=ln x +1x 2
,当x =1
e 时,y =0,当x ∈⎝⎛⎭⎫0,1e 时,y =ln x +1x 2<0;x ∈⎝⎛⎦⎤1e ,2时,y =ln x +1x 2>0,所以函数y =ln x +1x 2在(0,2]上只有零点1e ,又函数y =ln|x |
x 2+1
x 2在[-2,0)∪(0,2]上是偶函数. 答案 B
12.下列图象是函数y =⎩
⎪⎨⎪⎧
x 2,x <0,
x -1,x ≥0的图象的是( )
答案:C
13.(2018·全国卷Ⅱ)函数f (x )=e x -e -
x
x 2
的图象大致为()
[解析] ∵y =e x -e -
x 是奇函数,y =x 2是偶函数,
∴f (x )=e x -e -
x
x 2
是奇函数,图象关于原点对称,排除A 选项.
当x =1时,f (1)=e -1
e
>0,排除D 选项.
又e>2,∴1e <12,∴e -1
e >1,排除C 选项.故选B.
[答案] B
14.(2018·全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )
[解析] 令f (x )=-x 4+x 2+2, 则f ′(x )=-4x 3+2x ,
令f ′(x )=0,得x =0或x =±2
2,
则f ′(x )>0的解集为⎝
⎛⎭⎫-∞,-
22∪⎝⎛⎭⎫0,22,f (x )在⎝
⎛⎭⎫-∞,-22,⎝⎛⎭⎫0,2
2上单调递增;f ′(x )<0的解集为⎝
⎛⎭⎫-
22,0∪⎝⎛⎭⎫22,+∞,f (x )在⎝⎛⎭⎫-22,0,⎝⎛⎭
⎫22,+∞上单调递减,结
合图象知选D.
[答案] D
15.函数y =(x 3-x )2|x |的图象大致是( )
解析:选B 易判断函数为奇函数,由y =0得x =±1或x =0.当0<x <1时,y <0;当x >1时,y >0.故选B.
16.函数f (x )=x e -
|x |的图象可能是( )
解析:选C 因为函数f (x )的定义域为R ,f (-x )=-f (x ),所以函数f (x )为奇函数,排除A 、B ;当x ∈(0,+∞)时,f (x )=x e -
x ,因为e -
x >0,所以f (x )>0,即f (x )在x ∈(0,+∞)
时,其图象恒在x 轴上方,排除D ,故选C.
17.(2019·汉中模拟)函数f (x )=⎝⎛⎭
⎫2
1+e x -1·sin x 的图象大致为( )
解析:选A ∵f (x )=⎝⎛⎭⎫21+e x -1·sin x ,∴f (-x )=⎝⎛⎭⎫21+e -x -1·sin(-x )=-⎝⎛⎭⎫2e
x
1+e x -1·
sin x
=⎝⎛⎭⎫21+e x -1·sin x =f (x ),∴函数f (x )为偶函数,故排除C 、D ;当x =2时,f (2)=⎝⎛⎭
⎫2
1+e 2-1·sin
2<0,故排除B ,选A.。